
CS412 Software Security
Advanced Mitigations

Mathias Payer

EPFL, Spring 2019
Mathias Payer CS412 Software Security

Model for Control-Flow Hijack Attacks

Figure 1:Mathias Payer CS412 Software Security

Advanced mitigations

Stack integrity
Control-Flow Integrity (CFI)
Code Pointer Integrity
Sandboxing

Mathias Payer CS412 Software Security

Stack integrity

Stack integrity ensures that (i) the return instruction pointer
and (ii) the stack pointer cannot be modified

Return instruction pointers are code pointer; stack integrity
guarantees return instruction pointer integrity, i.e., only valid
return instruction pointers are dereferenced.
Pointers to other stack frames are stored on the stack, stack
integrity ensures the integrity of this metadata as well. Note
that modifying the base pointer indirectly modifies the return
instruction pointer.

Stack canaries are a weak form of stack integrity
Shadow stacks are a strong form of stack integrity

Mathias Payer CS412 Software Security

Shadow stack
A shadow stack is a second stack for each thread that keeps
track of control data (e.g., return instruction pointer, base
pointer, or code pointers)
Note that not all implementations protect all types of data
Data on the shadow stack is integrity protected

Implicitly: as the shadow stack contains only control data,
buffer overflows are not possible
Explicitly: some shadow stacks are write protected

How would you implement a shadow stack? Discuss!

Mathias Payer CS412 Software Security

Shadow stack

Figure 2:
Mathias Payer CS412 Software Security

Safe stack
A shadow stack always keeps two allocated stack frames for
each function invocation (maybe of different size)
Core idea: for each variable in a stack frame decide if its safe
Variables are safe if they are only used in a safe context, i.e.,
they don’t escape the current function and are only used with
bounded pointer arithmetic
Push any unsafe variables to the unsafe stack
Performance benefit: an unsafe stack frame is only allocated
for if there are unsafe variables

Mathias Payer CS412 Software Security

Safe stack

Figure 3:

Mathias Payer CS412 Software Security

Control-Flow Integrity
CFI is a defense mechanism that protects applications
against control-flow hijack attacks. A successful CFI
mechanism ensures that the control-flow of the application
never leaves the predetermined, valid control-flow that is
defined at the source code/application level. This means
that an attacker cannot redirect control-flow to alternate
or new locations.

Figure 4:
Mathias Payer CS412 Software Security

Basics of a CFI mechanism
Core idea: restrict the dynamic control flow of the application to
the control-flow graph of the application.

Target set construction
Dynamic enforcement mechanism to execute runtime checks

Mathias Payer CS412 Software Security

CFI: target set construction
How do we infer the control-flow graph (for C/C++ programs)? A
static analysis (on source code or binary) can recover an
approximation of the control-flow graph. Precision of the analysis is
crucial!

Valid functions
Arity
Function prototypes
Class hierarchy analysis

Mathias Payer CS412 Software Security

CFI: target set construction
Trade-off between precision and compatibility.
One set of valid functions is highly compatible with other software
but may result in imprecision given the large amount of functions.
Class hierarchy analysis results in small sets but may be
incompatible with other source code and some programmer patterns
(e.g., casting to void or not passing all parameters).

Mathias Payer CS412 Software Security

CFI: target set construction trade-offs
Microsoft chose compatibility over security. LLVM chose security
over compatibility.
Discuss trade-offs.

Mathias Payer CS412 Software Security

CFI: runtime checks
The analysis produces target sets for each location of an indirect
control-flow transfer. The runtime check leverages the runtime
value and the target set to execute a set check. The most efficient
implementation uses a set of bit masks.

void (*fn)(int) = &func;
...
if (!contains(targetset, fn)) {

abort("Error: illegal target");
}
fn(12);

Note that the check and dispatch are atomic as otherwise, this
would result in a TOCTTOU vulnerability.

Mathias Payer CS412 Software Security

CFI: limitations
CFI allows the underlying bug to fire and the memory
corruption can be controlled by the attacker. The defense only
detects the deviation after the fact, i.e., when a corrupted
pointer is used in the program.
Over-approximation in the static analysis reduces security
guarantees
What kind of attacks are possible?

An attacker is free to modify the outcome of any JCC
An attacker can choose any allowed target at each ICF location
For return instructions: one set of return targets is too broad
and even localized return sets are too broad for most cases.
For indirect calls and jumps, attacks like COOP (Counterfeit
Object Oriented Programming) have shown that full functions
can be used as gadgets.

Mathias Payer CS412 Software Security

Code-Pointer Integrity

Memory corruption is abundant.
Strong memory-safety-based defenses have not been adopted.
Weaker defenses like strong memory allocators also ignored.
Only defenses that have negligible overhead are adapted.
What if we can have memory safety but only where it matters?
Assume we want to protect applications against control-flow
hijacking attacks. What data must be protected?
Code Pointer Integrity (CPI) ensures that all code pointers are
protected at all times

Mathias Payer CS412 Software Security

CPI attacker model
Attacker can read data, code (includes stack, bss, data, text,
heap)
Attacker can write data.
Attacker cannot modify code
Attacker cannot influence the loading process
(This is true for most mitigations)

Mathias Payer CS412 Software Security

Existing memory safety solutions
SoftBound+CETS 116% overhead, only partial support for
SPEC CPU2006
CCured: 56% overhead
AddressSanitizer: 73% overhead, only partial memory safety
(probabilistic spatial)
CPI targets protection of subset of data

Mathias Payer CS412 Software Security

Checks enforce memory safety!
char *buf = malloc(10);
// instr: track bounds
buf_lo = p; buf_up = p+10;
...
char *q = buf + input;
// instr: track bounds
q_lo = buf_lo; q_up = buf_up;
// instr: check bounds
if (q < q_lo || q >= q_up)

abort();
*q = input2;
...
(*func_ptr)();

Checks focus on all data, how can we protect integrity of only code
pointers?

Mathias Payer CS412 Software Security

Paradigm shift: protect select data
Instead of protecting everything a little protect a little completely.
Strong protection for a select subset of data. Attacker may modify
any unprotected data.
By only protecting code pointers, CPI reduces the overhead of
memory safety from 116% to 8.4% while still deterministically
protecting applications against control-flow hijack attacks.

Mathias Payer CS412 Software Security

What data must be protected?
Sensitive pointers are code pointers and pointers used to access
sensitive pointers
We can over-approximate and identify sensitive pointer through
their types: all types of sensitive pointers are sensitive
Over approximation only affects performance

Mathias Payer CS412 Software Security

Memory layout

Figure 5:

Mathias Payer CS412 Software Security

Memory layout
Memory view is split into two views: control and data plane

The control plane is a view that only contains code pointers
(and transitively all related pointers)
The data plane contains only data, code pointers are left empty
(void/unused data)

The two planes must be separated and data in the control plane
must be protected from pointer dereferences in the data plane

Mathias Payer CS412 Software Security

Sandboxing

Different levels of granularity for sandboxing:

Kernel isolates process memory
chroot / containers isolate processes from each other
seccomp restricts processes from interacting with the kernel
Software-based Fault Isolation isolated components in a process

Mathias Payer CS412 Software Security

Software-based Fault Isolation (SFI)
Application and untrusted code run in the same address space
The untrusted code may only read/write the untrusted data
segment. How do you implement such a restriction?

Segmentation (on x86)
Mask memory area: and $0x00ffffff, %rax; mov
$0xc0fe0000, (%rax)
Challenge for CISC ISAs: jumping to unalaigned instructions:
mov $0x80cd01b0, (%rax) contains mov $1, %al; int
$0x80
Google’s NaCL solves the challenge by aligning instructions

Mathias Payer CS412 Software Security

Summary and conclusion

Adopted defenses do not stop all attacks
Control-flow hijacking is the most versatile attack vector
Stack integrity protects code pointers on the stack
CFI restricts targets on the forward edge
CPI prohibits control-flow hijacking, key insight: enforce
memory safety only for code pointers
Sandboxing separates different privilege domains

Mathias Payer CS412 Software Security

