
CS412 Software Security
Basic Principles

Mathias Payer

EPFL, Spring 2019

Mathias Payer CS412 Software Security



Software Security

Allow intended use of software, prevent unintended use
that may cause harm.

Mathias Payer CS412 Software Security



Security principles

Confidentiality: an attacker cannot recover protected data
Integrity: an attacker cannot modify protected data
Availability: an attacker cannot stop/hinder computation

Accountability/non-repudiation may be used as fourth fundamental
concept. It prevents denial of message transmission or receipt.

Mathias Payer CS412 Software Security



Security analysis

Given a software system, is it secure?

. . . it depends
What is the attack surface?
What are the assets? (How profitable is an attack?)
What are the goals? (What drives an attacker?)

Mathias Payer CS412 Software Security



Attacks and Defenses
Attack (threat) models

A class of attacks that you want to stop
What is the attacker’s capability?
What is impact of an attack?
What attacks are out-of-scope?

Defenses address a certain attack/threat model.
General: e.g., stop memory corruptions
Very specific: e.g., stop overwriting a return address

Mathias Payer CS412 Software Security



Threat model

The threat model defines the abilities and resources of the
attacker. Threat models enable structured reasoning
about the attack surface.

Awareness of entry points (and associated threats)
Look at systems from an attacker’s perspective

Decompose application: identify structure
Determine and rank threats
Determine counter measures and mitigation

Reading material: https://www.owasp.org/index.php/
Application_Threat_Modeling

Mathias Payer CS412 Software Security

https://www.owasp.org/index.php/Application_Threat_Modeling
https://www.owasp.org/index.php/Application_Threat_Modeling


Threat model: safe
Assume you want to protect your valuables by locking them in a
safe.

In trust land, you don’t need to lock your safe.
An attacker may pick your lock.
An attacker may use a torch to open your safe.
An attacker may use advanced technology (x-ray) to open it.
An attacker may get access (or copy) your key.

Mathias Payer CS412 Software Security



Threat model: operating systems
Malicious extension: inject an attacker-controlled driver into
the OS;
Bootkit: compromise the boot process (BIOS, boot sectors);
Memory corruption: software bugs such as spatial and temporal
memory safety errors or hardware bugs such as rowhammer;
Data leakage: the OS accidentally returns confidential data
(e.g., randomization secrets);
Concurrency bugs: unsynchronized reads across privilege levels
result in TOCTTOU (time of check to time of use) bugs;
Side channels: indirect data leaks through shared resources
such as hardware (e.g., caches), speculation (Spectre or
Meltdown), or software (page deduplication);
Resource depletion and deadlocks: stop legitimate computation
by exhausting or blocking access to resources

Mathias Payer CS412 Software Security



Cost of security

There is no free lunch, security incurs overhead.
Security is. . .

expensive to develop,
may have performance overhead,
may be inconvenient to users.

Mathias Payer CS412 Software Security



Fundamental security mechanisms

Isolation
Least privilege
Fault compartments
Trust and correctness

Figure 1

Mathias Payer CS412 Software Security



Isolation
Isolate two components from each other. One component
cannot access data/code of the other component except
through a well-defined API.

Mathias Payer CS412 Software Security



Least privilege
The principle of least privilege ensures that a component
has the least privileges needed to function.

Any privilege that is further removed from the component
removes some functionality.
Any additional privilege is not needed to run the component
according to the specification.
Note that this property constrains an attacker in the privileges
that can be obtained.

Mathias Payer CS412 Software Security



Fault compartments
Separate individual components into smallest functional
entity possible. General idea: contain faults to individual
components. Allows abstraction and permission checks at
boundaries.

Note that this property builds on least privilege and isolation. Both
properties are most effective in combination: many small
components that are running and interacting with least privileges.

Mathias Payer CS412 Software Security



Fault compartments

Figure 2

Mathias Payer CS412 Software Security



Trust and correctness
Specific components are assumed to be trusted or correct
according to a specification.

Formal verification ensures that a component correctly implements a
given specification and can therefore be trusted. Note that this
property is an ideal property that cannot generally be achieved.

Mathias Payer CS412 Software Security



Mathias Payer CS412 Software Security



Hardware and software abstractions

Operating System (OS) abstractions
Hardware abstractions

Mathias Payer CS412 Software Security



Operating System (OS) abstraction
Provides process abstraction
Well-defined API to access hardware resources
Enforces mutual exclusion to resources
Enforces access permissions for resources
Restrictions based on user/group/ACL
Restricts attacker

Mathias Payer CS412 Software Security



OS process isolation
Memory protection: protect the memory (code and data such
as heap, stack, or globals) of one process from other processes
Address space: working memory of one process
Today’s system implement address spaces (virtual memory)
through page tables with the help of an Memory Management
Unit (MMU)

Mathias Payer CS412 Software Security



OS designs: single domain (1/4)
A single layer, no isolation or compartmentalization
All code runs in the same domain: the application can directly
call into operating system drivers
High performance, often used in embedded systems

Figure 3

Mathias Payer CS412 Software Security



OS design: monolithic (2/4)
Two layers: the operating system and applications
The OS manages resources and orchestrates access
Applications are unprivileged, must request access from the OS
Linux fully and Windows mostly follows this approach for
performance (isolating individual components is expensive)

Figure 4

Mathias Payer CS412 Software Security



OS design: micro-kernel (3/4)
Many layers: each component is a separate process
Only essential parts are privileged

Process abstraction (address spaces)
Process management (scheduling)
Process communication (IPC)

Applications request access from different OS processes

Figure 5

Mathias Payer CS412 Software Security



OS design: library os (4/4)
Few thin layers; flat structure
Micro-kernel exposes bare OS services
Each application brings all necessary OS components

Figure 6

Mathias Payer CS412 Software Security



Hardware abstraction
Virtual memory through MMU/OS
Only OS has access to raw physical memory
DMA for trusted devices
ISA enforces privilege abstraction (ring 0/3 on x86)
Hardware abstractions are fundamental for performance

Mathias Payer CS412 Software Security



Access control

Authentication: Who are you (what you know, have, or are)?
Authorization: Who has access to object?
Audit/Provenance: I’ll check what you did.

Mathias Payer CS412 Software Security



Authentication: who are you?
There are three fundamental types of identification:

What you know: username / password
What you are: biometrics
What you have: second factor / smartcard

How do you authenticate a remote entity?

Kerberos: capabilities and tokens.

Mathias Payer CS412 Software Security



Authorization: Information flow control
An important question when handling shared resources is who can
access what information.

These access policies are called access control models.
Access control models were originally developed by the US
military

Users with different clearance levels on a single system
Data was shared across different levels of clearance
Therefore the name “multi-level security”

Mathias Payer CS412 Software Security



Authorization: Types of access control
Mandatory Access Control (MAC): Rule and lattice-based
policy
Discretionary Access Control (DAC): Object owners specify
policy
Role-Based Access Control (RBAC): Policy defined in terms of
roles (sets of permissions), individuals are assigned roles, roles
are authorized for tasks.

Mathias Payer CS412 Software Security



MAC
Centrally controlled
One entity controls what permissions are given
Users cannot change policy themselves
Examples: Bell/LaPadula and Biba

Mathias Payer CS412 Software Security



Bell and LaPadula
Multi level security model that enforces information flow control
All security levels are monotonically ordered, files have
clearance level
A given clearance allows reading files of lower or equal
clearance and writing files of equal or higher clearance.
Summary: read-down, write-up
Bell/LaPadula enforces confidentiality

Mathias Payer CS412 Software Security



Biba
Multi level security model that enforces information flow control
All security levels are monotonically ordered, files have integrity
level
A given clearance allows reading files of higher or equal
clearance and writing files of lower or equal clearance.
Summary: read-up, write-down
Biba enforces integrity

Mathias Payer CS412 Software Security



DAC
MAC is complex and requires central control, empower the
user!
User has authority over resources she owns
User determines permissions for her data if other users want to
access it
For example: Unix permissions

Mathias Payer CS412 Software Security



RBAC
Access permission is broken into sets of roles.
Users get assigned specific roles
Administration privileges may be a role.

Mathias Payer CS412 Software Security



Different security models
Access control lists (static)
Capabilities (static)
Bell-LaPadula (state machine)
Information flow (flow dependent)

Mathias Payer CS412 Software Security



Access control matrix
Provide access rights for subjects to objects.

foo bar baz

user rwx rw rw
group rx r r
other rx r

Used, e.g., for Unix/Linux file systems or Android/iOS/Java
security model for privileged APIs.
Introduced by Butler Lampson in 1971
http://research.microsoft.com/en-us/um/people/
blampson/08-Protection/Acrobat.pdf.

Mathias Payer CS412 Software Security

http://research.microsoft.com/en-us/um/people/blampson/08-Protection/Acrobat.pdf
http://research.microsoft.com/en-us/um/people/blampson/08-Protection/Acrobat.pdf


Summary and conclusion

Software security goal: allow intended use of software, prevent
unintended use that may cause harm.
Three principles: Confidentiality, Integrity, Availability.
Security of a system depends on its threat model.
Isolation, least privilege, fault compartments, and trust as
concepts.
Security relies on abstractions to reduce complexity.
Reading assignment: Butler Lampson, Protection
http://doi.acm.org/10.1145/775265.775268

Mathias Payer CS412 Software Security

http://doi.acm.org/10.1145/775265.775268

