
CS527 Software Security
Program Testing

Mathias Payer

Purdue University, Spring 2018

Mathias Payer CS527 Software Security



Why testing?

Testing is the process of executing a program to find
errors.

An error is a deviation between observed behavior and specified
behavior, i.e., a violation of the underlying specification:

Functional requirements (features a, b, c)
Operational requirements (performance, usability)
Security requirements?

Mathias Payer CS527 Software Security



Limitations of testing

A successful test finds a deviation.
Testing can only show the presence of bugs, never their
absence. (Edsger W. Dijkstra)

Complete testing of all control-flow/data-flow paths reduces to the
halting problem, in practice, testing is hindered due to state
explosion.

Mathias Payer CS527 Software Security



Forms of testing

Manual testing
Fuzz testing
Symbolic and concolic testing

Mathias Payer CS527 Software Security



Manual testing

Three levels of testing:

Unit testing (individual modules)
Integration testing (interaction between modules)
System testing (full application testing)

Mathias Payer CS527 Software Security



Manual testing strategies
Exhaustive: cover all input; not feasible due to massive state
space
Functional: cover all requirements; depends on specification
Random: automate test generation (but incomplete)
Structural: cover all code; works for unit testing

Mathias Payer CS527 Software Security



Testing example
double doFun(double a, double b, double c) {

if (a == 23.0 && b == 42.0) {
return a * b / c;

}
return a * b * c;

}

Fails for a == 23.0 && b == 42.0 && c == 0.0.

Mathias Payer CS527 Software Security



Testing example
double doFun(double a, double b, double c) {

if (a == 23.0 && b == 42.0) {
return a * b / c;

}
return a * b * c;

}

Fails for a == 23.0 && b == 42.0 && c == 0.0.

Mathias Payer CS527 Software Security



Testing approaches
double doFun(double a, double b, double c)

Exhaustive: 2ˆ{64}ˆ3 tests
Functional: generate test cases for true/false branch,
ineffective for errors in specification or coding errors
Random: probabilistically draw a, b, c from value pool
Structural: aim for full code coverage, generate test cases for
all paths

Mathias Payer CS527 Software Security



Coverage as completeness metric
Intuition: A software flaw is only detected if the flawed
statement is executed. Effectiveness of test suite therefore
depends on how many statements are executed.

Mathias Payer CS527 Software Security



Is statement coverage enough?
int func(int elem, int *inp, int len) {

int ret = -1;
for (int i = 0; i <= len; ++i) {

if (inp[i] == elem) { ret = i; break; }
}
return ret;

}

Test input: elem = 2, inp = [1, 2], len = 2. Full statement
coverage.

Loop is never executed to termination, where out of bounds access
happens. Statement coverage does not imply full coverage. Today’s
standard is branch coverage, which would satisfy the backward edge
from i <= len to the end of the loop. Full branch coverage implies
full statement coverage.

Mathias Payer CS527 Software Security



Is statement coverage enough?
int func(int elem, int *inp, int len) {

int ret = -1;
for (int i = 0; i <= len; ++i) {

if (inp[i] == elem) { ret = i; break; }
}
return ret;

}

Test input: elem = 2, inp = [1, 2], len = 2. Full statement
coverage.
Loop is never executed to termination, where out of bounds access
happens. Statement coverage does not imply full coverage. Today’s
standard is branch coverage, which would satisfy the backward edge
from i <= len to the end of the loop. Full branch coverage implies
full statement coverage.

Mathias Payer CS527 Software Security



Is branch coverage enough?
int arr[5] = { 0, 1, 2, 3, 4};
int func(int a, int b) {

int idx = 4;
if (a < 5) idx -= 4; else idx -= 1;
if (b < 5) idx -= 1; else idx += 1;
return arr[idx];

}

Test inputs: a = 5, b = 1 and a = 1, b = 5. Full branch
coverage.

Not all paths through the function are executed: a = 1, b = 1
results in a bug when both statements are true at the same time.
Full path coverage evaluates all possible paths but this can be
expensive (path explosion due to each branch) or impossible for
loops. Loop coverage (execute each loop 0, 1, n times), combined
with branch coverage probabilistically covers state space.

Mathias Payer CS527 Software Security



Is branch coverage enough?
int arr[5] = { 0, 1, 2, 3, 4};
int func(int a, int b) {

int idx = 4;
if (a < 5) idx -= 4; else idx -= 1;
if (b < 5) idx -= 1; else idx += 1;
return arr[idx];

}

Test inputs: a = 5, b = 1 and a = 1, b = 5. Full branch
coverage.
Not all paths through the function are executed: a = 1, b = 1
results in a bug when both statements are true at the same time.
Full path coverage evaluates all possible paths but this can be
expensive (path explosion due to each branch) or impossible for
loops. Loop coverage (execute each loop 0, 1, n times), combined
with branch coverage probabilistically covers state space.

Mathias Payer CS527 Software Security



How to measure code coverage?
Several (many) tools exist:

gcov: https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
SanitizerCoverage: https://clang.llvm.org/docs/
SourceBasedCodeCoverage.html

Mathias Payer CS527 Software Security

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html


How to achieve full testing coverage?
Idea: look at data flow.
Track constraints of conditions, generate inputs for all possible
constraints.

Mathias Payer CS527 Software Security



Sanitizer

Test cases detect bugs through
Assertions (assert(var != 0x23 && "var has illegal
value");) detect violations
Segmentation faults
Division by zero traps
Uncaught exceptions
Mitigations triggering termination

How can you increase the chances of detecting a bug?

Sanitizers enforce some policy, detect bugs earlier and increase
effectiveness of testing.

Mathias Payer CS527 Software Security



Sanitizer

Test cases detect bugs through
Assertions (assert(var != 0x23 && "var has illegal
value");) detect violations
Segmentation faults
Division by zero traps
Uncaught exceptions
Mitigations triggering termination

How can you increase the chances of detecting a bug?

Sanitizers enforce some policy, detect bugs earlier and increase
effectiveness of testing.

Mathias Payer CS527 Software Security



AddressSanitizer
AddressSanitizer (ASan) detects memory errors. It places red zones
around objects and checks those objects on trigger events. The tool
can detect the following types of bugs:

Out-of-bounds accesses to heap, stack and globals
Use-after-free
Use-after-return (configurable)
Use-after-scope (configurable)
Double-free, invalid free
Memory leaks (experimental)

Typical slowdown introduced by AddressSanitizer is 2x.

Mathias Payer CS527 Software Security



LeakSanitizer
LeakSanitizer detects run-time memory leaks. It can be combined
with AddressSanitizer to get both memory error and leak detection,
or used in a stand-alone mode.
LSan adds almost no performance overhead until process
termination, when the extra leak detection phase runs.

Mathias Payer CS527 Software Security



MemorySanitizer
MemorySanitizer detects uninitialized reads. Memory allocations are
tagged and uninitialized reads are flagged.
Typical slowdown of MemorySanitizer is 3x.
Note: do not confuse MemorySanitizer and AddressSanitizer.

Mathias Payer CS527 Software Security



UndefinedBehaviorSanitizer
UndefinedBehaviorSanitizer (UBSan) detects undefined behavior. It
instruments code to trap on typical undefined behavior in C/C++
programs. Detectable errors are:

Unsigned/misaligned pointers
Signed integer overflow
Conversion between floating point types leading to overflow
Illegal use of NULL pointers
Illegal pointer arithmetic
. . .

Slowdown depends on the amount and frequency of checks. This is
the only sanitizer that can be used in production. For production
use, a special minimal runtime library is used with minimal attack
surface.

Mathias Payer CS527 Software Security



ThreadSanitizer
ThreadSanitizer detects data races between threads. It instruments
writes to global and heap variables and records which thread wrote
the value last, allowing detecting of WAW, RAW, WAR data races.
Typical slowdown is 5-15x with 5-15x memory overhead.

Mathias Payer CS527 Software Security



HexType
HexType detects type safety violations. It records the true type of
allocated objects and makes all type casts explicit.
Typical slowdown is 0.5x.

Mathias Payer CS527 Software Security



Sanitizers
AddressSanitizer:
https://clang.llvm.org/docs/AddressSanitizer.html
LeakSanitizer:
https://clang.llvm.org/docs/LeakSanitizer.html
MemorySanitizer:
https://clang.llvm.org/docs/MemorySanitizer.html
UndefinedBehaviorSanitizer: https://clang.llvm.org/
docs/UndefinedBehaviorSanitizer.html
ThreadSanitizer:
https://clang.llvm.org/docs/ThreadSanitizer.html
HexType: https://github.com/HexHive/HexType

Use sanitizers to test your code. More sanitizers are in development.

Mathias Payer CS527 Software Security

https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://github.com/HexHive/HexType


Fuzzing

Fuzz testing (fuzzing) is an automated software testing technique.
The fuzzing engine generates inputs based on some criteria:

Random mutation
Leveraging input structure
Leveraging program structure

The inputs are then run on the test program and, if it crashes, a
crash report is generated.

Mathias Payer CS527 Software Security



Fuzz input generation
Fuzzers generate new input based on generations or mutations.
Generation-based input generation produces new input seeds in each
round, independent from each other.
Mutation-based input generation leverages existing inputs and
modifies them based on feedback from previous rounds.

Mathias Payer CS527 Software Security



Fuzz input structure awareness
Programs accept some form of input/output. Generally, the
input/output is structured and follows some form of protocol.
Dumb fuzzing is unaware of the underlying structure.
Smart fuzzing is aware of the protocol and modifies the input
accordingly.
Example: a checksum at the end of the input. A dumb fuzzer will
likely fail the checksum.

Mathias Payer CS527 Software Security



Fuzz program structure awareness
The input is processed by the program, based on the program
structure (and from the past executions), input can be adapted to
trigger new conditions.

White box fuzzing leverages semantic program analysis to
mutate input
Grey box leverages program instrumentation based on previous
inputs
Black box fuzzing is unaware of the program structure

Mathias Payer CS527 Software Security



American Fuzzy Lop
AFL is the most well-known fuzzer currently
AFL uses grey-box instrumentation to track branch coverage
and mutate fuzzing seeds based on previous branch coverage
The branch coverage tracks the last two executed basic blocks
New coverage is detected on the history of the last two
branches
AFL: http://lcamtuf.coredump.cx/afl/

Mathias Payer CS527 Software Security

http://lcamtuf.coredump.cx/afl/


Symbolic execution

Reason about program behavior through “execution” with
symbolic values
Concrete values (input) replaced with symbolic values

Can have any value (think variable x instead of value 0x15)
Track all possible execution paths at once

Operations (read, write, arithmetic) become constraint
collection

Allows unknown symbolic variables in evaluation
Execution paths that depend on symbolic variables fork

Mathias Payer CS527 Software Security



Symbolic execution: example
void func(int a, int b, int c) {

int x = 0, y = 0, z = 0;
if (a) x = -2;
if (b < 5) {

if (!a && c) y = 1;
z = 2;

}
assert(x + y + z != 3);

}

Mathias Payer CS527 Software Security



Symbolic execution: example

Figure 1:

Mathias Payer CS527 Software Security



Symbolic paths
Path condition: quantifier-free formula over symbolic inputs that
encodes all branch decisions (so far).
Determine whether the path is feasible: check if path condition is
satisfiable. SMT solver provides satisfying assignment, counter
example, or timeout.

Mathias Payer CS527 Software Security



Challenges for symbolic execution
Loops and recursion result in infinite execution traces
Path explosion (each branch doubles the number of paths)
Environment modeling (system calls are complex)
Symbolic data (symbolic arrays and symbolic indices)

Mathias Payer CS527 Software Security



Concolic testing
Idea: mix concrete and symbolic execution

Record actual execution
Symbolically execute near recorded trace
Negate one condition, generate new input, repeat

Mathias Payer CS527 Software Security



KLEE
KLEE: Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs,
Cadar et al., OSDI’08

Large scale symbolic execution tool
Leverages LLVM to compile programs
Abstracts environment
Many different search strategies

Mathias Payer CS527 Software Security



Summary and conclusion

Software testing finds bugs before an attacker can exploit them
Manual testing: write test cases to trigger exceptions
Sanitizers allow early bug detection, not just on exceptions
Fuzz testing automates and randomizes testing
Symbolic and concolic testing allow full coverage analysis (at
high overheads)

Mathias Payer CS527 Software Security


