
CS527 Software Security
Security Policies

Mathias Payer

Purdue University, Spring 2018

Mathias Payer CS527 Software Security

Security Policies

A policy is a deliberate system of principles to guide
decisions and achieve rational outcomes. A policy is a
statement of intent, and is implemented as a procedure or
protocol. (Wikipedia)

Mathias Payer CS527 Software Security

Isolation

Isolation is the process or fact of isolating or being
isolated.

Two components are isolated if their interactions are restricted.
An operating system isolates process from each other and the
operating system and only allows interaction through a
well-defined API

Enabled through virtual memory and privilege domains

Mathias Payer CS527 Software Security

Least privilege

Least privilege requires that each component has the
mimimum amount of privileges to function.

If any privilege is removed, the component stops to function

Mathias Payer CS527 Software Security

Compartmentalization

General technique of separating two or more parts of a
system to prevent malfunctions from spreading between or
among them.

Requires combination of isolation and least privilege.
Strong policy to contain faults to single components
Forward reference: confused deputies are still a problem

Mathias Payer CS527 Software Security

Memory Safety

Memory safety is a property that ensures that all memory
accesses adhere to the semantics defined by the source
programming language.

Mathias Payer CS527 Software Security

Practical memory safety
The gap between the operational semantics of the
programming language and the underlying instructions
provided by the ISA allow an attacker to step out of the
restrictions imposed by the programming language and
access memory out of context.

Memory unsafe languages like C/C++ do not enforce
memory safety and data accesses can occur through
stale/illegal pointers.

Mathias Payer CS527 Software Security

Memory safety
Memory safety is a general property that can apply to a
program, a runtime environment, or a programming language

See Mike Hicks: Memory Safety

A program is memory safe, if all possible executions of that
program are memory safe.
A runtime environment is memory safe, if all runnable
programs are memory safe.
A programming language is memory safe, if all expressable
programs are memory safe.
Memory safety prohibits buffer overflows, NULL pointer
dereferences, use after free, use of uninitialized memory, or
double frees.

Mathias Payer CS527 Software Security

http://www.pl-enthusiast.net/2014/07/21/memory-safety/

Memory unsafety (C/C++ view)
Memory safety violations rely on two conditions:

Pointer goes out of bounds or becomes dangling
The pointer is dereferenced (used for read or write)

Mathias Payer CS527 Software Security

Spatial memory safety
Spatial memory safety is a property that ensures that all
memory dereferences are within bounds of their pointer’s
valid objects. An object’s bounds are defined when the
object is allocated. Any computed pointer to that object
inherits the bounds of the object. Any pointer arithmetic
can only result in a pointer inside the same object.
Pointers that point outside of their associated object may
not be dereferenced. Dereferencing such illegal pointers
results in a spatial memory safety error and undefined
behavior.

Mathias Payer CS527 Software Security

Spatial memory safety
char *ptr = malloc(24);
for (int i = 0; i < 26 ++i) {

ptr[i] = i+0x41;
}

Classic buffer overflow
Array is sequentially accessed past its allocated length

Mathias Payer CS527 Software Security

Temporal memory safety
Temporal memory safety is a property that ensures that all
memory dereferences are valid at the time of the
dereference, i.e., the pointed-to object is the same as
when the pointer was created. When an object is freed,
the underlying memory is no longer associated to the
object and the pointer is no longer valid. Dereferencing
such an invalid pointer results in a temporal memory
safety error and undefined behavior.

Mathias Payer CS527 Software Security

Temporal memory safety
char *ptr = malloc(26);
free(ptr);
for (int i = 0; i < 26; ++i) {

ptr[i] = i+0x41;
}

Mathias Payer CS527 Software Security

Towards a definition
Memory safety is violated if undefined memory is accessed,
either out of bounds or deallocated.
Pointers become capabilities, they allow access to a
well-defined region of allocated memory. A pointer becomes a
tuple of address, lower bound, upper bound, and validity.

Pointer arithmetic updates the tuple.
Memory allocation updates validity.
Dereference checks capability.

Capabilities are implicitly added and enforced by the compiler.

Mathias Payer CS527 Software Security

Towards a definition
Capability-based memory safety enforces type safety for two
types: pointer-types and scalars
Pointers (and their capabilities) are only created in a safe way.
Pointers can only be dereferenced if they point to their
assigned, still valid region

Mathias Payer CS527 Software Security

Memory safety: Java
Replaces pointers with references (no direct memory access)
No way to free data, implicit memory reuse after garbage
collection
Language and runtime system enforce safety, overhead?

Mathias Payer CS527 Software Security

Memory safety: Rust
Strict type system and ownership implement memory safety

References are bound to variables
Clear ownership protects against data races: single mutable
reference or zero or more immutable references
Variables that go out of scope are reclaimed

Zero-cost abstraction

http://theburningmonk.com/2015/05/
rust-memory-safety-without-gc/

Mathias Payer CS527 Software Security

http://theburningmonk.com/2015/05/rust-memory-safety-without-gc/
http://theburningmonk.com/2015/05/rust-memory-safety-without-gc/

Memory safety: C/C++
How can we enforce memory safety for C/C++?
What makes C/C++ memory unsafe?

Mathias Payer CS527 Software Security

Memory safety: C/C++
Two approaches:

Remove unsafe features (dialect)
Protect the use of unsafe features (instrumentation)

Mathias Payer CS527 Software Security

Memory safety: C/C++ dialects
Extend C/C++ with safe pointers, enforce strict safety rules
“Simple” approach: restrict C to safe subset (e.g., Cyclone)

Limit pointer arithmetic, add NULL checks
Use garbage collection for heap and region lifetimes for stack
Tagged unions (restricting conversions)
Normal, never NULL, and fat pointers (a fat pointer consists of
address, base, size)
Exceptions and polymorphism to replace setjmp
Focuses on both spatial and temporal memory safety

Mathias Payer CS527 Software Security

Memory safety: C/C++ instrumentation
Must track either pointers or allocated memory
Check pointer validity when dereferencing
Object based: cannot detect sub-object overflows, overhead for
large lookups. Advantage that meta data is disjoint resulting in
good compatibility
Fat pointers: low compatibility due to inline metadata can
detect sub-object overflows
Both object-based and fat-pointer based approaches fail to
protect against arbitrary casts.

Mathias Payer CS527 Software Security

Memory safety: C/C++ SoftBound
Compiler-based instrumentation to enforce spatial memory safety for
C/C++

Idea: keep information about all pointers in disjoint metadata,
indexed by pointer location
Source code unchanged, compiler-based transformation
Reasonable overhead of 67% for SPEC CPU2006

Mathias Payer CS527 Software Security

Memory safety: C/C++ SoftBound
struct BankAccount {

char acctID[3]; int balance;
} b;
b.balance = 0;
char *id = &(b.acctID);
lookup(&id)->bse = &(b.acctID); // store bounds
lookup(&id)->bnd = &(b.acctID)+3;
char *p = id; // local, remains in register
char *p_bse = lookup(&id)->bse; // propagate
char *p_bnd = lookup(&id)->bnd;
do {

char ch = readchar();
check(p, p_bse, p_bnd); // check
*p = ch;
p++;

} while (ch);

Mathias Payer CS527 Software Security

Memory safety: C/C++ SoftBound instrumentation
1 Initialize (disjoint) metadata for pointer when it is assigned
2 Assignment covers both creation of pointers and propagation
3 Check bounds whenever pointer is dereferenced

Mathias Payer CS527 Software Security

Memory safety: C/C++ CETS
Temporal memory safety is orthogonal to spatial memory safety
The same memory area can be allocated to new object
How do you ensure that a pointer references the new object
and not the old object? How do you detect stale pointers?

Garbage collection?
Not reuse memory?

Mathias Payer CS527 Software Security

Memory safety: C/C++ CETS
CETS leverages memory object versioning. Each allocated memory
object and pointer is assigned a unique version. Upon dereference,
check if the pointer version is equal to the version of the memory
object. Two failure conditions: area was deallocated and version is
smaller (0) or area was reallocated to new object and the version is
bigger.

Mathias Payer CS527 Software Security

Memory safety: C/C++ CETS
Instrument memory allocation to assign a unique version to the
memory area. Assign the same version to the initial pointer
that is returned from the allocation function.
Instrument memory deallocation to destroy the version of the
associated memory area.
Propagate version on pointer assignment
Check if version between pointer and object match when
dereferenced.

Mathias Payer CS527 Software Security

Memory unsafety?
In short: I manipulate where the moving objects (sprites)
are located or where they despawn, then I swap the item
in Yoshi’s mouth with a flying ?-block (thus the yellow
glitched shell) and using a glitch (stunning) to spawn a
sprite which isn’t used by SMW and since it tries to jump
to the sprite routine location, it indexes everything wrong
and jumps to a place I manipulated earlier with the sprites
(OAM) and because of the P-Switch it jumps to controller
registers and from there the arbitrary code execution is
started.
Even shorter: Magic (by Masterjun3)

https://www.youtube.com/watch?v=OPcV9uIY5i4

Mathias Payer CS527 Software Security

https://www.youtube.com/watch?v=OPcV9uIY5i4

Type Safety

Well-typed programs cannot “go wrong”. (Robin Milner)

Type-safe code accesses only the memory locations it is authorized
to access.

Different aspects of type safety: strong typed, weakly typed
(implicit conversion)
Static and dynamic type systems
Lots of research, people still use C/C++ which are not type
safe

Mathias Payer CS527 Software Security

C++ casting operations
static_cast<ToClass>(Object)

Compile time check
No runtime type information

dynamic_cast<ToClass>(Object)

Runtime check
Requires Runtime Type Information (RTTI)
Not used in performance critical code

Mathias Payer CS527 Software Security

C++ static cast
Base *b = ...;
a = static_cast<Greeter*>(b);

movq -24(%rbp), %rax # Load pointer
Type "check"

movq %rax, -40(%rbp) # Store pointer

Mathias Payer CS527 Software Security

C++ dynamic cast
Base *b = ...;
a = dynamic_cast<Greeter*>(b);

leaq _ZTI7Greeter(%rip), %rdx
leaq _ZTI4Base(%rip), %rsi
xorl %ecx, %ecx
movq %rbp, %rdi # Load pointer
call __dynamic_cast@PLT # Type check

Mathias Payer CS527 Software Security

C++ virtual dispatch
class Base { ... };
class Exec: public Base {

public:
virtual void exec(char *prg) {

system(prg);
}

};
class Greeter: public Base {

public:
int loc;
virtual void sayHi(char *str) {

std::cout << str << std::endl;
}

};
Greeter *greeter = new Greeter();
greeter->sayHi("Oh, hello there!");

Mathias Payer CS527 Software Security

C++ type confusion
class Base { ... };
class Greeter: public Base { ... };
class Exec: public Base { ... };

Greeter *g = new Greeter();
Base *b = static_cast<Base*>(g);
Exec *e = static_cast<Exec*>(b); // type confusion
e->loc = 12; // memory safety violation
e->sayHi(); // control-flow hijacking

Mathias Payer CS527 Software Security

C++ type confusion (full example)
int main() {

Base *b1 = new Greeter();
Base *b2 = new Exec();
Greeter *g;

g = static_cast<Greeter*>(b1);
g->sayHi("Greeter says hi!");
// g[0][0](str);

g = static_cast<Greeter*>(b2);
g->sayHi("/usr/bin/xcalc");
// g[0][0](str);

delete b1;
delete b2;
return 0;

}

Mathias Payer CS527 Software Security

C++ type safety
Keep type metadata for allocated objects (similar to memory
safety)
Check all casts dynamically

static_cast<ToClass>(Object)
dynamic_cast<ToClass>(Object)
reinterpret_cast<ToClass>(Object)
(ToClass)(Object)

Mathias Payer CS527 Software Security

HexType

Figure 1:

Mathias Payer CS527 Software Security

HexType
Build global type hierarchy during compilation
Instrument all forms of allocations, keep disjoint metadata
Agressively optimize

Limit tracing to “unsafe” types
Limit checking to unsafe casts
Replace dynamic cast with our check

Mathias Payer CS527 Software Security

Summary

Memory and type safety are the root cause of security
vulnerabilities
Memory safety: distinguish between spatial and temporal
memory safety violations

SoftBound: spatial memory safety through disjoint metadata for
pointers
CETS: temporal memory safety through versioning

Type-safe code accesses only the memory locations it is
authorized to access

Keep per-object disjoint metadata
Check all type casts

Look at reading assignments

Mathias Payer CS527 Software Security

