
… in memory: an evolution of attacks

Mathias Payer <mathias.payer@nebelwelt.net>
Purdue University

Images (c) MGM, WarGames, 1983

mailto:mathias.payer@nebelwelt.net

Memory attacks: an ongoing war

 Vulnerability classes according to CVE

Memory attacks: an ongoing war

● Low-level languages trade type safety and
memory safety for performance
– Programmer in control of all checks

● Large set of legacy and new applications
written in C / C++ prone to memory bugs

● Too many bugs to find and fix manually
– Protect integrity through low-level security policy

David Lightman: Hey, I
don't believe that any

system is totally secure."

Memory corruptionMemory corruption

Memory corruption

● Unintended modification of memory location
due to missing / faulty safety check
– Exploitable only if address or value input dependent

– Attacker sees all memory, controls writable memory

void vulnerable(int user1, int *array) {
// missing bound check for user1
array[user1] = 42;

}

Memory safety: temporal error

void vulnerable(char *buf) {
free(buf);
buf[12] = 42;

}

Memory safety: spatial error

void vulnerable() {
char buf[12];
char *ptr = buf[11];
*ptr++ = 10;
*ptr = 42;

}

Control-flow hijacking:Control-flow hijacking:
Attack opportunitiesAttack opportunities

Control-flow hijack attack

1

32

4 4'

● Attacker modifies code pointer
– Function return

– Indirect jump

– Indirect call

● Control-flow leaves static graph
● Reuse existing code

– Return-oriented programming

– Jump-oriented programming

Control-flow hijack attack

Memory safety

Integrity

Randomization

Flow Integrity

Attack

*C

&C

*&C

Violation

Control-flow
hijack

void vuln(char *u1) {
// assert(strlen(u1)) < MAX
char tmp[MAX];
strcpy(tmp, u1);
return strcmp(tmp, "foo");

}
vuln(&exploit);

return address

saved base pointer

tmp[MAX]

1st argument: *u1

next stack frame

don't care

don't care

points to &system()

ebp after system call

1st argument to system()

Code corruption attack

● Code modified or new code added
● Hardware protection enforces code integrity

Code Heap Stack

C

Memory corruption attacks*

● Model allows reasoning and classification
– Classify security policies and defense mechanisms

– Reason about power of attacks

● Identify properties that enable wide adoption
– Low overhead is key (<10%)

– Compatibility to legacy code and source code

– Protection against class(es) of attacks

* published at IEEE Symposium on Security and Privacy'13, IEEE Security and Privacy'14 Magazine

Control-flow hijacking:Control-flow hijacking:
Defense strategiesDefense strategies

Defense strategies

Memory safety

Integrity

Randomization

Flow Integrity

Attack

*C

&C

*&C

Violation

Control-flow
hijack

Stop memory corruption
– Safe dialects of C/C++:

CCured, Cyclone

– Retrofit on C/C++:
SoftBounds+CETS

– Rewrite in safe language:
Java/C#

Defense strategies

Memory safety

Integrity

Randomization

Flow Integrity

Attack

*C

&C

*&C

Violation

Control-flow
hijack

Enforce integrity of
reads/writes
– Write Integrity Testing

– (DEP and W^X for code)

Defense strategies

Memory safety

Integrity

Randomization

Flow Integrity

Attack

*C

&C

*&C

Violation

Control-flow
hijack

Probabilistic defenses
– Randomize locations,

code, data, or pointer
values

Defense strategies

Memory safety

Integrity

Randomization

Flow Integrity

Attack

*C

&C

*&C

Violation

Control-flow
hijack

Protect control transfers
– Data-flow integrity

– Control-flow integrity

Control-Flow Integrity

● Dynamic control flow must follow the
static control flow graph (CFG)
– Use points-to analysis to get CFG

– Runtime check if target in static set

● Current implementations over-approximate
– Imprecision of static analysis, runtime concerns

– One set each for indirect calls, jumps, and returns

1

32

4

CFI: Limitations and Drawbacks

● Precision limited by static type analysis
– Imprecision leads to ambiguities

● Static analysis must “see” all code
– Support for dynamic libraries challenging

● Performance overhead or imprecision
– Current implementations (greatly) over-approximate

target set to achieve performance and compatibility

Model for memory attacks

Memory safety

Integrity

Randomization

Flow Integrity

Bad things

C *C D *D

&C

*&C

&D

*&D

Memory corruption

Code
corruption

Data-only
Control-flow
hijack

Data-only attacksData-only attacks

Data-only attack

● Privileged or informative data changed
– Simple, powerful and hard to detect

Code Heap Stack

D

Deployed defensesDeployed defenses

Data Execution Prevention

● Enforces code integrity on page granularity
– Execute code if eXecutable bit set

● W^X ensures write access or executable
– Mitigates against code corruption attacks

– Low overhead, hardware enforced, widely deployed

● Weaknesses and limitations
– No-self modifying code supported

Data Execution Prevention

Memory safety

Integrity

Randomization

Flow Integrity

Bad things

C *C D *D

&C

*&C

&D

*&D

Memory corruption

Code
corruption

Data-only
Control-flow
hijack

Address Space Layout Randomization

● Randomizes locations of code and data regions
– Probabilistic defense

– Depends on loader and OS

● Weaknesses and limitations
– Prone to information leaks

– Some regions remain static (on x86)

– Performance impact (~10%)

ASLR: Performance overhead

● ASLR uses one register for PIC / ASLR code
– Performance degradation on x86

Address Space Layout Randomization

Memory safety

Integrity

Randomization

Flow Integrity

Bad things

C *C D *D

*&C *&D

Memory corruption

Code
corruption

Data-only
Control-flow
hijack

&C &D

Stack canaries

● Protect return instruction pointer on stack
– Compiler modifies stack layout

– Probabilistic protection

● Weaknesses and limitations
– Prone to information leaks

– No protection against targeted writes / reads

Stack canaries

Memory safety

Integrity

Randomization

Flow Integrity

Bad things

C D *D

&C

*&C

&D

*&D

Memory corruption

Code
corruption

Data-only
Control-flow
hijack

*C

Widely deployed defenses

● Memory safety: none
● Integrity: partial

– Code integrity: W^X

– Code pointer integrity: canaries and safe exceptions

– Data integrity: none

● Randomization: partial
– Address Space Layout Randomization

● Control/Data-flow integrity: none

Widely deployed defenses

Memory safety

Integrity

Randomization

Flow Integrity

Bad things

C *C D *D

&C

*&C

&D

*&D

Memory corruption

C

Code
corruption

Data-only
Control-flow
hijack

*C

&C &D

Code
corruption

Data-only
Control-flow
hijack

Mr. McKittrick, after very careful
consideration, sir, I've come to
the conclusion that your new

defense system sucks.

Why did stronger defenses fail?

● Too much overhead
– More than 10% is not feasible

● Compatibility to legacy and source code
– Shared library support, no code modifications

● Effectiveness against attacks
– Protection against complete classes of attacks

Onwards?Onwards?
(c) MGM

Partial? Data Integrity

● Memory safety stops control-flow hijack attacks
– … but memory safety has high overhead

– SoftBounds+CETS reports up to 250% overhead

● Enforce memory safety for “some” pointers
– Compiler analysis can help

– Tricky engineering to make it work

Secure execution platform

● Must support legacy, binary code
● Dynamic binary translation allows virtualization
● Leverage runtime information

– Enables preciser security checks

Secure execution platform

Sandbox

Application

Kernel

Loader

System call policy

Original code

Sandbox implementation

1

32

4

Protected code

1'

3'2'

4'

Dynamic binary translator
● Check targets and origins
● Weave guards into code

Conclusion

● Low level languages are here to stay
– We need protection against memory vulnerabilities

– Performance, legacy, compatibility

● Mitigate control-flow hijack attacks
– Secure execution platform for legacy code

● Future directions: strong policies for data

?
Pictures (c) MGM

If the winning move is not to If the winning move is not to
play then we need to change play then we need to change
the rules of the game!the rules of the game!

http://nebelwelt.nethttp://nebelwelt.net

http://nebelwelt.net/

Address space

Code Heap Stack

● No separation between code and data memory
● Code pointers and data pointers mixed

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

