
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 3, pp. 330–366. DOI:10.46586/tches.v2022.i3.330-366

BreakMi: Reversing, Exploiting and Fixing

Xiaomi Fitness Tracking Ecosystem

Marco Casagrande1, Eleonora Losiouk2, Mauro Conti2, Mathias Payer3 and

Daniele Antonioli1

1 EURECOM, Sophia Antipolis, France, {marco.casagrande,daniele.antonioli}@eurecom.fr
2 University of Padua, Padua, Italy, {eleonora.losiouk,mauro.conti}@unipd.it

3 EPFL, Lausanne, Switzerland,

mathias.payer@nebelwelt.net

Abstract.
Xiaomi is the leading company in the fitness tracking industry. Successful attacks on
its fitness tracking ecosystem would result in severe consequences, including the loss
of sensitive health and personal data. Despite these relevant risks, we know very little
about the security mechanisms adopted by Xiaomi. In this work, we uncover them
and show that they are insecure. In particular, Xiaomi protects its fitness tracking
ecosystem with custom application-layer protocols spoken over insecure Bluetooth
Low-Energy (BLE) connections (ignoring standard BLE security mechanisms already
supported by their devices) and TLS connections. We identify severe vulnerabilities
affecting such proprietary protocols, including unilateral and replayable authentication.
Those issues are critical as they affect all Xiaomi trackers released since 2016 and
up-to-date Xiaomi companion apps for Android and iOS. We show in practice how
to exploit the identified vulnerabilities by presenting six impactful attacks. Four
attacks enable to wirelessly impersonate any Xiaomi fitness tracker and companion
app, man-in-the-middle (MitM) them, and eavesdrop on their communication. The
other two attacks leverage a malicious Android application to remotely eavesdrop
on data from a tracker and impersonate a Xiaomi fitness app. Overall, the attacks
have a high impact as they can be used to exfiltrate and inject sensitive data from
any Xiaomi tracker and compatible app. We propose five practical and low-overhead
countermeasures to mitigate the presented vulnerabilities. Moreover, we present
breakmi, a modular toolkit that we developed to automate our reverse-engineering
process and attacks. breakmi understands Xiaomi application-layer proprietary
protocols, reimplements Xiaomi security mechanisms, and automatically performs
our attacks. We demonstrate that our toolkit can be generalized by extending it to
be compatible with the Fitbit ecosystem. We will open-source breakmi.

Keywords: IoT, Reverse Engineering, Bluetooth Low Energy, Fitness Tracker

1 Introduction

Fitness tracking systems are complex and pervasive technologies used to monitor sensitive
(health) data. They are composed of wearable devices connected to a mobile application
acting as a gateway to cloud services. We have seen impactful security and privacy
breaches affecting those systems. For example, researchers found backdoors in trackers’
firmware [SJMdR16], managed to flash malicious firmware wirelessly [CWP+18], leaked
private data, including health records and login credentials [RCT16], and disabled commu-
nication encryption [FCS+17]. It is not straightforward to fix these issues as vendors might
not patch them at all, and fitness trackers might not support (secure) remote patching.
Furthermore, vendors must distribute the software fix securely and on a large scale.

Licensed under Creative Commons License CC-BY 4.0.

Received: 2022-01-15 Accepted: 2022-03-15 Published: 2022-06-08

https://doi.org/10.46586/tches.v2022.i3.330-366
mailto:marco.casagrande@eurecom.fr, daniele.antonioli@eurecom.fr
mailto:eleonora.losiouk@unipd.it, mauro.conti@unipd.it
mailto:mathias.payer@nebelwelt.net
http://creativecommons.org/licenses/by/4.0/


M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 331

Xiaomi is the worldwide fitness tracking leader. In 2020, Xiaomi sold 13.5 million devices
and had 24.5% of the market share [Cor20]. Nevertheless, the Xiaomi fitness tracking
ecosystem received little attention from security researchers, despite being pervasive
and promising security and privacy guarantees to its users [Hua20]. Currently, there is
only incomplete and outdated information about Xiaomi security mechanisms [HPK16,
FFM+17]. On the other side, Fitbit (its main competitor) has received more consideration
from security researchers. For example, recent work demonstrated that popular Fitbit
devices are susceptible to attacks such as packet sniffing, data exfiltration, and code
injection through firmware updates [RCB13, CHMS14, GDS16, SJMdR16, CWP+18].

In this work, we perform an extensive and up-to-date security evaluation of the Xiaomi
fitness tracking ecosystem that is currently lacking. We analyze all Xiaomi trackers since
2016 (i.e., Mi Band 2/3/4/5/6 and Amazfit Cor 2) and up-to-date Xiaomi companion apps
(Mi Fit and Zepp). Via extensive static and dynamic reverse-engineering experiments, we
reconstruct Xiaomi’s proprietary Pairing, Authentication, and Communication protocols
used to connect trackers and apps via BLE. We find that these protocols are implemented
at the application-layer over a BLE link-layer. Moreover, we discover that Xiaomi ignores
standard BLE security mechanisms (e.g., BLE pairing and secure sessions), although its
devices support them.

Then, we uncover severe specification-level vulnerabilities affecting the self-baked Xiaomi
protocols. For example, keys are sent in cleartext, authentication is unilateral and
replayable, and the BLE traffic is neither encrypted nor integrity protected. As the
vulnerabilities target the protocols’ design, they can be exploited regardless of the hardware
and software details of the target (e.g., firmware, operating system, app, and BLE versions).
Additionally, those issues might even be exploitable on other Xiaomi products sharing the
same application-layer security mechanisms.

To demonstrate the impact of the presented vulnerabilities, we develop and evaluate
six practical attacks on actual devices. With our over-the-air (OTA) attacks, an attacker
in Bluetooth range with a victim can impersonate a tracker to an app, an app to a tracker,
man-in-the-middle them, and eavesdrop on their communication. Alternatively, with our
remote attacks, indicated in the paper as software-based (SB), an attacker can remotely
eavesdrop on data from a tracker or impersonate an app by abusing Android BLE API
within a malicious app. Our attacks are high impact because they affect the whole Xiaomi
ecosystem and enable the attacker to achieve valuable goals such as eavesdropping on
sensitive data exchanged by a tracker and a smartphone (e.g., health data, SMS, and
notifications) or sending arbitrary commands to the tracker and the smartphone.

We developed breakmi, a security evaluation toolkit for fitness tracker ecosystems to
automate our RE efforts and attacks. breakmi has three modules: protocol dissector,
security mechanisms, and attacks. The protocol dissector module understands Xiaomi’s
proprietary application-layer protocols, allowing for fast and automated analysis of its
application-layer packets. The security mechanisms module reimplements Xiaomi’s custom
security mechanisms, such as Pairing and Authentication. The attacks module deploys
our attacks automatically, including over-the-air or remote impersonation and MitM
on arbitrary trackers and apps. We will release breakmi in the open after responsible
disclosure.

To show the effectiveness of our attacks, we present an extensive evaluation of Xiaomi
trackers and apps. In particular, we successfully attacked all Xiaomi trackers released since
2016 (i.e., Mi Band 2/3/4/5/6 and Amazfit Cor 2) and the latest versions of the Xiaomi
fitness mobile apps (i.e., Mi Fit version 4.8.1 and Zepp version 5.9.2). Two of the presented
attacks are remotely targeting the Android platform. We successfully conduct them on
six popular Android versions (i.e., Android 6/8/9/10/11/12) to confirm their widespread
impact. According to [Sta21], these versions represent 90% of the Android ecosystem.

To effectively address the presented vulnerabilities and attacks, we propose five coun-



332 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

termeasures. All of them incur minimal overhead because they rely on a few additional
messages and on lightweight security features. We redesign Xiaomi proprietary protocols
to implement four out of the five proposed countermeasures at the application-layer. The
fifth countermeasure applies to the link-layer, where we encourage the activation of the
standard BLE link-layer security (i.e., BLE legacy pairing, LE Secure Connections), already
supported by all Xiaomi devices.

To check the effectiveness of our attacks and the extensibility of breakmi to other
vendors, we also analyzed the Fitbit ecosystem (the second biggest ecosystem after Xiaomi).
We looked at two popular Fitbit trackers (i.e., Charge 2 and Charge 4) and the Fitbit
mobile app (v 3.54.1). Our results show that the Fitbit ecosystem provides better (still
proprietary) security mechanisms than Xiaomi. However, it is still vulnerable to five out of
the six presented attacks. While testing our attacks on Fitbit, we extended breakmi by
adding Fitbit’s custom protocols and security mechanisms.

To encourage further research on the topic, we describe our reverse-engineer methodology
in detail. Specifically, we used a mix of static and dynamic techniques for reconnaissance,
traffic analysis, and app analysis. Additionally, we developed custom scripts and tools to
automate our analyses that are now part of breakmi. Overall we spent a considerable
time reversing the Xiaomi ecosystem (i.e., one year RE effort).

We summarize our contributions as follows:

• We reverse-engineer the proprietary security protocols used by Xiaomi to protect
the BLE link between its trackers and companion apps. Those protocols include
Pairing, Authentication, and Communication at the application-layer, and do not
take advantage of BLE link-layer security mechanisms already supported by its
devices.

• We uncover novel and severe vulnerabilities in the specification of those protocols
enabling an attacker to target the ecosystem as a whole. The list of vulnerabilities
includes unilateral and replayable authentication, improper key agreement, and lack
of encryption and integrity protection of sensitive data.

• We show how to exploit these vulnerabilities, and we perform high-impact Xiaomi-
compliant attacks either over-the-air or remotely (via a malicious app). We design
and release breakmi, a toolkit to automatically analyze and attack the Xiaomi
ecosystem. We address the presented vulnerabilities and attacks by proposing five
practical and low overhead countermeasures that fix Xiaomi’s vulnerable protocols.

• We compare Xiaomi with Fitbit, and we find that four of the identified vulnerabilities
and five of the proposed attacks are portable to Fitbit. We extend breakmi to the
Fitbit ecosystem, and we successfully conduct the attacks.

Responsible disclosure We responsibly disclosed our findings to Xiaomi in March 2021 via
the HackerOne platform. Xiaomi considered our report as a single and known vulnerability,
namely “lack of encryption,” scheduled to be fixed on an undisclosed timeline. We disagree
with this response as we reported multiple classes of vulnerabilities leading to several
attacks (and not a single vulnerability)1. We also responsibly disclosed our findings to Fitbit
in January 2022 through Google Vulnerability Reward Program, and Fitbit acknowledged
our attacks and will deploy a fix in April 2022.

1Our experiments did not involve or expose third-party users, but we analyzed our own devices in a

controlled environment.



M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 333

Figure 1: Xiaomi fitness tracking system architecture. The tracker is a battery-powered
embedded device supporting BLE. The smartphone runs a fitness tracking application and
is capable of communicating with the tracker via BLE and with a backend server via the
Internet.

2 Background

In this section, we introduce BLE and what is known about the Xiaomi fitness tracking
ecosystem.

2.1 Bluetooth Low Energy (BLE)

BLE is the de-facto standard wireless technology for low-power wireless services, including
fitness tracking. It is defined in the Bluetooth standard [SIG19] and provides a client-server
architecture to exchange data using a specific format. Security-wise, BLE includes pairing
and session establishment mechanisms that should provide confidentiality, integrity, and
authenticity guarantees at the link-layer.

The BLE client-server architecture is specified by the Generic Attribute Profile (GATT)
and uses the Attribute Profile (ATT) protocol [SIG19, p. 1531]. In Bluetooth terminology,
the client is defined as the central, and the server as the peripheral. The client sends read,
write, and notification requests to the server. The server answers accordingly to the request
type and the availability of data.

In a fitness tracking use case, the GATT server is the tracker device (e.g., wristband)
and the GATT client is a smartphone application. The server exposes fitness data, such as
heart rate and step count, while the client can periodically query such data. BLE data is
exchanged using a hierarchical and object-oriented format defined in [SIG19, p. 284].

The top-level of the hierarchy is a profile, and it contains a set of services. Each service
provides characteristics or other services. A characteristic provides a value field with
optional fields, such as descriptors and properties. Each characteristic can be configured
with access-control flags (e.g., read-only, write-only, or read-write).

BLE provides pairing and secure session establishment protocols to secure the link-layer.
Before exchanging data over GATT, the client and the server can pair to agree upon a
long-term pairing key and use it to establish a secure session (e.g., by using ECDH).

On the contrary, session establishment is implemented using AES-CCM authenticated-
encryption, keyed with a fresh session key (derived from a pairing key). The server can
protect a GATT characteristic by requiring a client to pair before accessing it by setting
its encryption and authentication security permissions.

A BLE device supporting a Bluetooth version greater than or equal to 4.2 can support
a security mode known as Secure Connections (SC) that enhances pairing and session
establishment by only using Federal Information Processing Standards (FIPS) compliant
algorithms.



334 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

2.2 Xiaomi Fitness Tracking Ecosystem

The Xiaomi fitness tracking ecosystem includes wearable tracking devices, smartphones
running a tracker companion app, and backend infrastructure. As we see from Figure 1, the
Xiaomi components communicate wirelessly using a combination of short-range and long-
range technologies. The tracker and the smartphone use BLE (introduced in Section 2.1),
while the smartphone and the backend require Internet connectivity through Wi-Fi or a
cellular network. We note that other fitness tracker vendors, including Fitbit, employ the
same general architecture.

Xiaomi trackers are wearable and battery-powered devices composed of sensors to
collect health data, such as step count and heart rate, and actuators, such as buttons and
a touch screen. They can also control the associated smartphone (e.g., lock/unlock the
screen) and receive notifications (e.g., SMS, WhatsApp).

Xiaomi ships two families of trackers called Mi Band (MB) [Incf] and Amazfit [Inca].
Mi Band is the most popular family and so far includes six generations: MB 1 (2014), MB
2 (2016), MB 3 (2018), MB 4 (2019), MB 5 (2020), and MB 6 (2021). Amazfit has two
generations: Cor 1 (2018) and Cor 2 (2019). The two families are manufactured by the
same company (Huami [Incb]) and have similar hardware and software capabilities. For
example, the Cor 1 is a MB 2 clone, and the Cor 2 clones the MB 3.

Xiaomi’s official companion app is Mi Fit and is freely available for Android [Co.]
and iOS [Incc]. The app provides a user interface to configure and manage a tracker and
is compatible with all Mi Band and Amazfit Cor generations. Another official app that
supports Xiaomi trackers is Zepp, available on Android [Incd] and iOS [Ince]. There are
also several third-party apps compatible with Xiaomi.

The Xiaomi backend is an Internet-accessible infrastructure that manages several
aspects of the ecosystem. It stores the list of registered users and their associated trackers.
It also backups the configurations of the trackers and the apps. Additionally, it distributes
firmware and resource file (e.g., fonts, images) updates to the trackers. The backend is
managed by Huami, which is also the developer of the Mi Fit and Zepp applications (and
the tracker’s manufacturer).

On one hand, Xiaomi does not provide any information about its security architecture
and mechanisms. However, on the other hand, it claims to guarantee its users’ confiden-
tiality, security, and privacy (see the Privacy Policy [Hua20] dated May 2020). Hence our
work investigates how these claims are actually implemented in practice.

3 Analysis of Xiaomi Fitness Tracking

From our reverse-engineering experiments, we found that Xiaomi uses three proprietary
application-layer protocols in three different operations: Pairing, Authentication, and
Communication.

These three protocols define the format, and the purpose of any BLE packet exchanged
between Xiaomi companion apps and trackers. A single vulnerability in the protocols
can be used to exploit any supported Xiaomi tracker and app. Hence they must be well
designed and implemented, but this work (experimentally) shows the contrary. We note
that Xiaomi protocols are orthogonal to the link-layer security mechanisms provided by
BLE introduced in Section 2.1.

In our experiments, we also uncover that Xiaomi disables BLE link-layer security and
privacy features despite being supported by its trackers and apps. BLE security mechanisms
were designed to protect the emerging IoT market, including the fitness tracking industry,
and it is not evident why Xiaomi simply ignores them. This choice considerably increases
the risk of a security breach as Xiaomi only trusts its vendor-specific protocols.

Now we describe these protocols in detail. The presented information required extensive



M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 335

Tracker App

Pairing Init

pair v1

Key [16 B]

Wait for user confirmation

Pairing Complete

Reset Data

Figure 2: Xiaomi Pairing v1. The app generates and sends to the tracker a 16-byte pairing
key (Key) in the clear. The tracker shows a pairing confirmation message to the user. Once
the user confirms, the tracker resets its data, and pairing is completed.

reverse-engineering (RE) efforts described in Section 9. Then, we pinpoint vulnerabilities
in their specification, including lack of mutual authentication and replay protection. The
vulnerabilities are critical as they affect the whole Xiaomi ecosystem regardless of the
hardware and software details of the trackers and the apps.

3.1 Reverse-Engineered Protocols

We isolate three Xiaomi proprietary application-layer protocols, and we name them Pairing,
Authentication, and Communication. Pairing is used to establish a long-term secret (i.e.,
pairing key) between a tracker and an app. Authentication is employed to prove ownership
of a pairing key. Communication runs only after a successful Authentication and enables
interaction between trackers and an app.

Those interactions include sending health data from the tracker and sending commands
or notifications from the app to the tracker or vice versa. Now we describe their technical
details. We use the terms tracker and app to refer to any Xiaomi-compliant device, and,
when needed, we indicate the specific tracker model or app name.

3.1.1 Pairing

Pairing is used to establish a 16-byte pairing key between the tracker and the app. The
pairing key is the root of trust between the devices and must be kept secret and stored
securely. We observed two versions of Pairing.

The first version, which we call Pairing v1, is used by Mi Band 2/3 and Amazfit Cor
1/2 trackers. Instead, Pairing v2 is employed by Mi Band 4/5/6 and is server-based as it
involves Xiaomi backend. Mi Fit and Zepp apps support both pairing versions. Now we
describe the technical details of Pairing v1/v2.

Pairing v1 is supported by MB 2/3 and works shown in Figure 2. The app sends
a pairing initialization message (Pairing Init). The tracker responds with a Pairing
version message (pair_v1). The app generates and sends a 16-byte pairing key (Key) to
the tracker in the clear. Then, the tracker shows the user a pairing confirmation message
(see Mi Band 2/3 in Figure 3) and waits for user confirmation (together with the app).
Once the user confirms pairing, the tracker sends a success message (Pairing Complete)
to the app and resets its stored data, completing Pairing v1.

Xiaomi introduced Pairing v2 in 2019, and it is supported by MB 4/5/6. The protocol
involves interactions with the Xiaomi backend using HTTPS. The protocol works as



336 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

Figure 3: Mi Bands pairing confirmation messages. To accept pairing, a user must either
press a hardware button (Mi Band 2/3) or touch a software button (Mi Band 4/5/6). Note
that Amazfit Cor 1/2 use similar pairing confirmation messages.

depicted in Figure 4. The app sends a Pairing Init message, and the tracker replies with
a pair_v2 and a truncated digest of its public key (SHA1(pub_k)). As we observed the
same digest on all trackers that we tested (i.e., 1863c2cce5d159413bed92c4b163c279),
we are confident that all trackers are using the same public key.

Then, the app sends a random number request, and the tracker answers with R, a
16-byte random number. R and the tracker public Bluetooth address (TR_A) are inputs to
a custom key derivation function (kdf) that generates the pairing key (Key). As such, R is
the pairing key seed and is sent in the clear. We reverse-engineered kdf and discovered
that it computes a SHA256 of the concatenation of TR_A and R and outputs Key, the
leading 16 bytes of the digest. The function is expressed as:

Key = kdf(TR_A, R) = SHA256(TR_A‖R)[0 : 16].

Next, the app and the backend establish a TLS session, and the app sends SHA1(pub_k)
and the Key encoded as base64 to the backend. The backend computes a signature (Sig)
of Key using its private key (pri_k) and sends the base64-encoded signature to the app
(B64(Sig)). The app provides the signature to the tracker that verifies it and sends back
an acceptance message (Valid Sig). Then, pairing completes identically to Pairing v1, with
the user having to accept a pairing confirmation message (see Mi Band 4/5/6 in Figure 3).

3.1.2 Authentication

Authentication has only one version and works as depicted in Figure 5. The app sends an
authentication request message (Auth Req). The tracker answers with a 16-byte challenge
(Chal). The app computes a 16-byte response (Resp) by encrypting Chal with Key using
AES in ECB mode and sends it to the tracker. The tracker computes its own response,
checks it against Resp, and sends a positive authentication message (Auth OK) if Resp

is verified. As a result, the tracker authenticates that the app owns the correct pairing
key and unlocks access to its private data (e.g., step count). However, the tracker never
authenticates to the app, and the authentication messages are sent in the clear.

3.1.3 Communication

Once a tracker and an app complete Pairing and Authentication, they run the Commu-
nication protocol to exchange data, commands, and notifications. We discovered that
Communication is neither encrypted nor integrity protected despite the tracker and the app
sharing a pairing key. This finding is surprising, as Xiaomi trackers and apps do support
encryption primitives and crypto hardware acceleration. Moreover, prior authoritative
reports, such as the ones from Mozilla [Fou20b, Fou20c, Fou20a], state that Xiaomi uses
encryption (and meets Mozilla’s minimum security standards) when this is not the case.

Communication is implemented on top of BLE GATT (introduced in Section 2.1). The
tracker is the GATT server, and the app is the GATT client. The server has a set of public



M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 337

Tracker App Backend

Pairing Init

pair v2, SHA1(pub k)

Rand Req

R [16 B]

Key=kdf(TR A,R) Key=kdf(TR A,R)

SHA1(pub k), B64(Key)

Sig=sign(Key,pri k)

B64(Sig)

Sig

verify(Sig,pub k)

Valid Sig

Wait for user confirmation

Pairing Complete

Reset Data

Figure 4: Xiaomi Pairing v2. The app starts the protocol by sending a Pairing Init
message. The tracker sends back pair_v2 and a public key digest (SHA1(pub_k)). Then
the app requests a random number, and the tracker replies with R, which is 16 bytes long.
Both devices run a custom key derivation function (kdf) to compute Key from R (key seed)
and the Bluetooth address of the tracker (TR_A). Then, the app sends SHA1(pub_k) and
Key base64-encoded to the backend. The backend computes a signature (Sig) of Key with
its private key and sends Sig base64-encoded to the app. The app presents Sig to the
tracker, which verifies it and sends back a confirmation message. Then, the tracker shows
the user a pairing confirmation message, and if the user accepts, pairing is completed, and
the tracker resets its data.

services (e.g., Generic Access) and characteristics (e.g., Device Name). Each characteristic
has access control bits to set reading and writing permissions.

On top of GATT, Xiaomi uses a custom data locking mechanism where a tracker GATT
characteristic cannot be accessed until the app has authenticated to the tracker (via a
successful run of Authentication). Two examples of locked characteristics are heart rate
and step count. For the list of GATT services and characteristics exposed by Mi Band
2/3/4/5/6, see Table 6 and Table 7 in the Appendix.

3.2 Protocol-level Vulnerabilities

We analyzed the Pairing, Authentication, and Communication protocols (described in
Section 3.1), and we identified thirteen severe vulnerabilities in their specifications. Most
of them, such as unilateral/replayable authentication and lack of encryption and integrity
protection, were publicly unknown. The issues affect all trackers released since 2016, even



338 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

Tracker App

Tracker and App share Key

Auth Req

Chal [16 B]

Resp=AES(Chal,Key)

Check Resp

Auth OK

Unlock Data

Figure 5: Xiaomi Authentication. Using a challenge-response procedure, the tracker
unilaterally authenticates that the app owns the shared pairing key (Key).

the newest releases (i.e., MB 6) and the most recent app versions. We now describe the
vulnerabilities grouped by protocol.

3.2.1 Pairing v1 (MB 2/3, AC 1/2)

• Pairing key sent in the clear. The app sends the pairing key to the tracker in the
clear and with no integrity protection (see Key in Figure 2).

• Pairing not authenticated. The devices do not authenticate each other during Pairing.
Hence the app and the tracker cannot determine if they are pairing with a legitimate
device.

• Pairing key generated by the app. The pairing key is generated and distributed
by the app, despite the tracker being able to run a key agreement protocol (e.g.,
Elliptic-curve Diffie–Hellman (ECDH)).

• Weak user confirmation. As shown in Figure 3, pairing confirmation is weak as
the user only has to interact with the tracker, and the tracker does not show any
contextual information.

3.2.2 Pairing v2 (MB 4/5/6)

• Pairing key seed sent in the clear. The tracker sends the pairing key seed to the app
in the clear and with no integrity protection (see R in Figure 4). This issue is as bad
as in Pairing v1, as the pairing key is deterministically computed from its seed and
its publicly available information (i.e., the tracker’s Bluetooth address).

• Pairing only (weakly) authenticates the app. Pairing v2 does not authenticate the
tracker to the app but authenticates the app to the tracker. In particular, the
tracker must receive a correct signature from the app. The signature algorithm is
deterministic, and both inputs are public, so an attacker could reverse the algorithm
and obtain the signature.

• Pairing version can be downgraded/upgraded. The tracker decides the version of
Pairing by sending either pair_v1 or pair_v2. As this message is not integrity



M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 339

protected, it can be manipulated to force a specific pairing version (e.g., downgrade
from v2 to v1 or upgrade from v1 to v2).

• Pairing key generated by the tracker. The pairing key only depends on the tracker,
despite the app being able to run a key agreement protocol (e.g., ECDH). This issue
is worse than the one highlighted for Pairing v1 key generation. The tracker is a
computationally-constrained device and is more likely to generate a low-entropy key
than an app running on a smartphone.

• Default keypair. The hash of the public key is the same for all MB 4/5/6 that we
tested, and this entails that all our trackers share the same public key. Our device
sample is limited, but we found the same key even across devices bought in different
countries. This implementation is risky because an attacker can compromise the
whole ecosystem by leaking the default private key.

• Weak user confirmation. As shown in Figure 3, pairing confirmation is weak for the
same reasons as Pairing v1.

3.2.3 Authentication

• Unilateral app authentication. The protocol unilaterally authenticates the app (see
Resp in Figure 5), but it does not require to authenticate the tracker. Indeed, there
is no way for an app to check if it is connected with a legitimate tracker.

• Replayable authentication. The protocol is vulnerable to replay attacks as, given
a fixed challenge, there is no way to generate different responses (i.e., there is no
nonce). Hence a fitness tracker cannot be certain that a valid response comes from a
trusted app.

3.2.4 Communication

• No encryption. Despite sharing a pairing key and supporting encryption algorithms,
the tracker and the app do not encrypt their sessions. Hence sensitive data exchanged
over BLE can be effortlessly obtained.

• No integrity protection. Despite sharing a pairing key and supporting Message
Authentication Codes (MAC), the tracker and the app do not integrity-protect their
communication. As a result, sensitive data can be manipulated at will.

4 Proposed Attacks

We now describe six attacks to demonstrate the severity of the issues presented in Section 3.2.
As the attacks exploit architectural vulnerabilities in the Xiaomi protocols, they are effective
on all devices employing those protocols. Developing the attacks required extensive RE
efforts as we target proprietary and unknown protocols (unlike BLE pairing and session
establishment). We discuss four over-the-air attacks and two software-based attacks.

Our OTA tracker impersonation, OTA app impersonation, and OTA MitM require
proximity with the target, as they exploit BLE traffic and minimal equipment.

Our SB app impersonation and SB eavesdropping are remote and require the installation
of a malicious app on the victim’s phone. The app only asks for Internet and Bluetooth
normal permissions (no root access) and abuses Android BLE API to interfere with BLE
traffic. Next, we present our threat model, describe the attacks, discuss how each attack
maps to the vulnerabilities presented earlier and their impact.



340 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

4.1 System Model

Our system model has the same architecture presented in Section 2.2 and depicted in
Figure 1. There are three entities: a tracker, a companion app, and a backend. The tracker
and the app communicate over BLE, and the app communicates with the backend via
Wi-Fi or a cellular network. The entities use the strongest security mechanisms at their
disposal.

For example, the communication between the tracker and the app is protected using
Xiaomi Pairing, Authentication, and Communication protocols that we reverse-engineered
and described in Section 3.1. Similarly, the app and the backend use TLS. Such mecha-
nisms should protect against passive and active attacks, including eavesdropping, device
impersonation, and MitM attacks.

Our victim is a user of the Xiaomi ecosystem. She might use any supported trackers,
such as Mi Band (MB) 2/3/4/5/6 and Amazfit Cor (AC) 1/2, and any version of the Mi
Fit and Zepp companion apps. We assume that the victim has installed the app, registered
an account with the Xiaomi backend, and paired her tracker with the smartphone app.
Hence the user can establish authenticated sessions between the tracker and the app.

4.2 Attacker Model

Our attacker targets Xiaomi Pairing, Authentication, and Communication protocols as the
vulnerabilities in these protocols can be exploited regardless of the hardware and software
details of the target tracker and app. In other words, she is looking for Xiaomi-compliant
vulnerabilities.

The attacker only knows public information advertised by the tracker over BLE (e.g.,
the public BLE address of the tracker), and she has no physical access to the target devices.
Hence the attacker does not know any pre-shared secret between the victims (e.g., pairing
keys) and cannot tamper with the devices’ operating system and firmware.

The attacker has four goals: (i) she aims at impersonating the tracker to the app and
(ii) the app to the tracker; (iii) she wants to establish a MitM position between the tracker
and the app; (iv) she desires to eavesdrop the data exchanged between the tracker and the
app.

The attacker can use over-the-air (OTA) or software-based (SB) attacks. Our attacker
model is based on the Android threat model proposed by Mayrhofer et al. [MSBK21]. This
threat model labels our OTA attacks as both Proximal Access and Network-level threats.
In particular, our OTA attacks involve T.P1 - Devices in physical proximity, but not under
direct control, of an attacker who can control radio communication channels, including
BLE), T.N1 - Passive eavesdropping and traffic analysis, and T.N2 - Active manipulation
of network traffic. The attacker can sniff BLE traffic, jam the BLE spectrum, craft, and
send custom BLE packets to the app and the tracker.

The same threat model labels our SB attacks as Application Code threats. In particular,
our SB attacks involve T.A1 - Abusing APIs supported by the OS. The attacker can
remotely attack the victim through a malicious app already installed on the victim’s
smartphone, a common requirement for most Android malware [Lak21b, Lak21a, Lak21c].
This requirement is reasonable as users often install unwanted apps on their smartphones
fairly often. Kotzias et al. [KCB21] estimated that 67% of unwanted apps are directly
installed from the Google Play Store or alternative markets (10.4%). When launched, our
malicious app stealthily abuses Android BLE API. It only requires normal permissions
related to the Internet and Bluetooth and does not need root privileges.



M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 341

Attacker App

Auth Req

Chal

Resp=AES(Chal,Key)

Ignore Resp

Auth OK

Unlock Fake

Data

Communication

Att. impersonates Tracker to App

Figure 6: OTA tracker impersonation attack. The attacker impersonates a tracker by
spoofing the tracker’s BLE address and BLE advertisement packets. The victim (Mi Fit or
Zepp app), which is already paired with the impersonated tracker, recognizes the attacker
as trusted and sends her an authentication request (Auth Req). The attacker’s device
answers with a random challenge (Chal). The app solves it and sends back a response
(Resp) computed from the pairing key unknown to the attacker. The attacker ignores Resp,
answers with a positive authentication message (Auth OK), and unlocks its fake GATT
server. As a result, the app starts the Communication protocol with the impersonated
tracker, believing it is trusted.

4.3 OTA Tracker Impersonation Attack

The attacker can wirelessly impersonate any tracker by presenting itself to a victim app
as a spoofed tracker, running the unilateral Authentication protocol without having to
authenticate, and then starting a Communication session that is neither encrypted nor
integrity protected. The attack does not require knowledge of the pairing key, does not
trigger Pairing (which requires user interaction), and can be launched anytime a target app
is in BLE range with the attacker. The attack leverages Xiaomi’s unilateral authentication
and the lack of encryption and integrity protection of Communication.

The technical details of the attacks are presented in Figure 6. The attacker advertises
her presence as the impersonated tracker by copying its features, including its Bluetooth
address and GATT server. The victim (App) recognizes the attacker as trusted and
sends her an authentication request (Auth Req). The attacker answers with a random
challenge (Chal), and the app computes and sends back a response (Resp) derived from a
pairing key unknown to the attacker. The attacker ignores Resp, answers with a positive
authentication message (Auth OK), and unlocks her own GATT server. Afterward, during
Communication, the app considers the impersonated tracker as trusted.

4.4 OTA App Impersonation and MitM Attacks

The attacker can impersonate any app over-the-air or MitM an app and a tracker using
a replay attack on the non replay-protected Authentication protocol and can start an
insecure Communication session.

In particular, the attacker can start Authentication in parallel with the app and the



342 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

tracker. When the tracker sends a challenge, the attacker replays it to the app, relays
the app response to the tracker, and successfully authenticates to the tracker without
knowing the pairing key. Then, the attacker can either impersonate the app by dropping
her connection with the legitimate app and starting a Communication session with the
tracker or MitM the Communication session between the app and the tracker.

The attacks do not require knowledge of the pairing key and do not trigger Pairing.
Unlike the OTA tracker impersonation attack, these ones require both the app and the
tracker to be in BLE range with the attacker. This issue is not that significant as the
tracker and the app are typically carried and used by the same person.

The technical details of the OTA app impersonation and MitM attacks are presented in
Figure 7. The attacker advertises her presence as a trusted tracker, and the app sends an
Auth Req message to the attacker to start Authentication. The attacker sends a parallel
Auth Req message to the tracker to initiate Authentication with the tracker. The tracker
sends a Chal to the attacker, who relays it to the app. Then, the app computes Resp and
sends it to the attacker, who replays it to the tracker to prove ownership of a pairing key
that she does not know. The tracker sends an Auth OK message to the attacker, and the
attacker sends an Auth FAIL message to the app if she wants to impersonate it or sends
an Auth OK message to preserve her MitM position.

Tracker Attacker App

Auth ReqAuth Req

Chal Chal

Resp=AES(Chal,Key)Resp

Check Resp

Auth OK Auth FAIL or Auth OK

Unlock Data

Communication

Communication

Att. impersonates App to Tracker or MitM the victims

Figure 7: OTA app impersonation and MitM attacks. The attacker impersonates the app
and sends an authentication request (Auth Req) to the tracker (MB 2/3/4/5/6 and AC
1/2) as the app. The tracker sends an authentication challenge (Chal), and the attacker
relays it to the legitimate app. Then, the app computes a response (Resp) and sends it to
the attacker, believing that it is talking to the victim tracker. The response is computed
from a pairing key (Key) only known to the victims. The attacker relays Resp to the
tracker, which checks it and sends back a positive authentication message (Auth OK).
Then, the attacker has two options. She can impersonate the app by sending the app a
negative authentication message (Auth FAIL) and taking over the communication session.
Otherwise, she can relay the positive authentication message (Auth OK) to the app and
establish a man-in-the-middle position between the victim app and tracker.



M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 343

Figure 8: SB eavesdropping (left) and app impersonation (right) attacks. On the left,
the attacker eavesdrops on all data exchanged by the tracker and the app by querying
the tracker’s BLE GATT server without knowing the pairing key (black key). On the
right, the attacker impersonates the app by re-pairing with the tracker and establishing
a new pairing key (red key) unknown to the impersonated app. SB eavesdropping
and app impersonation on Pairing v1 require only BLUETOOTH and INTERNET Android
permissions. SB app impersonation on Pairing v2 also requires BLUETOOTH_ADMIN and
ACCESS_FINE_LOCATION.

4.5 SB App Impersonation Attack

The attacker can impersonate any Xiaomi Android app and remotely pair with a victim
tracker. The attack works regardless of the pairing’s protocol version. Similarl to other
Android malware threat models [MSBK21], the malicious app is already installed on the
victim’s smartphone. This app acts stealthily, runs with normal BLUETOOTH and INTERNET

permissions, and does not require root access. The main advantage of this attack over the
OTA counterpart is that it can be conducted remotely (i.e., over the Internet). Its main
drawback is that it requires user interaction to trigger a new pairing session. However,
since pairing confirmation involves interactions only with the trackers, the user has no way
to tell if the tracker is pairing with a malicious or legitimate app.

The SB app impersonation on Android is depicted in the right part of Figure 8 and
works as follows. The attacker abuses the Android BLE API to discover a tracker paired
with the Xiaomi app. This task can be done by finding Xiaomi proprietary commands in
the smartphone GATT traffic or by looking for the BLE address of the tracker in the list
of connected devices.

If the target tracker supports Pairing v1, the attacker starts a pairing protocol with the
tracker. The tracker cannot tell if the pairing request is authentic and completes pairing
with the attacker’s malicious app. Otherwise, if the tracker supports Pairing v2 (i.e.,
server-based), the attacker must use a different strategy. In particular, the attacker sends
a factory reset proprietary command (that we reverse-engineered). The command does not
require prior authentication. It deletes the bond between the tracker and the legitimate
app, changes the tracker’s BLE address, and puts it in pairing mode. Then, the attacker
can find the tracker and complete the pairing. This attack strategy completely defeats
server-based pairing, which still lacks strong device authentication. Finally, regardless of
the attacked pairing version, the legitimate app cannot connect back to the tracker (e.g.,
in Figure 8, the tracker accepts the red key, but the app has the black one).



344 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

4.6 OTA and SB Eavesdropping Attacks

Due to the lack of encryption during Pairing, Authentication, and Communication, the
attacker can effortlessly launch OTA and SB eavesdropping attacks.

In the OTA case, the attacker can sniff sensitive data exchanged between tracker and
app. For example, during Pairing v1 she can sniff the pairing key, during Pairing v2 the
pairing key seed, during Authentication the challenge-response pairs (to be used in an
offline brute-force attack), and during Communication all the data sent including health
parameters from the tracker and notifications from the app.

In the SB case, the attacker can sniff sensitive data from remote trackers via a malicious
app, taking advantage of the lack of encryption and a known issue with the Android BLE
API. Android allows applications with BLUETOOTH permissions to sniff all GATT data
received by a smartphone. Thus, any application co-located with the Mi Fit app can sniff
all the traffic coming from a tracker without pairing or authenticating with it. For example,
in Figure 8, we depict a malicious app (Attacker App in red) sniffing the heart rate value
sent by the tracker by abusing Android BLE API.

4.7 Discussion

Mapping between attacks and vulnerabilities In Table 1, we present a mapping between
our attacks and the vulnerabilities presented in Section 3.2. The Pairing v1/v2 protocols can
be targeted by OTA eavesdropping, SB eavesdropping, and SB app impersonation. OTA
and SB eavesdropping exploit the data sent in the clear during the Pairing protocol (pairing
key in Pairing v1 and pairing key seed in Pairing v2). SB app impersonation exploits
the missing/weak authentication and weak user confirmation to connect a malicious
device to a legitimate tracker. The Authentication protocol can be targeted by OTA
tracker impersonation, OTA app impersonation, and OTA man-in-the-middle. OTA
tracker impersonation exploits unilateral app authentication (the tracker does not need
to authenticate with the app). The OTA app impersonation exploits the replayability of
BLE traffic between app and tracker, allowing any device to mimic a legitimate tracker.
The OTA man-in-the-middle is a combination of the OTA app and tracker impersonations.
The Communication protocol can be targeted by OTA tracker impersonation, OTA app
impersonation, OTA man-in-the-middle, OTA eavesdropping, and SB eavesdropping. The
lack of encryption and integrity protection in any BLE packet exchanged between app and
tracker allows an attacker to eavesdrop and manipulate BLE traffic freely.

Attacks’ Impact The attacks’ impact is high for several reasons. The proposed attacks,
and their root causes (that we RE), were not known by the community. Also, our attack
techniques include novel aspects. For example, the SB remote attacks combine unknown
Xiaomi vulnerabilities with known Android issues.

The proposed attacks disprove the security and privacy claims made by Xiaomi in their
Privacy Policy [Hua20], as we highlight in Section 6. We demonstrate that all Xiaomi
trackers released since 2016 are vulnerable to the proposed attacks, and future releases will
be vulnerable as well, as our attacks are Xiaomi-compliant. Our attacks affect millions of
users, as Xiaomi is the world’s leading fitness tracker manufacturer.

The proposed attacks are cheap and low-effort (e.g., only require commercial-off-the-
shelf products and minimal equipment) and are easy to deploy. An attacker can violate
users’ privacy by leaking and manipulating sensitive data (e.g., health records and 2FA
SMS) and enforcing malicious factory reset and firmware update requests.



M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 345

Table 1: Mapping between the exploited vulnerabilities identified in Section 3.2 and the
OTA and SB attacks presented in Section 4. A checkmark (3) indicates that a vulnerability
is exploited to conduct an attack.

Vulnerabilities OTA Attacks SB Attacks

Tracker Imp. App Imp. MitM Eaves. Eaves. App Imp.

Pairing v1

Pairing key
sent in the clear

- - - 3 - -

Pairing not
authenticated

- - - - - 3

Weak user
confirmation

- - - - - 3

Pairing v2

Pairing key seed
sent in the clear

- - - 3 3 -

Pairing only (weakly)
authenticates app

- - - - - 3

Weak user
confirmation

- - - - - 3

Authentication

Unilateral app
authentication

3 - 3 - - -

Challenges and
responses replayable

- 3 3 - - -

Communication

No encryption 3 3 3 3 3 -

No integrity
protection

3 3 3 - - -

5 Implementation

In this section, we present the implementation of breakmi, a toolkit that we developed to
reverse-engineer and attack Xiaomi’s proprietary Pairing, Authentication, and Communi-
cation protocols. breakmi reimplements these protocols and automates our experiments
and attacks. The toolkit contains a protocol dissector module, a security mechanisms
module, and an attacks module. We will release breakmi as open-source, and now we
describe how we implemented each module.

5.1 Protocol Dissector Module

Our toolkit, breakmi, includes a protocol dissection module capable of speaking Pairing
v1/v2, Authentication, and Communication protocols (presented in Section 3). The
dissectors module can detect and craft any Xiaomi proprietary message given a capture.
We develop the dissectors as an aid for RE. We implement the module defining fifteen
custom dissection classes for scapy [BtSC21], an interactive packet manipulation program.
Each class encodes a message type using a specific binary layout. Table 2 lists all messages
that we can dissect and customize. The table’s first column indicates the message type, the
second column the message sender, and the third column the packet layout. For example,
the Pairing Key message is used by an app during Pairing v1 to send the pairing key and



346 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

Table 2: Reversed Xiaomi application-layer opcodes and relevant values. Key,
Const, R, Chal and Resp are 16-byte values shown in hex. Const equals to
1863c2cce5d159413bed92c4b163c279.

Message Sender Opcode/Value

Pairing Init App 0100

pair_v1 Tracker 100104

Pairing Key App 0100, Key

Pairing Complete Tracker 100101

Pairing Fail Tracker 100204

pair_v2 Tracker 10018101

SHA1(pub_k) Tracker Const

Random Req App 820002

Random Resp Tracker 108201, R

User Confirmation Tracker 108301

Server Check Tracker 10008401010000

Auth Req App 0200 or 820002

Auth Chal Tracker 100201, Chal or 108201, Chal

Auth Resp App 0300, Resp or 8300, Resp

Auth Complete Tracker 100301 or 108301

Auth Fail Tracker 100304 or 108307

the packet contains a leading 0100 and then Key.

Pairing v1/v2 messages are managed by Xiaomi’s custom Auth GATT characteristic
(00:00:00:09:00:00:35:12:21:18:00:09:AF:10:07:00), which can be found under Xiaomi’s
custom GATT service 0xFEE1. The dissectors extract capture packets with Pyshark [New21],
a Python API for Wireshark [Wir21], and label them as v1 or v2. For Pairing v2, they also
look for the Signature transmitted on Xiaomi’s custom Chunked Transfer characteristic
(00:00:00:20:00:00:35:12:21:18:00:09:AF:10:07:00), under Xiaomi’s 0xfee1 service.

The Auth characteristic also serves Authentication messages. The dissectors monitor
the status of Authentication and the challenge-response. In our experiments, we crafted
Authentication messages with different opcodes and noticed that MB 4/5/6 accept opcodes
used by MB 2/3, as shown in Table 2.

The Communication protocol involves several characteristics, but we focused on the
standard Heart Rate Measurement (00:00:2A:37:00:00:10:00:80:00:00:80:5F:9B:34:FB)
and the custom Steps (00:00:00:07:00:00:35:12:21:18:00:09:AF:10:07:00). The dissectors
decode the custom data format and display the effective value transmitted from the tracker
to the app.

5.2 Security Mechanisms Module

Our toolkit also implements the custom key derivation function for Pairing v2 and challenge-
response Authentication procedures. By using these functions, breakmi is capable of
deriving a valid pairing key from its seed (R) and a valid authentication response (Resp)
from a challenge (Chal), and a pairing key (Key). We invested much time in understanding
how the key derivation and challenge-response procedures work, and we reimplemented them
with Python. In particular, we used Python’s cryptography module from PyCA [Aut21] to
implement SHA256 for the key derivation and AES-ECB for the challenge-response part.



M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 347

To reverse the key derivation and the challenge-response, we used a mix of static
and dynamic techniques. For the static analysis, we decompiled the Mi Fit APK with
JADX [Sky21] and looked at the recovered source code. Unfortunately, the Mi Fit app is
obfuscated, and we could not recover the key derivation and authentication logic. At this
point, we switched to dynamic binary instrumentation with Frida [Ple21]. Our dynamic
approach was successful, as we were able to reverse the key derivation and authentication
logics by hooking their entry point at runtime and observing their inputs and outputs.

5.3 Attacks Module

The OTA tracker impersonation attack, presented in Figure 6, was implemented using
Bleno [Mis21a], an open-source BLE peripheral written in Node.js. Our Bleno script
imitates any Xiaomi tracker by exposing the same BLE features (e.g., BLE advertisements
and GATT server) collected by an extensive study of legitimate Mi Band 2/3/4/5/6, as
shown in Table 6 and Table 7 in the Appendix. It was challenging to collect this information
from all trackers and make sense of the (proprietary) characteristics and services exposed
by the trackers. Once a victim app finds our Bleno tracker, we can complete Pairing v1
and Authentication as a trusted device, and we expose a malicious GATT server to the
app during Communication.

The OTA app impersonation attack, presented in Figure 7, was implemented using
Noble [Mis21b], an open-source BLE central, and by re-using the tracker impersonation
described above. Our tool connects to nearby Xiaomi apps and trackers, performs a
replay attack on the Authentication protocol, disconnects from the app, and establishes
a communication session with the tracker as a trusted app. Once connected, our fake
app retrieves data from the tracker, such as the step count and the user’s heart rate.
Furthermore, it can send fake SMS and phone call notifications and activate alarms. The
OTA MitM attack implementation uses the same logic of the app impersonation. However,
instead of disconnecting from the app after the replay attack is completed, the tool keeps
two parallel connections and establishes a MitM position between the app and the tracker.

The toolkit also includes a malicious app that can be used to perform SB app imperson-
ation and eavesdropping attacks. Our app requires only Android’s BLUETOOTH permission
to interact with the tracker over BLE and INTERNET permission to exfiltrate data remotely.
Android classifies these permissions as normal, so they are granted during installation
without triggering any user prompt.

SB eavesdropping and SB app impersonation utilize the same setup that periodically
checks active BLE connections using Android getConnectedDevices API and waits for a
Xiaomi tracker to appear. As soon as a tracker connects, the malicious app launches the
attack.

During SB eavesdropping, our app subscribes to relevant characteristics and can eaves-
drop on all BLE data coming from the tracker, including sensor readings, commands,
pairing key seeds, and authentication challenges. During app impersonation, our app starts
a new pairing session with the tracker by sending a Pairing Init without disrupting the
communication between the tracker and the legitimate app. The malicious app eventually
negotiates a new pairing key as in the right part of Figure 8 and gains access to protected
data. The SB app impersonation attack on Pairing v2 entails the additional challenge of
interacting with the Xiaomi backend to retrieve a signature. The malicious app sends a
factory reset command to the tracker, which causes the change of its BLE address. A scan
(requiring Android BLUETOOTH_ADMIN and ACCESS_FINE_LOCATION permissions) allows our
app to perform a new pairing process and associate the tracker to our malicious Xiaomi
account stealing its ownership from the legitimate user.

Since all attacks performed by breakmi are fully automated, we propose it as a contin-
uous evaluation tool for the Xiaomi ecosystem. Even if Xiaomi were to enable link-layer
security, the vulnerabilities we found at the application-layer would continue to exist. By



348 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

Table 3: Fitness trackers’ technical specifications. The columns contain the device name,
release year, supported Bluetooth version (BTv), Pairing protocol version (Pv), BLE link-
layer security support (BS), BLE Secure Connections (SC) support, used system-on-chip
(SoC), and Mi Fit firmware version (FW).

Device Year BTv Pv BS SC SoC FW

Mi Band 2 2016 4.2 1 3 7 DA14681 1.0.1.81

Mi Band 3 2018 4.2 1 3 7 DA14681 2.4.0.32

Cor 2 2019 4.2 1 3 7 DA14681 0.3.0.44

Mi Band 4 2019 5.0 2 3 3 DA14697 1.0.9.66

Mi Band 5 2020 5.0 2 3 3 DA14697 1.0.2.64

Mi Band 6 2021 5.0 2 3 3 DA14699 1.0.1.36

using breakmi, anyone would be able to test for those vulnerabilities in future Xiaomi
fitness trackers.

6 Evaluation

This section describes the evaluation of the attacks (presented in Section 4) using breakmi

(described in Section 5). Our evaluation confirms that all Xiaomi trackers since 2016 and
the most recent version of Xiaomi companion apps are vulnerable to our protocol-level
attacks. In addition, it proves that breakmi works in practice and is cheap to deploy. As
a result, millions of Xiaomi users are potential targets, and their sensitive health and
personal data can be leaked and manipulated by bad actors.

6.1 Setup

In our evaluation, we tested all trackers shipped by Xiaomi since 2016. The sample includes
Mi Band 2/3/4/5/6 and Amazfit Cor 2. The MB 1 is out of scope because it is known
to ship with no security at all [of19]. We did not test the Amazfit Cor 1 because of its
limited availability and market share. However, we expect that it is vulnerable to our
attacks as it is a MB 2 clone. Moreover, we tested the latest versions of Mi Fit (v 4.8.1)
and Zepp (v 5.9.2) as the official Xiaomi mobile applications. The apps are compatible
with all Xiaomi trackers and are available for Android and iOS. Despite our attacks not
requiring root permissions, we use rooted devices to facilitate our experiments.

Table 3 presents the trackers’ technical specifications. The Mi Band 2, Mi Band 3, and
Cor 2 support Bluetooth version (BTv) 4.2 and Pairing version (Pv) v1. The others support
Bluetooth 5.0, Pairing v2, and BLE Secure Connections (SC). All trackers support BLE
security (BS) at the link-layer, but Xiaomi is not taking advantage of that. The tracker
system-on-chip (SoC) is either a DA14681, a DA14697, or a DA14699, all manufactured by
Dialog Semiconductor [Sem21]. We also report the firmware version (FW) of the tracker
at the evaluation time.

Since our SB attacks depend on an issue with the Android BLE API (in addition to
Xiaomi ones), we tested six popular Android versions using different smartphones: Android
12 (Google Pixel 4A), Android 11 (Google Pixel 2 XL), Android 10 (Google Pixel XL),
Android 9 (Samsung Galaxy J5), Android 8.1 (Xiaomi Redmi 5 Plus) and Android 6
(Samsung Galaxy S5). We note that we cannot test our attacks on the Android emulator
as it does not support Bluetooth emulation.

Our OTA attacking device is an Acer Aspire 3 laptop connected with a BLE sniffer
and a BLE dongle. The laptop runs Ubuntu version 18.04 and supports Bluetooth 4.2.



M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 349

Table 4: Evaluation results for OTA and SB attacks. The first column shows the attack
name, the following eight columns contain the targets (two companion apps and six fitness
trackers). A checkmark (3) means that the attack was successful, and a hyphen (-) means
that the attack does not apply to that target. MB and AC abbreviate Mi Band and
Amazfit Cor. The SB attacks on the Mi Fit and Zepp apps were successfully tested on six
Android versions (see Table 5).

Mi Fit Zepp MB2 MB3 AC2 MB4 MB5 MB6

OTA Tracker Impersonation - - 3 3 3 3 3 3

OTA App Impersonation 3 3 - - - - - -

OTA Man-in-the-Middle 3 3 3 3 3 3 3 3

OTA Eavesdropping 3 3 3 3 3 3 3 3

SB Eavesdropping - - 3 3 3 3 3 3

SB App Impersonation 3 3 - - - - - -

The sniffer uses three BBC Micro Bit boards and btlejack [Vir21]. The BLE dongle is a
CSR8510 A-10 Controller with Bluetooth 4.0 support. The dongle is needed as we have
to change the attacking device’s BLE address, and the laptop (BLE controller) does not
allow this operation.

The OTA impersonation and MitM attacks were performed by the attacking device
running breakmi and acting as both a spoofed tracker and a spoofed app. When imper-
sonating the tracker, the attacking device advertises as a spoofed tracker, while during
an app impersonation, it scans for trackers as a spoofed app. OTA eavesdropping was
performed using the BLE sniffer. The SB app impersonation and eavesdropping attacks
were performed by running the malicious app in the background and letting the legitimate
app and the tracker communicate as usual.

6.2 Results

The attacks’ evaluation results are shown in Table 4, where we demonstrate that the
attacks are effective across all evaluated devices (if the attack applies to that device). We
can wirelessly impersonate all tested trackers and apps, MitM them, and eavesdrop on their
communication. We can also remotely eavesdrop and impersonate the Mi Fit and Zepp
apps for Android via a malicious app. All attacks work regardless of the hardware and
software details of the victim device (e.g., SoC, firmware, app, tracker, and BLE versions).

The SB remote attacks target Android, so we test them on six popular Android versions,
as we show in Table 5. We confirm that all six tested Android versions are vulnerable to
our attacks. According to [Sta21], this means that (at least) 90.22% of Android devices
are vulnerable. Since Android 12 was recently released in October 2021, statistical market
share data is not available yet. We highlight that, up until Android 11, our attacks only ask
for standard Bluetooth permissions as a requirement to access the getConnectedDevices

method (that we exploit). Android 12 introduces the BLUETOOTH_CONNECT dangerous-
level runtime permission, which must be declared to access getConnectedDevices. As
a consequence, on Android 12, our malicious app must show the user a Nearby Devices
dialog that explicitly states our intent to find, connect to and determine the location of
nearby devices.



350 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

Table 5: Evaluation results for SB attacks against the latest six Android versions. All
attacks were tested using a MB 4 as a tracker. The first column shows the smartphone
model, the second one the Android version and its market share according to [Sta21].
Market share numbers for Android 12 are not available (n/a) as it is too recent. The third
and fourth columns show that all Android versions we test are vulnerable to SB attacks
(X). If we sum the markets share numbers, our attacks are effective on at least 90.22% of
Android devices.

Smartphone Android SB Eaves. SB App Imp.

Pixel 4A 12 (n/a) 3* 3*

Pixel 2XL 11 (34.7%) 3 3

Pixel XL 10 (27.7%) 3 3

Galaxy J5 9 (13.9%) 3 3

Redmi 5 Plus 8 (10.56%) 3 3

Galaxy S5 6 (3.36%) 3 3

* Attack requires Android BLUETOOTH_CONNECT dangerous permission

7 Countermeasures

We now discuss five countermeasures addressing the vulnerabilities presented in Section 3.2
and the attacks presented in Section 4. The first four apply to the application-layer and
the fifth to the link-layer.

C1 (Authenticated) Key Establishment Pairing v1/v2 should use an Authenticated Key
Establishment (AKE) to prevent impersonation, man-in-the-middle, and eavesdropping
attacks. Figure 9 illustrates an updated version of Pairing v1/v2 to support C1. The tracker
and the app first generate a public-private key pair and share their public keys (App_Pk

and TR_Pk). They proceed with the calculation of a key (K) through a Diffie-Hellman (DH)
function and the sharing of two nonces (App_N and TR_N). Finally, the tracker and the app
calculate a confirmation value (V) displayed on each screen and wait for user confirmation
concerning the match of the displayed values.

C2: Strong Pairing Confirmation The updated Pairing v1/v2 protocol, shown in Fig-
ure 9, guarantees C2 thanks to the numeric comparison performed by the user. In particular,
while pairing, a MitM attacker is not capable of generating V as she does not know K

pairing. Moreover, during an app impersonation attack, the adversary would trigger an
unexpected user interaction while re-pairing with the app.

C3: Strong Key Authentication The Authentication procedure should be mutual and
resistant to replay attacks. Mutual authentication is easy to implement by letting the
app and the tracker send their challenges and then verifying them on both ends. Replay
protection is also straightforward and can be achieved by using nonces and generating a
response from a challenge and a nonce. These measures raise the bar for tracker imperson-
ation and app impersonation. Figure 10 illustrates the updated Xiaomi Authentication
protocol. Tracker and app already share the pairing key (K) and exchange a challenge
(App_Ch and TR_Ch). They calculate the solutions through a hash function H, which relies
on the challenges and the pairing key. They verify the correctness of the received challenge
solution, and if both checks are successful, the tracker unlocks its data. Finally, they start
an AES-CCM encrypted communication session using a session key SK obtained through a



M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 351

Tracker App

Gen TR Pk, TR Sk Gen App Pk, App Sk

App Pk

TR Pk

K = DH(TR Sk, App Pk) K = DH(App Sk, TR Pk)

App N

TR N

V = F(K, App N, TR N) V = F(K, App N, TR N)

TR and App display V

Waiting for user confirmation

Figure 9: Authenticated key establishment (i.e., pairing) protocol providing C1+C2.
Tracker and app generate a public-private key pair and share the public keys (App_Pk

and TR_Pk) with each other. They calculate a new key through a Diffie–Hellman (DH)
function and share two nonces (App_N and TR_N). Then, the tracker and the app both
calculate a confirmation value (V) displayed on each screen and wait for user confirmation
concerning the match of the displayed values. The DH function guarantees C1, while the
user verifying tracker and app during pairing confirmation guarantees C2.

HKDF key derivation function from the pairing key K, and two exchanged nonces (App_N

and TR_N).

C4: Authenticated-encryption The Communication protocol should use a fresh session
key derived from the pairing key K to encrypt and integrity-protect the data exchanged
between app and tracker. Devices can rely on AES-CCM and HKDF to introduce this
countermeasure, as both functions are already supported by the devices SoC. C4 protects
against eavesdropping and MitM attacks during Communication.

C5: BLE Link-Layer Security To complement the security at the application-layer,
Xiaomi might also enable the BLE link-layer security mechanisms already supported by
all its devices. The robustness of BLE link-layer security mechanisms depends on the BLE
version of the device. The MB 4/5/6 implement BLE SC, so that they would benefit from
secure protocols for pairing and session establishment. Instead, the MB 2/3 implement
legacy BLE security, which is known to be insecure [Rya13a].

8 Comparison with Fitbit

In this section, we compare our findings of Xiaomi with the Fitbit [Fitb] ecosystem, which is
Xiaomi’s main competitor in the fitness tracker market. Our motivation for the comparison
is twofold. Firstly, to assess if Fitbit is affected by similar vulnerabilities and attacks
found on Xiaomi devices. Secondly, to evaluate how effective breakmi is on other large



352 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

Tracker App

Tracker and App share K

App Ch

TR Ch

R1, R2 = H(K, App Ch, TR Ch) R1, R2 = H(K, App Ch, TR Ch)

R1

R2

If R1 check fails, abort If R2 check fails, abort

Unlock Data

App N

TR N

SK = HKDF(K, App N, TR N) SK = HKDF(K, App N, TR N)

AES-CCM AE session using SK

Figure 10: Mutual authentication protocol providing C3+C4. Tracker and app already
share the pairing key (K) and exchange a challenge (App_Ch and TR_Ch). They calculate
the solutions through a hash function H, that relies on the challenges and on the pairing
key. They verify the correctness of the received challenge solution, and if both checks
are successful, the tracker unlocks its data. Finally, they start an AES-CCM encrypted
communication session using a session key SK obtained through a HKDF key derivation
function from the pairing key K, and two exchanged nonces (App_N and TR_N). The mutual
verification of challenges guarantees C3 and AES-CCM with a fresh session key provides
C4.

fitness tracking ecosystems. We used the same RE methodology adopted for Xiaomi and
described in Section 9 for this analysis, but we targeted different proprietary protocols.

In particular, we had a look at a Charge 2 tracker and the latest version of the Fitbit
app for Android [Fita], as their security mechanisms were already reversed [CHMS14,
SJMdR16, FCS+17, CWP+18]. The Charge 2 is from 2016, supports Bluetooth 4.1 and
BLE link-layer security, and is powered by a BLUENRGCSP SoC from ST Microelectronics.
We also considered the Charge 4 from 2020, but unlike the Charge 2, it uses unknown
protocols, and reversing them is out of the scope of this work.

We now summarize what is known about the Fitbit protocols. Then we discuss their
vulnerabilities and how the attacks presented in Section 4 apply to them. We describe how
we extended breakmi to deploy five attacks on actual Fitbit devices successfully. Finally,
we discuss how to port the countermeasures discussed for Xiaomi to the Fitbit ecosystem.

8.1 Architecture and Protocols

Fitbit uses the same system architecture as Xiaomi (see Figure 1). A tracker communicates
over BLE with the Fitbit companion app, and the app communicates via Wi-Fi or a mobile
network with the Fitbit backend. The devices use proprietary application-layer protocols



M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 353

(e.g., Pairing, Authentication, and Communication) and ignore available BLE link-layer
security mechanisms. Unlike Xiaomi, which utilizes public BLE addresses, Fitbit trackers
use random static addresses. Regardless, Fitbit devices are still trackable because their
BLE address never changes for their entire lifetime.

Pairing As described in [SJMdR16, CWP+18], Fitbit employs a Pairing protocol to
establish a pairing key (authentication key in Fitbit terms) between the trackers and the
app. During Pairing, the backend (which pre-shares a device key with a tracker) computes
the pairing key from the device key and a salt, and sends them to the app. The app sends
the salt to the tracker, and the tracker computes the pairing key from the salt and the
device key. We note that, unlike Xiaomi, the key or its seed is not sent in cleartext, and
pairing confirmation is strong. Pairing is accepted only when the user confirms on the app
that she sees the same numeric sequence on the tracker and app screens. As such, Fitbit
adopts a stronger user confirmation strategy than Xiaomi.

Authentication Fitbit Authentication, unlike Xiaomi, is mutual and works as follows.
The app sends a random challenge together with a constant key salt (provided by the
backend during Pairing). The tracker sends back a MAC and a counter value, where the
MAC is computed using the counter and the random challenge and is keyed using the
pairing key corresponding to the key salt. The app checks that the MAC is valid and sends
back a different MAC computed using the counter and keyed with the pairing key. The
tracker checks the MAC, and then mutual authentication of the pairing key is achieved.
The counter is updated on each run of the Authentication protocol.

Communication Fitbit sessions, unlike Xiaomi, have two different modes: live and
normal. Live mode is not encrypted and monitors the tracker readings in real-time. Live
mode data stays in the app, and is not relayed to the backend. On the other hand,
normal mode synchronizes the data from the tracker to the backend. The synchronization
process is encrypted with the shared pairing key by using either XTEA (extended TEA)
encryption [NW97] or AES-EAX authenticated-encryption [BRW04].

8.2 Vulnerabilities and Attacks

We compare Xiaomi and Fitbit security mechanisms, investigate if Xiaomi vulnerabilities
can be found in the Fitbit ecosystem, and evaluate how our OTA and SB attacks perform
on Fitbit.

Vulnerabilities Fitbit proprietary security mechanisms are slightly better than Xi-
aomi’s, but severe vulnerabilities still affect them. In particular, the Fitbit Pairing protocol
does not send the pairing key (seed) in the clear, has strong user confirmation but still
lacks device authentication. The Authentication protocol is mutual but is replayable. The
Communication protocol partially uses encryption and integrity protection. For example,
only normal mode data is encrypted.

OTA attacks The OTA app impersonation and MitM attacks from Figure 7 are
still effective, as Fitbit Authentication is not replay-protected. Instead, the OTA tracker
impersonation presented in Figure 6 does not work as Fitbit Authentication is mutual.
However, the attacker can still impersonate a tracker using a replay attack similar to the
one described in Figure 7. The OTA eavesdropping works only with unencrypted data
(e.g., live mode data).

SB attacks The SB app impersonation attack on Android in Figure 8 is still effective.
A malicious app can get valid authentication credentials from the backend and re-pair
with the victim tracker (see Fig 4a in [CWP+18]). Thus, we discovered a novel technique
to steal trackers virtually. The SB eavesdropping suffers the same limitations as OTA
eavesdropping.

Overall, the attacks’ impact on Fitbit is lower than the one on Xiaomi but remains
significant. For example, during impersonation or MitM, the attacker can only manipulate



354 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

and tamper with the packets sent in cleartext. Nevertheless, the attacker can still abuse
the unprotected live mode data to report worrisome health conditions to the user.

8.3 Attacking Fitbit with breakmi

We extended breakmi to analyze and attack the Fitbit ecosystem. We can clone Charge 2
trackers (including their advertised data and GATT servers) and the Fitbit app. Moreover,
we can speak the Pairing, Authentication, and Communication protocols described before.
We created custom scapy dissection classes to generate valid packets just like we did for
Xiaomi. Fitbit uses static (random) BLE addresses, and we updated breakmi to support
this privacy feature.

We use breakmi to perform the OTA impersonation and MitM attacks by replaying
packets during the Fitbit Authentication. We also developed an extra module for our
malicious Android app that performs the SB eavesdropping and app impersonation attacks.
The latter provides the trackers’ serial number and BLE address to the backend to reset
the tracker’s owner and then triggers pairing from the malicious app. This strategy is
different from those we presented in Section 4.5, targeting Xiaomi.

8.4 Porting our Xiaomi Countermeasures to Fitbit

Fitbit Pairing, Authentication, and Communication protocols described in Section 8.1 can
be strengthened by using a subset of the countermeasures proposed for Xiaomi in Section 7.
In particular, unencrypted live mode data can be protected with C1 (authenticated-
encryption), Pairing can be enhanced with C2 (authenticated key establishment), Authen-
tication can be improved by adding replay protection as in C3. In addition, defense in
depth can be achieved using C4 (BLE link-layer security). C5 (strong pairing confirmation)
is not needed as is already provided by Fitbit pairing confirmation.

9 Reverse-Engineering Methodology

In this section, we describe our reverse-engineering methodology and how we applied it
to perform our security analysis of Xiaomi and Fitbit ecosystems. We describe how we
perform reconnaissance on a fitness tracking ecosystem. We explain how we analyze the
traffic exchanged between tracker, app, and backend and how we apply static and dynamic
analysis techniques to a mobile app. We also discuss the development of automated scripts
for reverse-engineering and security assessment.

9.1 Trackers and Apps Reconnaissance

We now describe how we performed reconnaissance of the Xiaomi trackers and apps.
Regarding the tracker, we inspect its BLE GATT server using the “nRF Connect for

Mobile” app [ASA21]. The app allows to scan, explore and communicate with BLE devices.
We extract data from every service and characteristic, collecting the information shown
in Table 6 and Table 7 in the Appendix. We identify Xiaomi proprietary GATT services
(i.e., 0xFEE0, 0xFEE1). We find a set of characteristics protected by Authentication. For
example, the Auth characteristic manages Pairing and Authentication, and the Steps and
Heart Rate characteristics contain sensitive data.

We install Mi Fit and Zepp apps and interact with them. The apps are very similar
as they share the same UI, communicate with the same backend, and provide the same
interface to the tracker. The apps’ UI does not show any information about the Pairing,
Authentication, and Communication protocols that we RE. We also find that their codebase
is very similar despite being closed-source. GadgetBridge [Fre21], an open-source project,
provides some insights into the apps’ internals.



M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 355

9.2 BLE and Web Traffic Analysis

First, we intercept over-the-air BLE traffic with a BLE sniffer and confirm that Xiaomi
BLE traffic is not encrypted. Then, since we control the smartphone running the app, we
simply enable the “Bluetooth HCI Snoop Log” under the “Developer Options” and directly
access BLE capture files. This option does not work correctly on some smartphones, but
other alternatives exist (e.g., hcidump [KHG21], adb bugreport [And21]). We visualize
and inspect BLE packets using Wireshark [Wir21], a network protocol analyzer. We find
several recurring opcodes, shown in Table 2. We define the Pairing, Authentication, and
Communication protocols and implement them in our automated scripts.

We run mitmproxy [Pro22] on our machine, a MitM proxy tool that intercepts and
logs Wi-Fi and cellular networks traffic. We also configure our smartphone to redirect
its web traffic to mitmproxy, and we install the mitmproxy CA (Certificate Author-
ity) certificate. We intercept traffic going from the app to the Xiaomi backend while
performing various operations with the tracker (e.g., adding a new tracker, synchro-
nizing user activity data, completing workout sessions). We discover several API end-
points (e.g., account.xiaomi.com/oauth2/authorize, account.huami.com/v2/client/login,
api-mifit-de2.huami.com/v1/device/binds.json). We inspect the traffic looking for inter-
esting requests. For example, we reverse-engineer how Xiaomi registers new trackers on
its backend. Then, we test the API endpoints by sending custom-made requests and
monitoring their responses (the tests were performed according to Xiaomi’s Bug Bounty
program guidelines).

We merge BLE and Web capture files using a Wireshark utility better to visualize the
sequentiality of the packets in Xiaomi protocols. We discover how the app acts as a proxy
between the tracker and the backend during Pairing v2 and how the app sends security
packets to the unprotected (custom) Chunked Transfer characteristic.

9.3 Mobile Companion Apps Analysis

We examine Mi Fit and Zepp apps’ code to uncover the implementation of Xiaomi
proprietary protocols from the source. We describe which static and dynamic analysis
techniques we applied to our app analysis.

We start our static code analysis by extracting Mi Fit and Zepp APKs and decom-
piling them with JADX [Sky21], a Dex to Java decompiler. We discover that the Java
code is obfuscated and difficult to navigate. We experiment with different deobfuscation
tools, either by directly acting on the APK files (i.e., JADX deobfuscation utility, De-
Guard [BRTV16], simplify [Fen20]) or by converting them into JAR files first (i.e., Java
Deobfuscator [Sam20]), but they were unable to deobfuscate it. We utilize apktool [iBo21]
to reverse-engineer the APK, inspect its resources and experiment with repackaging.

We manually inspect the apps’ code. We search for keywords, trying several interesting
words (e.g., Pairing, Bonding, Authentication, and Characteristic strings) and cryptographic
functions supported by the tracker (e.g., MD5 and AES-ECB). We utilize the Mobile
Security Framework (MobSF) [Abr21], an automated pen-testing and malware analysis tool,
to inspect app components and for its automated binary analysis. We create control-flow
graphs with Androguard [DG19], a Python reverse-engineering tool. Then, we perform
dataflow analysis to help us to track the pairing Key. Ultimately, we find the code sections
responsible for Pairing, Authentication, and Communication.

We apply dynamic analysis techniques to confirm that those code sections are actually
executed at runtime. We rely on Frida [Ple21], a dynamic binary instrumentation toolkit
that allows us to inject code during runtime execution. We use Frida hooks to log runtime
variables and confirm they match with the values found in the capture files. We also
experiment with editing variables at runtime and test the robustness of Xiaomi’s security
mechanisms when receiving unexpected values.



356 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

9.4 Development of Scripts

Throughout our RE efforts, we develop a set of scripts that automate time-consuming
tasks. We aggregate and upgrade those scripts in breakmi, an extensible modular toolkit.

First, we build automated scripts to interact with a tracker’s GATT server using
a Python library called Bleak [BL21]. Our scripts automatically connect, explore, and
display information about any BLE device. Then, we build scripts that replicate interesting
operations on the tracker (e.g., read requests, enable notifications, firmware update, and
factory reset).

We automate BLE traffic analysis by developing protocol dissectors on Pyshark [New21],
a Python wrapper for packet parsing, and by using the scapy [BtSC21] packet crafting
library. We reverse-engineer the binary structure of Xiaomi firmware so that we can extract
firmware from capture files containing a firmware update. We also automate web traffic
analysis via mitmproxy by developing scripts with the mitmdump utility. Our mitmdump
scripts analyze hundreds of web requests to find pairing-related messages, identify their
purpose and retrieve their parameters.

We automate our OTA attacks using Bleno [Mis21a] and Noble [Mis21b]. We cre-
ate spoofed BLE peripherals that mirror services, characteristics, and advertising from
legitimate MB 2/3/4/5/6 and Cor 2. We implement the Pairing, Authentication, and
Communication protocols on the Auth, Steps, Heart Rate, and Chunked Transfer charac-
teristics. We also implement the Pairing, Authentication, and Communication protocols on
a BLE central and configure it to scan for and connect to the target trackers. During OTA
MitM, the malicious BLE central and peripheral communicate with each other through
websockets.

10 Related Work

We discuss the current state of the literature concerning the security and cryptographic
analysis of Mi Band, Fitbit, and other embedded devices, the attacks on BLE protocols,
and Android vulnerabilities and compare it with our work.

Attacks against Mi Band devices Fereidooni et al. [FFM+17] looked at ways to inject
false data from the tracking application to the backend of 17 popular trackers, including
a Mi Band device. Hilts et al. [HPK16] presented a security and privacy analysis of six
trackers, including a Mi Band. These analyses are useful yet orthogonal to ours as they
do not cover Xiaomi’s proprietary security protocols. Some developers released tools
for Mi Band 2 [Cre19] and Mi Band 3 [Yog19] able to trigger Xiaomi’s Pairing v1 to
unlock private data as described in [Ojh18]. Mi Band 4 tools such as [Sat21] require the
knowledge of the pairing key, because nothing is known about Pairing v2 apart from it
being “server-based” [Fre21]. Our attacks are much stronger and stealthy. They do not
require knowledge of the pairing key, no specific action from the victim, do not disrupt the
pairing between the victim’s app and the victim’s tracker, and do not reset the data (as they
completely skip Pairing). In fact, we improved and corrected the attack in [Ojh18], that
claims to be targeting Authentication when it is actually targeting Pairing v1. The Xiaomi
protocols reverse-engineered in [Gie18] belong to Mi Home [Incg, BXC], the Xiaomi app
that manages smart home devices, which does not support fitness trackers. To conclude,
existing attacks were ad-hoc and partial. Our work is the first to systematize and generalize
attacks against the Xiaomi fitness tracking ecosystem.

Attacks against Fitbit devices Rahman et al. [RCB13, RCT16] attacked the legacy ANT
Communication protocol used by Fitbit Ultra and Garmin Forerunner and provided fixes
for them. Cyr et al. [CHMS14] utilized Ubertooth to sniff OTA BLE traffic from a Fitbit



M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 357

Flex and an HTTP/HTTPS proxy, underlining several privacy-related issues, including
device identification attacks. As described in [AV-15], Fitbit Charge was patched for being
vulnerable to non-authenticated reads and a replay attack. Goyal et al. [GDS16] presented
a comparative analysis of a Jawbone UP Move and Fitbit Charge. They discovered
security issues in the GATT server, the mobile app, and the backend. Schellevis et
al. [SJMdR16], reversed the Fitbit Charge HR authentication protocol through firmware
analysis. Fereidooni et al. [FCS+17] found ways to spoof Fitbit Flex and One data
by tearing down the devices and analyzing their firmware. Classen et al. [CWP+18]
demonstrated attacks on Fitbit capable of leaking private data from a tracker, re-flashing a
rogue firmware, and redirecting the app to a rogue cloud service. Other researchers could
only perform eavesdropping while being near the target device, but we can do it remotely
with our SB eavesdropping attack. Our SB app impersonation attack allows us to remotely
inject fake data into the Fitbit account of our victim. Instead, previous studies required
the ownership of the tracker or physical access. We also verified that Fitbit Charge 2 is
still using the same protocols reversed in [CWP+18], and we have proven the feasibility of
a MitM setup by deploying our OTA MitM attack.

Attacks against BLE protocol Fitness trackers communicate with the app using BLE.
Privacy-oriented case studies show, by looking at BLE advertising [DPCM16, IT17, KS18,
FKS16] or BLE UUID [ZWLZ19], that one can fingerprint the tracker and even identify
the user’s activities (e.g., walking or sitting). Several papers discussed standard-compliant
attacks on BLE legacy pairing [Rya13b], key negotiation [ATR20], Secure Simple Pair-
ing [BN20, ZWD+20a, ZWD+20a], Secure Connections Only Mode [ZWD+20b], associa-
tions [vTPFG21], GATT [Jas16], and reconnections [WNK+20]. Implementation-specific
bugs and related exploits were also discussed [Inc19, GCW20]. Wang et al. [WHZ+20]
exploited the BLE features designed for low-cost devices to downgrade the key negotiation
and authentication procedures and access the stored BLE data. BLE legacy pairing and
Secure Simple Pairing were also found to be vulnerable to misbinding attacks [SPA19].
Works about BLE are orthogonal to what we present as we are targeting proprietary
protocols implemented at the application-layer on top of an insecure BLE link layer.

Cryptographic security on embedded systems Constrained embedded devices often
misuse cryptographic primitives, thus introducing severe vulnerabilities in the whole
system. Wouters et al. [WMA+19, WGP21] reverse-engineered the Tesla Model S and
Model X key fob and found new vulnerabilities. Our study and methodology are similar
to theirs, as they reversed proprietary protocols (i.e., Tesla’s PKES and Pairing protocols),
analyzed the BLE SoC, discussed cryptographic security measures, developed a proof-
of-concept and proposed countermeasures. Their findings could apply to other key fob
manufacturers, similar to what we did with breakmi. We exploited the same vulnerabilities
found both in Xiaomi and Fitbit devices, two of the largest players in the fitness tracker
market. An orthogonal approach to reverse-engineering embedded systems is firmware and
binary code analysis, adopted by Incision [TdHV+21], an architecture and OS-agnostic
RE framework. While similar tools are effective, we believe that our application-layer
analysis is necessary to provide a full security assessment of an embedded device.

Vulnerabilities in Android It is known that Android does not properly isolate Bluetooth
keys among apps. For example, all devices’ Bluetooth pairing keys are shared by all apps
enabling co-located attacks [NyZD+14, SB19]. This fact might affect fitness trackers that
are relying on BLE pairing. However, this is not the case for Xiaomi, which only relies on
proprietary security mechanisms at the application-layer. As a result, our attacks are still
effective even if Android would fix the shared pairing key issue.



358 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

Smartwatches Prior work also studied the security of smartwatches, with Apple Watch
as the main target. In particular, researchers focused on MagicPairing [HCR20], Apple’s
Bluetooth security mechanism, and reverse-engineering [HPK16, FFM+17]. In this work,
we focus only on fitness trackers, as smartwatches represent a separate class of devices
with far more capabilities than fitness trackers. For example, smartwatches ship with
more capable SoC (e.g., ARM general-purpose and multi-core application processors) than
trackers (e.g., ARM microcontroller), so comparing the two devices classes would be unfair.

11 Conclusion

Xiaomi is a market leader in the fitness tracking industry. Little is known about this
ecosystem’s security and privacy properties despite managing the sensitive information of
millions of users (such as health and personal data). Nonetheless, Xiaomi claims to be
“committed to protecting the privacy, confidentiality, and security of personal information”
in its Privacy Policy [Hua20]. We address this relevant issue by performing an extensive
and up-to-date security evaluation of the Xiaomi fitness tracking ecosystem.

After extensive RE experiments, we uncover several worrisome issues. Xiaomi uses
proprietary and undocumented security mechanisms to protect the communication be-
tween its trackers and apps. In particular, Xiaomi provides Pairing, Authentication, and
Communication application-layer protocols over an insecure BLE connection. Xiaomi’s
approach is extremely risky as the security of its ecosystem relies on custom protocols that
cannot be peer-reviewed in the open by the security community. Moreover, Xiaomi ignores
standard BLE link-layer security mechanisms despite being supported by its devices.

We uncovered thirteen severe vulnerabilities (most of which were unknown) in the
specification of Xiaomi custom application-layer protocols and exploited ten of them. The
issues range from unilateral and replayable authentication to the lack of encryption and
integrity protection. Being Xiaomi-compliant, the issues are exploitable on all devices
using these protocols.

We demonstrate how to exploit the vulnerabilities with proximity-based (OTA) and
remote (SB) attacks. Specifically, we describe over-the-air eavesdropping, impersonation,
and MitM attacks, and remote eavesdropping and impersonation threats based on a
malicious app co-located with the Xiaomi app.

In our evaluation, we successfully attacked all Xiaomi trackers released since 2016 (e.g.,
MB 2/3/4/5/6, Cor 2) and the up-to-date versions of the Mi Fit (v 4.8.1) and Zepp (v
5.9.2) companion apps. We also positively test our remote attacks on six popular Android
versions (i.e., Android 6/8/9/10/11/12), covering at least 90.22% of Android devices in
the market, according to [Sta21].

We develop breakmi, a modular toolkit that automates RE experiments and attacks.
breakmi includes protocol dissector, security mechanisms, and attacks modules. It is based
on open-source software and requires cheap and available hardware. We test our toolkit
on the Xiaomi ecosystem, and we extend it to also work on Fitbit. We will open-source
breakmi.

We propose five effective countermeasures that fix the presented vulnerabilities and at-
tacks. Our countermeasures provide stronger Pairing, Authentication, and Communication
protocols. Moreover, we show how to integrate our protocols into the Xiaomi ecosystem.

We assess whether the Fitbit ecosystem suffers from the same vulnerabilities as Xiaomi.
We find that Fitbit has better (still proprietary) Pairing, Authentication, and Communica-
tion protocols. Nevertheless, it is vulnerable to five out of the six attacks presented in this
paper. We conduct such attacks on actual Fitbit devices, and we extend our toolkit to be
compatible with Fitbit.

Overall, our work required an extensive and time-consuming RE effort. The hardest
RE challenge was the server-based Pairing v2. More specifically, it took us six months to



M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 359

understand how the tracker, app, and backend interact among themselves while pairing.
We spent two months developing breakmi, which automated most of our protocol analysis
and reverse-engineering and quickly made up for the time investment. For example, when
Xiaomi released the new MB 6, our toolkit immediately detected its similarity to the
previous generation of trackers. Using this information, we could deploy our attacks on
the MB 6 within a single day. Another example would be the process of adding support
for the Fitbit ecosystem. We only spent two weeks on it, while we spent three months
working on fully supporting the Xiaomi ecosystem.

Acknowledgements

We thank our anonymous reviewers for their constructive feedback. This project has
received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant agreement No. 850868) and DARPA
under HR001119S0089-AMP-FP-034. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily
reflect the views of our sponsors.

References

[Abr21] Ajin Abraham. Mobile Security Framework. https://github.com/MobSF/

Mobile-Security-Framework-MobSF, 2021.

[And21] Android. Capture and Read Bug Reports. https://developer.android.com/

studio/debug/bug-report, 2021.

[ASA21] Nordic Semiconductor ASA. nRF Connect for Mobile. https:

//play.google.com/store/apps/details?id=no.nordicsemi.android.mcp,
2021.

[ATR20] Daniele Antonioli, Nils O. Tippenhauer, and Kasper Rasmussen. Key Negoti-
ation Downgrade Attacks on Bluetooth and Bluetooth Low Energy. ACM
Transactions on Privacy and Security, 23(3), 2020.

[Aut21] Python Cryptographic Authority. Python Cryptography. https://

cryptography.io/en/latest/, 2021.

[AV-15] AV-TEST Team. Analysis of Fitbit Vulnerabilities.
https://www.av-test.org/fileadmin/pdf/avtest_2016-

04_fitbit_vulnerabilities.pdf, 2015.

[BL21] Henrik Blidh and David Lechner. Bleak. https://pypi.org/project/

bleak/, 2021.

[BN20] Eli Biham and Lior Neumann. Breaking the Bluetooth Pairing – The Fixed
Coordinate Invalid Curve Attack. In Selected Areas in Cryptography (SAC
’19), pages 250–273. Springer International Publishing, 01 2020.

[BRTV16] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev.
Statistical Deobfuscation of Android Applications. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, page
343–355. Association for Computing Machinery, 2016.

[BRW04] Mihir Bellare, Phillip Rogaway, and David Wagner. The EAX Mode of
Operation. In International Workshop on Fast Software Encryption, pages
389–407. Springer, 2004.

[BtSC21] Philippe Biondi and the Scapy Community. Scapy. https://scapy.net/,
2021.

https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://developer.android.com/studio/debug/bug-report
https://developer.android.com/studio/debug/bug-report
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/
https://www.av-test.org/fileadmin/pdf/avtest_2016-04_fitbit_vulnerabilities.pdf
https://www.av-test.org/fileadmin/pdf/avtest_2016-04_fitbit_vulnerabilities.pdf
https://pypi.org/project/bleak/
https://pypi.org/project/bleak/
https://scapy.net/


360 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

[BXC] Ltd Beijing Xiaomi Co. Mi Home for iOS. https://apps.apple.com/us/

app/mi-home-xiaomi-smart-home/id957323480.

[CHMS14] Britt Cyr, Webb Horn, Daniela Miao, and Michael Specter. Security Analysis
of Wearable Fitness Devices (Fitbit). Massachusetts Institute of Technology,
1, 2014.

[Co.] Anhui Huami Information Technology Co. Mi Fit for Android. https:

//play.google.com/store/apps/details?id=com.xiaomi.hm.health&hl=

en_US&gl=US.

[Cor20] International Data Corporation. Shipments of Wearable Devices Leap to 125
Million Units, Up 35.1% in the Third Quarter, According to IDC. https:

//www.idc.com/getdoc.jsp?containerId=prUS47067820, 2020.

[Cre19] Creotiv. Mi Band 2 - Python Library. https://github.com/creotiv/

MiBand2, 2019.

[CWP+18] Jiska Classen, Daniel Wegemer, Paul Patras, Tom Spink, and Matthias
Hollick. Anatomy of a Vulnerable Fitness Tracking System: Dissecting the
Fitbit Cloud, App, and Firmware. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies (IMWUT ’18), 2(1):1–24, 2018.

[DG19] Anthony Desnos and Geoffroy Guegue. Androguard. https://github.com/

androguard/androguard, 2019.

[DPCM16] Aveek K. Das, Parth H. Pathak, Chen-Nee Chuah, and Prasant Mohapatra.
Uncovering Privacy Leakage in BLE Network Traffic of Wearable Fitness
Trackers. In Proceedings of the 17th International Workshop on Mobile
Computing Systems and Applications (HotMobile ’16), page 99–104, 2016.

[FCS+17] Hossein Fereidooni, Jiska Classen, Tom Spink, Paul Patras, Markus Miettinen,
Ahmad-Reza Sadeghi, Matthias Hollick, and Mauro Conti. Breaking Fitness
Records Without Moving: Reverse Engineering and Spoofing Fitbit. In
Research in Attacks, Intrusions, and Defenses - 20th International Symposium
(RAID ’17), pages 48–69, 2017.

[Fen20] Caleb Fenton. Simplify Android Deobfuscator. https://github.com/

CalebFenton/simplify, 2020.

[FFM+17] Hossein Fereidooni, Tommaso Frassetto, Markus Miettinen, Ahmad-Reza
Sadeghi, and Mauro Conti. Fitness Trackers: Fit for Health but Unfit
for Security and Privacy. In 2017 IEEE/ACM International Conference
on Connected Health: Applications, Systems and Engineering Technologies
(CHASE ’17), pages 19–24. IEEE, 2017.

[Fita] Inc. Fitbit. Fitbit app for Android. https://play.google.com/store/apps/

details?id=com.fitbit.FitbitMobile&hl=en_US&gl=US.

[Fitb] Inc. Fitbit. Fitbit Homepage. https://www.fitbit.com/global/it/home.

[FKS16] Kassem Fawaz, Kyu-Han Kim, and Kang G. Shin. Protecting Privacy of BLE
Device Users. In 25th USENIX Security Symposium (USENIX Security ’16),
pages 1205–1221. USENIX Association, 2016.

[Fou20a] Mozilla Foundation. Privacy Not Included - Amazfit Fitness track-
ers. https://foundation.mozilla.org/en/privacynotincluded/amazfit-

fitness-trackers/, 2020.

[Fou20b] Mozilla Foundation. Privacy Not Included - Mi Band 5. https://

foundation.mozilla.org/en/privacynotincluded/mi-band-5/, 2020.

[Fou20c] Mozilla Foundation. Privacy Not Included - Mi Band 6. https://

foundation.mozilla.org/en/privacynotincluded/mi-band-6/, 2020.

https://apps.apple.com/us/app/mi-home-xiaomi-smart-home/id957323480
https://apps.apple.com/us/app/mi-home-xiaomi-smart-home/id957323480
https://play.google.com/store/apps/details?id=com.xiaomi.hm.health&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.xiaomi.hm.health&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.xiaomi.hm.health&hl=en_US&gl=US
https://www.idc.com/getdoc.jsp?containerId=prUS47067820
https://www.idc.com/getdoc.jsp?containerId=prUS47067820
https://github.com/creotiv/MiBand2
https://github.com/creotiv/MiBand2
https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://github.com/CalebFenton/simplify
https://github.com/CalebFenton/simplify
https://play.google.com/store/apps/details?id=com.fitbit.FitbitMobile&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.fitbit.FitbitMobile&hl=en_US&gl=US
https://www.fitbit.com/global/it/home
https://foundation.mozilla.org/en/privacynotincluded/amazfit-fitness-trackers/
https://foundation.mozilla.org/en/privacynotincluded/amazfit-fitness-trackers/
https://foundation.mozilla.org/en/privacynotincluded/mi-band-5/
https://foundation.mozilla.org/en/privacynotincluded/mi-band-5/
https://foundation.mozilla.org/en/privacynotincluded/mi-band-6/
https://foundation.mozilla.org/en/privacynotincluded/mi-band-6/


M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 361

[Fre21] Freeyourgadget. Gadgetbridge a free and cloudless replacement for your
gadget vendors’ closed source Android applications. https://codeberg.org/

Freeyourgadget/Gadgetbridge, 2021.

[GCW20] Matheus Garbelini, Sudipta Chattopadhyay, and Chundong Wang. Sweyn-
Tooth: Unleashing Mayhem over Bluetooth Low Energy. https://asset-

group.github.io/disclosures/sweyntooth/sweyntooth.pdf, 2020.

[GDS16] Rohit Goyal, Nicola Dragoni, and Angelo Spognardi. Mind the Tracker You
Wear: A Security Analysis of Wearable Health Trackers. In Proceedings of
the 31st Annual ACM Symposium on Applied Computing (SAC ’16), Pisa,
Italy, page 131–136, 2016.

[Gie18] Dennis Giese. Having fun with IoT: Reverse Engineering and Hacking of
Xiaomi IoT Devices. https://dontvacuum.me/talks/DEFCON26/DEFCON26-

Having_fun_with_IoT-Xiaomi.html, 2018.

[HCR20] Dennis Heinze, Jiska Classen, and Felix Rohrbach. MagicPairing: Apple’s
Take on Securing Bluetooth Peripherals. In Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks, pages
111–121, 2020.

[HPK16] Andrew Hilts, Christopher Parsons, and Jeffrey Knockel. Every Step You
Fake: A Comparative Analysis of Fitness Tracker Privacy and Security. Open
Effect Report, 76(24):31–33, 2016.

[Hua20] Huami. Huami Privacy Note. https://upload-cdn.huami.com/tposts/

9250, 2020.

[iBo21] iBotPeaches. Apktool. https://ibotpeaches.github.io/Apktool/, 2021.

[Inca] Huami Inc. Amazfit Homepage. https://www.amazfit.com/en/.

[Incb] Huami Inc. Huami Homepage. https://www.huami.com/investor.

[Incc] Huami Inc. Mi Fit for iOS. https://apps.apple.com/us/app/mi-fit/

id938688461.

[Incd] Huami Inc. Zepp (formerly Amazfit) for Android. https://play.google.com/

store/apps/details?id=com.huami.watch.hmwatchmanager&hl=

en_US&gl=US.

[Ince] Huami Inc. Zepp (formerly Amazfit) for iOS. https://apps.apple.com/us/

app/zepp-formerly-amazfit/id1127269366.

[Incf] Xiaomi Inc. Mi Band Homepage. https://www.mi.com/global/miband.

[Incg] Xiaomi Inc. Mi Home for Android. https://play.google.com/store/apps/

details?id=com.xiaomi.smarthome&hl=it&gl=US.

[Inc19] Armis Inc. BLEEDINGBIT: The Hidden Attack Surface Within BLE Chips.
https://armis.com/bleedingbit/, 2019.

[IT17] Taher Issoufaly and Pierre U. Tournoux. BLEB: Bluetooth Low Energy
Botnet for Large Scale Individual Tracking. In 1st International Conference
on Next Generation Computing Applications (NextComp ’17), pages 115–120,
2017.

[Jas16] Sławomir Jasek. Gattacking Bluetooth Smart Devices. Black Hat USA
Conference, 2016.

[KCB21] Platon Kotzias, Juan Caballero, and Leyla Bilge. How Did That Get In My
Phone? Unwanted App Distribution on Android Devices. In 2021 IEEE
Symposium on Security and Privacy (SP), pages 53–69, 2021.

https://codeberg.org/Freeyourgadget/Gadgetbridge
https://codeberg.org/Freeyourgadget/Gadgetbridge
https://asset-group.github.io/disclosures/sweyntooth/sweyntooth.pdf
https://asset-group.github.io/disclosures/sweyntooth/sweyntooth.pdf
https://dontvacuum.me/talks/DEFCON26/DEFCON26-Having_fun_with_IoT-Xiaomi.html
https://dontvacuum.me/talks/DEFCON26/DEFCON26-Having_fun_with_IoT-Xiaomi.html
https://upload-cdn.huami.com/tposts/9250
https://upload-cdn.huami.com/tposts/9250
https://ibotpeaches.github.io/Apktool/
https://www.amazfit.com/en/
https://www.huami.com/investor
https://apps.apple.com/us/app/mi-fit/id938688461
https://apps.apple.com/us/app/mi-fit/id938688461
https://play.google.com/store/apps/details?id=com.huami.watch.hmwatchmanager&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.huami.watch.hmwatchmanager&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.huami.watch.hmwatchmanager&hl=en_US&gl=US
https://apps.apple.com/us/app/zepp-formerly-amazfit/id1127269366
https://apps.apple.com/us/app/zepp-formerly-amazfit/id1127269366
https://www.mi.com/global/miband
https://play.google.com/store/apps/details?id=com.xiaomi.smarthome&hl=it&gl=US
https://play.google.com/store/apps/details?id=com.xiaomi.smarthome&hl=it&gl=US
https://armis.com/bleedingbit/


362 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

[KHG21] Maxim Krasnyansky, Marcel Holtmann, and Fabrizio Gennari.
Hcidump. https://manpages.debian.org/testing/bluez-hcidump/

hcidump.1.en.html, 2021.

[KS18] Aleksandra Korolova and Vinod Sharma. Cross-App Tracking via Nearby
Bluetooth Low Energy Devices. In Proceedings of the Eighth ACM Conference
on Data and Application Security and Privacy (CODASPY ’18), page 43–52.
Association for Computing Machinery, 2018.

[Lak21a] Ravie Lakshmanan. Attention! FluBot Android Banking Malware Spreads
Quickly Across Europe. https://thehackernews.com/2021/04/attention-

flubot-android-banking.html, 2021.

[Lak21b] Ravie Lakshmanan. Over 750.000 Users Downloaded New Billing Fraud
Apps From Google Play Store. https://thehackernews.com/2021/04/over-

750000-users-download-new-billing.html, 2021.

[Lak21c] Ravie Lakshmanan. WhatsApp-based wormable Android malware spotted on
the Google Play Store. https://thehackernews.com/2021/04/whatsapp-

based-wormable-android-malware.html, 2021.

[Mis21a] Sandeep Mistry. Bleno. https://github.com/noble/bleno, 2021.

[Mis21b] Sandeep Mistry. Noble. https://github.com/noble/noble, 2021.

[MSBK21] Rene Mayrhofer, Jeffrey V. Stoep, Chad Brubaker, and Nick Kralevich.
The Android Platform Security Model. ACM Transactions on Privacy and
Security, 24(3), 2021.

[New21] Kimi Newt. Pyshark. https://pypi.org/project/pyshark/, 2021.

[NW97] Roger M. Needham and David J. Wheeler. TEA Extensions. Report, Cam-
bridge University, 1997.

[NyZD+14] Muhammad Naveed, Xiao yong Zhou, Soteris Demetriou, XiaoFeng Wang,
and Carl A. Gunter. Inside Job: Understanding and Mitigating the Threat
of External Device Mis-Binding on Android. In 21st Annual Network and
Distributed System Security Symposium (NDSS ’14), 2014.

[of19] Freezed or frozen. Pymb1a. https://github.com/freezed-or-frozen/

pymb1a, 2019.

[Ojh18] Yogesh Ojha. I hacked MiBand 3, and here is how I did it.
Part I. https://medium.com/@yogeshoa/i-hacked-xiaomi-miband-3-

and-here-is-how-i-did-it-43d68c272391, 2018.

[Ple21] Pleavr. Frida. https://frida.re/, 2021.

[Pro22] Mitmproxy Project. Mitmproxy. https://mitmproxy.org/, 2022.

[RCB13] Mahmudur Rahman, Bogdan Carbunar, and Madhusudan Banik. Fit and
Vulnerable: Attacks and Defenses for a Health Monitoring Device. ArXiv,
abs/1304.5672, 2013.

[RCT16] Mahmudur Rahman, Bogdan Carbunar, and Umut Topkara. Secure Man-
agement of Low Power Fitness Trackers. IEEE Transactions on Mobile
Computing, 15(2):447–459, 2016.

[Rya13a] Mike Ryan. Bluetooth: With Low Energy Comes Low Security. In 7th
USENIX Workshop on Offensive Technologies (WOOT 13). USENIX Associ-
ation, 2013.

[Rya13b] Mike Ryan. Bluetooth: With Low Energy Comes Low Security. In Proceedings
of the 7th USENIX Conference on Offensive Technologies (WOOT’13), page 4.
USENIX Association, 2013.

https://manpages.debian.org/testing/bluez-hcidump/hcidump.1.en.html
https://manpages.debian.org/testing/bluez-hcidump/hcidump.1.en.html
https://thehackernews.com/2021/04/attention-flubot-android-banking.html
https://thehackernews.com/2021/04/attention-flubot-android-banking.html
https://thehackernews.com/2021/04/over-750000-users-download-new-billing.html
https://thehackernews.com/2021/04/over-750000-users-download-new-billing.html
https://thehackernews.com/2021/04/whatsapp-based-wormable-android-malware.html
https://thehackernews.com/2021/04/whatsapp-based-wormable-android-malware.html
https://github.com/noble/bleno
https://github.com/noble/noble
https://pypi.org/project/pyshark/
https://github.com/freezed-or-frozen/pymb1a
https://github.com/freezed-or-frozen/pymb1a
https://medium.com/@yogeshoa/i-hacked-xiaomi-miband-3-and-here-is-how-i-did-it-43d68c272391
https://medium.com/@yogeshoa/i-hacked-xiaomi-miband-3-and-here-is-how-i-did-it-43d68c272391
https://frida.re/
https://mitmproxy.org/


M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 363

[Sam20] Samczsun. Java Deobfuscator. https://github.com/java-deobfuscator/

deobfuscator, 2020.

[Sat21] Satcar77. Mi Band 4 - Python Library. https://github.com/satcar77/

miband4, 2021.

[SB19] Pallavi Sivakumaran and Jorge Blasco. A Study of the Feasibility of Co-
located App Attacks against BLE and a Large-Scale Analysis of the Current
Application-Layer Security Landscape. In 28th USENIX Security Symposium
(USENIX Security ’19), pages 1–18. USENIX Association, 2019.

[Sem21] Dialog Semiconductor. Dialog Semiconductor. https://www.dialog-

semiconductor.com/, 2021.

[SIG19] Bluetooth SIG. Bluetooth Core Specification v5.2. https://

www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=478726,
2019.

[SJMdR16] Maarten Schellevis, Bart Jacobs, Carlo Meijer, and Joeri de Ruiter. Getting
Access to Your Own Fitbit Data. Master’s thesis, Radboud University, 2016.

[Sky21] Skylot. JADX. https://github.com/skylot/jadx, 2021.

[SPA19] Mohit Sethi, Aleksi Peltonen, and Tuomas Aura. Misbinding Attacks on
Secure Device Pairing and Bootstrapping. In Proceedings of the 2019 ACM
Asia Conference on Computer and Communications Security (Asia CCS ’19),
page 453–464. Association for Computing Machinery, 2019.

[Sta21] Statcounter. Mobile and Tablet Android Version Market Share Worldwide
(Nov 2020 - Nov 2021). https://gs.statcounter.com/android-version-

market-share/mobile-tablet/worldwide, 2021.

[TdHV+21] Sam L. Thomas, Jan V. den Herrewegen, Georgios Vasilakis, Zitai Chen,
Mihai Ordean, and Flavio D. Garcia. Cutting Through the Complexity of
Reverse Engineering Embedded Devices. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021:360–389, 2021.

[Vir21] Virtualabs. BtleJack: a new Bluetooth Low Energy swiss-army knife. https:

//github.com/virtualabs/btlejack, 2021.

[vTPFG21] Maximilian von Tschirschnitz, Ludwig Peuckert, Franzen Franzen, and Jens
Grossklags. Method Confusion Attack on Bluetooth Pairing. In 2021 IEEE
Symposium on Security and Privacy (SP ’21), pages 213–228. IEEE Computer
Society, 2021.

[WGP21] Lennert Wouters, Benedikt Gierlichs, and Bart Preneel. My Other Car is Your
Car: Compromising the Tesla Model X Keyless Entry System. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2021(4):149–172,
2021.

[WHZ+20] Jiliang Wang, Feng Hu, Ye Zhou, Yunhao liu, Hanyi Zhang, and Zhe Liu.
BlueDoor: Breaking the Secure Information Flow via BLE Vulnerability.
In Proceedings of the 18th International Conference on Mobile Systems,
Applications, and Services (MobiSys ’20), page 286–298. Association for
Computing Machinery, 2020.

[Wir21] Wireshark. Wireshark. https://www.wireshark.org/, 2021.

[WMA+19] Lennert Wouters, Eduard Marin, Tomer Ashur, Benedikt Gierlichs, and Bart
Preneel. Fast, Furious and Insecure: Passive Keyless Entry and Start Systems
in Modern Supercars. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2019(3):66–85, 2019.

https://github.com/java-deobfuscator/deobfuscator
https://github.com/java-deobfuscator/deobfuscator
https://github.com/satcar77/miband4
https://github.com/satcar77/miband4
https://www.dialog-semiconductor.com/
https://www.dialog-semiconductor.com/
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=478726
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=478726
https://github.com/skylot/jadx
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
https://github.com/virtualabs/btlejack
https://github.com/virtualabs/btlejack
https://www.wireshark.org/


364 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

[WNK+20] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Dave J. Tian, Antonio Bianchi,
Mathias Payer, and Dongyan Xu. BLESA: Spoofing Attacks against Recon-
nections in Bluetooth Low Energy. In 14th USENIX Workshop on Offensive
Technologies (WOOT ’20). USENIX Association, 2020.

[Yog19] Yogeshojha. Mi Band 3 - Python Library. https://github.com/yogeshojha/

MiBand3, 2019.

[ZWD+20a] Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhiqiang Lin, and Xinwen Fu.
Breaking Secure Pairing of Bluetooth Low Energy Using Downgrade Attacks.
In 29th USENIX Security Symposium (USENIX Security ’20), pages 37–54.
USENIX Association, 2020.

[ZWD+20b] Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhiqiang Lin, and Xinwen Fu.
Breaking Secure Pairing of Bluetooth Low Energy Using Downgrade Attacks.
In 29th USENIX Security Symposium (USENIX Security ’20), pages 37–54.
USENIX Association, 2020.

[ZWLZ19] Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. Automatic
Fingerprinting of Vulnerable BLE IoT Devices with Static UUIDs from Mobile
Apps. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’19), London, United Kingdom, page
1469–1483, 2019.

https://github.com/yogeshojha/MiBand3
https://github.com/yogeshojha/MiBand3


M. Casagrande, E. Losiouk, M. Conti, M. Payer, D. Antonioli 365

Appendix

Table 6: Standard and vendor-specific services and characteristics exposed by every
Mi Band GATT server. The first column shows the service name, and the second the
characteristic name. The third column indicates the characteristic’s access control policy
(R = read, W = write, WWR = write without response, N = notify, I = indicate). The
last column indicates which Mi Band supports the current characteristic.

Service Characteristic Properties MB

Generic Access 0x1800

Device Name 0x2A00 R All

Appearance 0x2A01 R All

Peripheral Preferred Connection Params.

0x2A04
R All

Generic Attribute 0x1801 Service Changed 0x2A05 I, R 2, 3

Device Information 0x180A

Serial Number String 0x2A25 R 2, 3

Hardware Revision String 0x2A27 R All

Software Revision String 0x2A28 R All

System ID 0x2A23 R All

PnP ID 0x2A50 R All

Unknown

00000014-0000-3512-2118-0009af100700
N, WWR 5, 6

Alert Notification Service 0x1811
New Alert 0x2A46 W 2, 3

Alert Notification Control Point 0x2A44 N, R, W All

Immediate Alert 0x1802 Alert Level 0x2A06 WWR All

Heart Rate 0x180D
Heart Rate Measurement 0x2A37 N All

Heart Rate Control Point 0x2A39 R, W All

Human Interface Device 0x1812

Protocol Mode 0x2A4E R, WWR 5

Report Map 0x2A4B R 5

HID Information 0x2A4A R 5

HID Control Point 0x2A4D WWR 5

Boot Keyboard Input Report 0x2A22 N, R 5

Boot Keyboard Output Report 0x2A32 N, R 5

Battery Service 0x180F Battery Level 0x2A19 N, R 5

Firmware Service

00001530-0000-3512-

2118-0009af100700

Firmware

00001531-0000-3512-2118-0009af100700
N, W All

Firmware Data

00001532-0000-3512-2118-0009af100700
WWR All

Vendor Specific

00003802-0000-1000-

8000-00805f9b34fb

Unknown

00004a02-0000-1000-8000-00805f9b34fb
N, R, W 4



366 BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

Table 7: Huami services and characteristics exposed by every Mi Band GATT server. The
first column shows the service name, and the second the characteristic name. The third
column indicates the characteristic’s access control policy (R = read, W = write, WWR =
write without response, N = notify, I = indicate). The last column indicates which Mi
Band supports the current characteristic.

Service Characteristic Properties MB

Anhui Huami Information

Technology Co.

0000fee0-0000-1000-

8000-00805f9b34fb

Current Time

0x2A2B
N, R, W All

Chunked Transfer

00000020-0000-3512-2118-0009af100700
N, R, WWR All

Unknown

00000001-0000-3512-2118-0009af100700
N, WWR All

Unknown

00000002-0000-3512-2118-0009af100700
N All

Configuration

00000003-0000-3512-2118-0009af100700
N, WWR All

Peripheral Preferred Connection Params.

0x2A04
N, R, WWR All

Unknown

00000004-0000-3512-2118-0009af100700
N, WWR All

Activity Data

00000005-0000-3512-2118-0009af100700
N All

Battery

00000006-0000-3512-2118-0009af100700
N, R All

Steps

00000007-0000-3512-2118-0009af100700
N, R All

User Settings

00000008-0000-3512-2118-0009af100700
N, W All

Device Event

00000010-0000-3512-2118-0009af100700
N All

Unknown

0000000e-0000-3512-2118-0009af100700
W 3, 5, 6

Unknown

0000000f-0000-3512-2118-0009af100700
N, WWR 3, 5, 6

Unknown

00000011-0000-3512-2118-0009af100700
N, R, WWR 4, 5, 6

Audio

00000012-0000-3512-2118-0009af100700
N, R, WWR 4, 5, 6

Audio Data

00000013-0000-3512-2118-0009af100700
N, R, W 4, 5, 6

Unknown

00000016-0000-3512-2118-0009af100700
N, WWR 5

Unknown

00000017-0000-3512-2118-0009af100700
N, WWR 5, 6

Anhui Huami Information

Technology Co.

0000fee1-0000-1000-

8000-00805f9b34fb

Auth

00000009-0000-3512-2118-0009af100700
N, R, WWR All

Jawbone

0000fedd-0000-1000-8000-00805f9b34fb
W All

Coin, Inc.

0000fede-0000-1000-8000-00805f9b34fb
R All

Design SHIFT

0000fedf-0000-1000-8000-00805f9b34fb
R All

Apple, Inc.

0000fed0-0000-1000-8000-00805f9b34fb
R, W All

Apple, Inc.

0000fed1-0000-1000-8000-00805f9b34fb
R, W All

Apple, Inc.

0000fed2-0000-1000-8000-00805f9b34fb
R All

Apple, Inc.

0000fed3-0000-1000-8000-00805f9b34fb
R, W All

Unknown

0000fec1-0000-3512-2118-0009af100700
N, R, W 2, 3, 5, 6


	Introduction
	Background
	Bluetooth Low Energy (BLE)
	Xiaomi Fitness Tracking Ecosystem

	Analysis of Xiaomi Fitness Tracking
	Reverse-Engineered Protocols
	Protocol-level Vulnerabilities

	Proposed Attacks
	System Model
	Attacker Model
	OTA Tracker Impersonation Attack
	OTA App Impersonation and MitM Attacks
	SB App Impersonation Attack
	OTA and SB Eavesdropping Attacks
	Discussion

	Implementation
	Protocol Dissector Module
	Security Mechanisms Module
	Attacks Module

	Evaluation
	Setup
	Results

	Countermeasures
	Comparison with Fitbit
	Architecture and Protocols
	Vulnerabilities and Attacks
	Attacking Fitbit with breakmi
	Porting our Xiaomi Countermeasures to Fitbit

	Reverse-Engineering Methodology
	Trackers and Apps Reconnaissance
	BLE and Web Traffic Analysis
	Mobile Companion Apps Analysis
	Development of Scripts

	Related Work
	Conclusion

