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ABSTRACT

Programming languages and systems have failed to address the
security implications of the increasingly frequent use of public
libraries to construct modern software. Most languages provide
tools and online repositories to publish, import, and use libraries;
however, this double-edged sword can incorporate a large quantity
of unknown, unchecked, and unverified code into an application.
The risk is real, as demonstrated by malevolent actors who have
repeatedly inserted malware into popular open-source libraries.

This paper proposes a solution: enclosures, a new programming
language construct for library isolation that provides a developer
with fine-grain control over the resources that a library can access,
even for libraries with complex inter-library dependencies. The
programming abstraction is language-independent and could be
added to most languages. These languages would then be able to
take advantage of hardware isolation mechanisms that are effective
across language boundaries.

The enclosure policies are enforced at run time by LitterBox, a
language-independent framework that uses hardware mechanisms
to provide uniform and robust isolation guarantees, even for li-
braries written in unsafe languages. LitterBox currently supports
both Intel VT-x (with general-purpose extended page tables) and
the emerging Intel Memory Protection Keys (MPK).

We describe an enclosure implementation for the Go and Python
languages. Our evaluation demonstrates that the Go implemen-
tation can protect sensitive data in real-world applications con-
structed using complex untrusted libraries with deep dependen-
cies. It requires minimal code refactoring and incurs acceptable
performance overhead. The Python implementation demonstrates
LitterBox’s ability to support dynamic languages.

CCS CONCEPTS

• Software and its engineering → Runtime environments; •
Security and privacy → Software security engineering.

∗Work done while the author was at EPFL.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’21, April 19–23, 2021, Virtual, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446728

KEYWORDS

Security, intra-address space isolation, programming languages,
software packages
ACM Reference Format:

Adrien Ghosn, Marios Kogias, Mathias Payer, James R. Larus, and Edouard
Bugnion. 2021. Enclosure: Language-Based Restriction of Untrusted Li-
braries. In Proceedings of the 26th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS
’21), April 19–23, 2021, Virtual, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3445814.3446728

1 INTRODUCTION

Programming has changed; programming languages have not. Mod-
ern software development has embraced abstraction and reusable
software components. Today, applications are built using open-
source libraries (aka packages) that offer diverse, tested function-
ality that increases programmer productivity. In the extreme, an
application can become a collection of libraries orchestrated by
application-specific code. To facilitate code sharing, modern lan-
guages provide tools and online repositories to publish, find, down-
load, access, and update public libraries, e.g., Python modules [3],
Go packages [27], Ruby gems [4], and Rust crates [5].1

Although languages embrace libraries, few, if any, provide mech-
anisms to address the insecurity and fragility inherent in their use:
(1) packages come without a formal specification of what they do,
and do not do; (2) their developer is typically unknown, thus un-
trusted; (3) they can import other unknown and untrusted packages,
and lack traceable dependence management; and (4) most impor-
tant, programs run in a single trust domain that does not isolate
code or data from different packages.

In general, a developer’s trust in a public package often appears
to be based on its popularity or a shallow code review. Careful
inspection is both impractical, since importing a single package
may incorporate hundreds or thousands of transitively dependent
packages [49, 50], or infeasible, as a package’s code may change
frequently. As a result, an application can become a patchwork of
code from untrusted and unverified sources.

Malevolent individuals have been quick to exploit the opportu-
nity to insert malicious code in popular packages [14, 15, 19, 72],
to modify an IDE to insert the code [59], or to substitute modified
clones [16–18, 37, 43]. These attacks are easy to implement and
provide unimpeded access into hundreds, if not thousands, of appli-
cations for malicious code that steals private information or opens
backdoors. For example, malicious Python packages stole SSH and
1Frameworks, such as node.js, also support library repositories. This paper considers
them from a language-specific perspective, e.g., as JavaScript packages.
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GPG keys from the local file system [15, 18]. More generally, even
legitimate third-party libraries may implement undocumented func-
tionality that operates outside of its advertised scope. For example,
the Facebook iOS SDK to identify users also shared device informa-
tion with Facebook without user consent [70].

Although the systems, programming languages, and security
communities have long studied software isolation [11, 13, 21, 31,
32, 38, 40, 40–42, 44, 47, 53, 54, 57, 61, 64, 65], previous approaches
do not address the full range of requirements for package isolation
and security: (1) low-level systems abstractions may not match
programming language requirements [11, 21, 40, 44, 53, 54, 65] or
may require extensive application refactoring [13, 41, 42]; (2) pure
language approaches, e.g., Rust or JavaScript isolates, are limited to
a single language and programs written only in the language; (3)
mixed approaches, e.g., Erim [61], Hodor [31], and Glamdring [38],
ignore package structure, are unaware of dependencies among
packages, or lack expressive access rights.

While packages are at the root of security and fragility problems,
their unique characteristics also facilitate solutions. Specifically,
packages consist of code and data written to run as part of any
program, which means they must have clearly defined entry points,
not be dependent on a program’s environment, and explicitly de-
clare and import their dependencies. They can run in isolation
given access to their input data and the packages they depend upon.
The clear boundaries of a package can help partition a program’s
memory address space into isolated regions that prevent code in
the package from improperly accessing the rest of the program’s
environment.

We propose a new programming language construct that gives
a developer fine-grain control over the package resources that a
computation can access, even for packages with complex dependen-
cies. It introduces a dynamically-scoped set of restrictions on which
parts of the address space can be accessed and which system calls
can be invoked. The abstraction is language-independent and could
be added to most languages. Its implementation relies on hardware
isolation mechanisms that provide trustworthy, fine-grain access
control within a virtual address space [1, 10, 33, 60, 67].

This construct is called an enclosure. It implements an isolation
policy for a closure by binding it to a memory view and a set of
permitted system calls, which restricts access to program resources
by the code invoked in the closure, regardless of which package
contains it. The current system starts with a view that limits access
only to the resources in the packages that the closure invokes. A
developer can restrict or extend this view by selectively enabling
read, write, or execute access rights for a specific package. The
developer can also selectively allow system calls. The policy is
dynamically scoped and applies to all code executed by the enclosure,
which in turn can invoke other enclosures that further restrict the
accessible resources.

LitterBox enforces enclosure policies at run time. It is a language-
independent framework that uses hardware mechanisms to provide
uniform and robust isolation guarantees, even for packages written
in unsafe languages. LitterBox exposes a high-level API that is
reusable across programming languages. The isolation is built on
one of several different hardware technologies, and LitterBox
hides the hardware complexity.

Figure 1: The rcl enclosure prevents the call to the pub-

lic package libFX from modifying or leaking sensitive in-

formation. The top-right corner shows the application’s

package-dependence graph, with rcl’s natural dependen-

cies in dashed borders, and its extended read-only view to

secrets in dotted borders. Color-coding of variables high-

lights which package arena holds the corresponding value.

This paper makes the following contributions:

• Enclosure is a dynamically scoped programming language
construct that imposes user-defined access policies on code
invoked within it. These policies restrict, at package gran-
ularity, what parts of a program (data and code) this code
can access and which system calls it can invoke. Untrusted
packages, even those with deep dependence graphs, can be
isolated from sensitive information.

• LitterBox is a language-independent framework to enforce
enclosure policies with robust hardware isolation mecha-
nisms. LitterBox currently supports both Intel VT-x (with
its general-purpose extended page tables) and the emerging
Intel Memory Protection Keys (MPK).

• We describe an efficient implementation of enclosures and
LitterBox for the Go language. It has low overheads for real-
world applications and can drastically reduce a program’s
trusted codebase.

• We describe a prototype implementation of enclosures and
LitterBox for the dynamic programming language Python.

• We present experiments demonstrating that the overhead
can be as low as 1.02x for real applications.

LitterBox and both language frontends are open-sourced [9].

2 ENCLOSURE CONSTRUCT

An enclosure is a programming language construct that enables a
developer to restrict code’s access to program resources to prevent
untrusted code from accessing, modifying, or leaking sensitive data.
It limits the code to access only functions and data from specified
program packages (the memory view) and to execute only explicitly
allowed system calls. These restrictions are dynamically scoped, so
they apply to the closure’s body and the code invoked by it.
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2.1 Definitions

A package can export four items for use by other packages: (1) func-
tions (code), (2) variables (mutable data), (3) constants (immutable
data), and (4) arena (heap). Variables are either (1) static variables
(e.g., pre-allocated globals) or (2) dynamic variables (dynamically
allocated objects). A package’s functions allocate dynamic variables
within the package’s arena.

A program is a collection of packages, organized as a directed
package-dependence graph. This graph is statically determinable
from the packages’ import statements. A package Foo has a direct
dependence on package Bar if Foo imports Bar. Package Foo has a
transitive dependence on Bar if there is a directed path from Foo

to Bar of length greater than 1 in the graph. A package’s natural
dependencies is the set of packages contained in its direct and
transitive dependencies. A package Bar is foreign to Foo if it is not
part of Foo’s natural dependencies.

A closure is a function combined with an environment that holds
the bindings for its free variables. A closure belongs to the pack-
age that defines it, and it shares some of the package’s natural
dependencies.

An enclosure binds a dynamically scopedmemory view and set of
allowed system calls to a closure. The memory view defines access
rights to the program’s packages by the code invoked in the closure.
By default, enclosures prohibit all system calls and limit memory
views to only the resources in packages in the closure’s natural de-
pendencies. User-defined policies can selectively authorize system
calls and restrict or extend the memory view.

2.2 Enclosure Expression
Enclosures are declared with the following syntax:

Stmt ::= with [Policies] ClosureDef
ClosureDef ::= func ( args ) resultType { body }
Policies ::= MemModifiers, SysFilter
MemModifiers ::= ( pkg : U | R | RW | RWX )*
SysFilter ::= none | all | ( net | io | file | mem | ... )*

The enclosure expression returns a closure that is permanently
associated with a memory view and system call filter. The closure
can be bound to a variable and reused throughout the program’s
lifetime. The memory view and system call filter will be enforced
during every execution of the closure.

MemModifiers and SysFilter specify the enclosure’s memory view
and authorized system calls, respectively. MemModifiers extend or
restrict the closure’s memory view by specifying access rights,
similar to those in the Unix file system, to a package: R grants
read-only access to a package’s data and constants, RW grants read
access to its constants and read-write access to variables, RWX gives
full access to its resources: i.e., read for constants, read-write for
variables, and the ability to invoke functions. U unmaps a package,
so it is completely inaccessible in the enclosure.

When an enclosure manipulates data or functions from a foreign
package, e.g., passing one of its functions as a callback, the devel-
oper must explicitly specify the policies governing the closure’s
access. Explicit access specifications prevent accidental sharing of
the foreign package’s data.

SysFilter allows programmers to specify which system calls a
closure can invoke. System calls are grouped into categories around

Figure 2: Programs resources made available while execut-

ing the rcl enclosure defined in Figure 1.

logical services, e.g., file for filesystem operations, net for net-
work access, or mem for calls such as mmap and mprotect. A category
included in SysFilter is allowed in the enclosure.

A call to an enclosure triggers a transition into a dynamically
scoped environment restricted by its memory view and system call
filter. These transitions are called switches. The closure runs inside
this restrictive environment until it returns, thereby triggering a
switch back to the caller’s environment. Enclosures nest dynam-
ically, but a switch can only enter an equal or more restrictive
environment, preventing an escalation of privileges. It can return
to a less restrictive environment. An enclosure faults if it violates
the policies defined by its memory view and system call filter. A
fault stops the execution of the closure and aborts the program.

Figure 1 presents an example of an enclosure in a small Go pro-
gram and its corresponding directed package-dependence graph.
Line 15 defines the rcl enclosure that calls the Invert function from
the public package libFx. The enclosure’s natural dependencies are
img and libFx. The R memory modifier extends rcl’s memory view
to include the foreign package secrets, with read-only access. The
none system call filter explicitly prohibits all system calls. At line
19, the enclosure computes and returns the inverse of the original

image. As original belongs to secrets’ arena, rcl is unable to mod-
ify it. Furthermore, rcl’s memory view does not include main or os,
and so it would fault if it tried to access the key private key.

Figure 2 shows which resources belong to which package. The
enclosure memory view and system call filter define which access
to each package’s resources are permitted. The rcl closure runs in
an execution environment in which these restrictions are enforced.

2.3 Threat Model

We make no assumptions about the logic of the code running in-
side a restricted environment. Code from packages running in the
environment can be implemented in unsafe languages, access raw
memory, and execute system calls. Enclosures ensure that this code
faults if it tries to access a package outside of its memory view or
perform a prohibited system call. The developer is responsible for
declaring enclosures to properly encapsulate untrusted code in their
applications.

Enclosures assume that packages have a well-defined layout, i.e.,
that their functions, variables (including heap), and constants can
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be identified and inspected to verify that they follow the format
allowed by the LitterBox backend (see §5). In particular, packages
cannot share memory pages. Enforcing this assumption is the re-
sponsibility of the compiler and is verified by LitterBox at run
time.

We assume that the underlying operating system and hardware
are correct. Side channels such as rowhammer [34] or microarchi-
tectural flaws [35] that modify or leak memory content are out of
scope.

3 ENCLOSURE POLICIES

Enclosures can impose both fine-grain isolation policies on a single
function invocation as well as program-wide policies on all uses
of a package. They are similar in many aspects to program sand-
boxes: explicit transition into an isolated environment, a possibility
of nesting restrictions, and explicit control of sharing exceptions.
Because enclosures nest, they can be declared at any level of an
application (e.g., main program, a framework, or a package), which
allows fine-grained tuning of isolation to the specific requirements
of the code invoking the enclosure.

3.1 Default Policy

An enclosure associates a memory view, a collection of packages and
respective access rights, and a system call filter with a closure and
the code it invokes. The dynamic scope of this construct imposes
its restrictions on the closure’s natural dependencies, the code in
the packages invoked by the closure. This dynamic behavior not
only allows a given package to be subject to different restrictions
when two enclosures use it, but it also allows enclosures’ authors to
restrict blackbox code whose source is unknown, unavailable, or
too complex to manually inspect.

By default, enclosures prevent system calls and limit the mem-
ory view only to allow access to resources in a closure’s natural
dependencies. This default policy was chosen for its simplicity and
usability. Other designs are possible, for example: disabling access
to all packages and requiring a programmer to supply an allowed
package list or allowing access to all packages and expecting a
denied list. However, both alternatives require in-depth knowledge
of a program’s package-dependence graph and extensive, brittle
annotation. By contrast, enclosure’s policy allows isolation of a
complex subsystem without an understanding of its potentially
complex and evolving dependence graph of transitively invoked
packages. It treats packages as a blackbox, yet provides them with
a sufficient environment to run normally.

Enclosure’s default policy disables all system calls. This decision
forces programmers to state their assumption of which system ser-
vices a package and its dependents might reasonably execute. Once
again, this choice is not intrinsic. The proposed SysFilter syntax
could be changed to allow finer-grained filtering, for example, by
filtering on system call arguments.

3.2 Program-wide Policies

Enclosures are a local mechanism that can enforce higher-level,
program-wide policies. These policies are restrictions that apply
across the full execution of a program. For example, package Foo

should never have access to package Bar. An enclosure whose mem-
ory view unmaps Bar will enforce this restriction. To impose a
program-wide policy, all calls into Foo must be enclosed. Currently,
a programmer must manually insert an enclosure statement at each
call site or provide wrappers for Foo’s functions that encapsulates
them in enclosures. A compiler could automate this process by
wrapping all calls into Foo in enclosures that do not allow access to
Bar.

Program-wide policies implemented with enclosures allow en-
forcement of high-level security requirements, such as guaranteeing
sensitive information’s confidentiality and integrity. Confidentiality
of a package’s data is enforced by enclosing calls to other untrusted
packages that should not access this information. Alternatively,
these packages can be prevented from leaking information by dis-
abling all system calls. A package’s integrity can be ensured by
mapping it read-only in the enclosed code. In Figure 1, secrets’s
confidentiality is guaranteed by disabling all system calls for rcl
and integrity is enforced by making secrets read-only. § 6 con-
tains other examples, including one showing how enclosures’ non-
disruptive integration with programming languages can implement
secured-callbacks.

3.3 Limitations

Enclosures have a few inherent limitations.
Because they operate at package granularity, enclosures cannot

selectively share a subset of a package’s code or data. This could
present challenges when a particular package holds a sensitive state
and is shared by mutually distrustful packages. A possible solution
is to refactor the program’s code to extract the package’s state and
split it into separate packages that can be independently shared
with each distrustful parties.

A second limitation relates to information flow control. As ex-
plained above, enclosures can enforce the confidentiality of selected
data by either not sharing it with untrusted code or disabling the
enclosure’s system calls, thus preventing leakage. However, when
enclosed code requires access to sensitive data and system calls,
enclosures cannot guarantee that no information will be leaked.
This is a challenging problem because any system call can be used
as a side-channel to exfiltrate sensitive data shared through the
enclosure. Section 6.5 provides a specific example of this situation
and a mitigation.

Third, as mentioned in § 2.3, side-channels attacks and microar-
chitectural flaws are not addressed.

4 LITTERBOX DESIGN

Enclosures consist of two separate parts: (1) frontend language-
specific support, provided by a language’s compiler and runtime,
and (2) the backend that uses hardware to enforce a closure’s mem-
ory view and filter system calls.

LitterBox is a language-independent backend for enclosures. It
supports diverse frontends with a simple API that offers transparent
control over multiple hardware isolation technologies. Figure 3
presents a general overview of how a language frontend interacts
with the LitterBox backend to implement enclosures.



Enclosure: Language-Based Restriction of Untrusted Libraries ASPLOS ’21, April 19–23, 2021, Virtual, USA

Figure 3: Overview: language support for enclosures with

frontend extension inside the PL’s compiler, and runtime

hooks to call the language-independent LitterBox back-
end.

4.1 LitterBox Abstractions

LitterBox defines simple system-level abstractions to represent a
program’s resources as sections, packages, and enclosures.

A section is a contiguous, page-aligned virtual memory region
in the program’s address space. Its start address, size, and default
access rights (i.e., read (R), write (W), execute (X)) characterize it.
Sections can be dynamically allocated at run time, e.g., with mmap.

A package is a collection of non-overlapping sections. It has a
unique name and typically contains one or more text (RX), rodata
(R), and data (RW) sections. A package’s arena, §2.1, is part of its
data sections and is not shared with other packages.

An enclosure consists of a unique identifier, the virtual address
of its closure, its memory view as a set of package names and
associated access rights, and its system call filter. The closure resides
in its own text section owned by the package that declares it.

As packages partition the program’s address space, LitterBox
uses package dependencies to compute an enclosure’s complete
memory view. This operation occurs at startup time for compiled
statically-linked languages and package-load time for dynamic
languages.

4.2 LitterBox API

LitterBox exposes a small API to the frontend language implemen-
tation. LitterBox supports enclosure-defined operations with four
functions: (1) Init, (2) Prolog, (3) Epilog, and (4) FilterSyscall.
It provides two additional functions for language runtimes: (5)
Transfer for dynamic memory management and (6) Execute for
user-level scheduling.

A runtime’s initialization code in statically-linked languages or
the package import and enclosure-parsing code for dynamic lan-
guages calls Init. It takes a description of the program’s packages

Figure 4: Figure 1’s final executable content produced by

Go’s frontend support for enclosures. ELF sections from left

to right: .text (RX), .rodata(R), and .data (RW). Dashed lines

represent intra-ELF section page-aligned symbol addresses,

and greyed out entry the frontend’s generated ELF sections

for LitterBox.

and enclosures and computes the memory views. LitterBox initial-
izes the underlying hardware to create, for each enclosure memory
view, the corresponding restrictive execution environment.

Prolog and Epilog provide the switch mechanism that allows a
program to enter and leave an enclosure’s execution environment.

FilterSyscall is called when an enclosure attempts to perform
a system call. It either permits the call to execute or rejects it and
raises a fault.

Memory allocators require a mechanism to shrink or extend a
package’s arena. The Transfer function dynamically repartitions
heapmemory by transferring a section from one package to another.
It permits memory allocators to reuse freed memory sections for a
subsequent allocation, even across packages.

Some modern languages, such as Go, provide user-level thread-
ing to support concurrent execution. The language’s runtime im-
plements a scheduler that yields execution from one user thread to
another. Execute enables run-time scheduling of user-level threads
by providing a switchmechanism between two unrelated protection
environments. The language’s scheduler calls Execute to transition
from one user thread execution environment to another. Thus, the
scheduler can preempt, block, or resume an enclosure’s execution
in the correct execution environment.

5 IMPLEMENTATION

Language support for enclosures requires changes to a programming
language’s syntax, compiler, and runtime. The full Go extension for
enclosures is a 1,000 LOC patch to the Go compiler and runtime. The
patch is modular and self-contained, so it can be easily maintained.
The Python extension prototype is a fork of CPython with 600 LOC
changed to introduce a multi-segmented heap for dynamic memory
management. LitterBox is 6,500 LOC written in Go.

5.1 Go Frontend

Parsing: We extend Go’s syntax to accept the with keyword using
the syntax in Section 2.2. Enclosure policies are parsed as literals,
i.e., string constants. This allows the compiler to validate their
satisfiability at compile time. Packages can define init functions to
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be executed at package load time, and additional syntactic sugar is
needed to tag package import statements with enclosure policies.
This encloses the execution of the package’s init function inside
an enclosure. The parser also registers per-package enclosures and
assigns unique identifiers.
Compiling: The compiler relies on the type checker to identify and
register an enclosure’s direct dependencies and insert the Prolog

and Epilog calls. It also augments calls to the dynamic allocator
(mallocgc) with the caller’s package identifier. The compiler outputs
one code object per package that contains the expected .text (func-
tions), .data (global variables), and .rodata (constants) sections,
as well as a .rstrct section containing the package’s enclosures
configurations and direct dependencies.
Linking:The linker has global knowledge of the program’s package-
dependence graph and assembles packages’ code objects into a sin-
gle executable. For each code object, it extracts the .rstrct sections,
computes every enclosure’s memory view, and marks packages
that appear in at least one enclosure. The linker’s symbol address-
assignment algorithm segregates marked packages resources in
separate sections so that no two marked packages overlap. Enclo-
sure closure functions are isolated into their own memory sections.

The linker outputs three distinguished ELF sections as part of
the executable. The .pkgs and .rstrct sections hold descriptions of
packages and enclosures to be passed to LitterBox’s Init during
runtime initialization. A .verif ELF section stores the call-sites to
LitterBox hooks, which LitterBox uses to filter API calls at run
time. Figure 4 illustrates the executable corresponding to Figure 1’s
program.
Runtime: Go’s dynamic memory allocator divides the heap into
class-size sections, called spans, cached per hardware thread and
used to satisfy allocations based on the requested size. The enclosure-
extension adds a level of indirection by dynamically assigning spans
to packages’ arenas. After adding a span to a given arena, the
runtime calls LitterBox’s Transfer.

Go scheduler enclosure-extension maintains a mapping between
a routine and the corresponding execution environment and re-
lies on split-stacks to isolate frames preceding the enclosure’s call.
To avoid escalation of privilege attacks, execution environments
are transitively inherited by goroutine creation so that user-level
threads created inside an enclosure’s environment continue to ex-
ecute in the same environment. The scheduler uses the Execute

hook to switch between goroutines associated with different en-
vironments. Similarly, garbage collection needs full access to the
program’s resources but executes on top of runtime goroutines
associated with a trusted execution environment.

5.2 Python Frontend

LitterBox can support dynamic programming languages. Our
Python prototype is based on a fork of CPython 3.9.1. Rather than re-
peating implementation details common to the Go frontend (parser
extension, or instrumenting enclosures bodies), this section focuses
on challenges attributable to: 1) Python’s dynamic behavior, and 2)
CPython’s implementation.
Dynamic behavior: Python is a dynamic language that accumu-
lates and processes knowledge about a program during its execution.
Modules (packages) are lazily imported when a file is parsed and

functions are compiled only when needed. As a result, and unlike
Go, LitterBox must accept multiple calls to Init, each of which
provide only partial information about a program. CPython’s im-
port mechanism registers modules and their direct dependencies
with LitterBox. Similarly, the compiler registers enclosures and
their direct dependencies as they are compiled.

In this dynamic setting, and unlike Go, LitterBox, not the com-
piler, must compute the transitive dependencies of modules and
enclosures full memory views. Furthermore, the execution of an
enclosure can trigger new imports, so LitterBox’s default policy
makes these new packages available to the executing enclosure,
unless explicitly restricted by user policies.

Python provides little control over dynamic memory allocation.
The language does not offer an equivalent of Go’s new or C’s malloc
functions to identify dynamic allocation. Without explicit alloca-
tion, it is difficult for a programmer to encapsulate data in a specific
module. To allow a programmer to express this intent, we imple-
mented localcopy, a function similar to Python’s copy.deepcopy,
which creates an object copy in the caller’s module.
CPython internals: CPython is the reference implementation for
the Python programming language. It is a highly optimized, com-
plex system that presents some challenges in providing strong
isolation guarantees.

CPython’s default object memory allocator is a singleton whose
state resides in global static variables. Its design is very similar to
Go’s, in that it manages mmaped arenas divided into class-sizes. We
made some small changes to encapsulate the allocator’s state in a
structure, which allowed multiple allocator instances to co-exist
with non-overlapping arenas. This in turn enabled us to assign a
memory allocator per module and segregate objects allocated by
different modules on distinct memory pages. Our memory allocator
further distinguishes functions (code) and objects (data) in sepa-
rate arenas within one module. This allows LitterBox to hide a
module’s functions when the module is mapped without execution
rights, while still allowing access to its data.

For performance reasons, CPython co-locates data and metadata,
specifically the reference counting counters in the headers of ob-
jects. While efficient, this implementation decision makes it difficult
for an isolation mechanism to enforces read-only semantics on an
object, as it would preclude updating reference counts. Similarly,
the CPython generational garbage collector (GC) embeds a linked
list’s next pointer inside object, which might be inaccessible within
an enclosure. To circumvent these problems, our CPython extension
performs a controlled switch to a trusted environment, with full ac-
cess to program resources, to modify reference counts in read-only
objects or enqueue on the GC linked lists. While sufficient for a pro-
totype, this approach is expensive as the full cost of two switches
is incurred on every access to read-only objects. In the future, our
Python extension will separate objects’ data and metadata.

5.3 LitterBox Implementation

LitterBox provides support for two hardware-enforced isolation
mechanisms: Intel VT-x (𝐿𝐵𝑉𝑇𝑋 ) and Intel MPK (𝐿𝐵𝑀𝑃𝐾 ). While
these two technologies differ greatly, LitterBox provides a com-
mon implementation and only differentiates between the selected
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hardware for three operations: (1) creating and enforcing an execu-
tion environment (Init, FilterSyscall), (2) extending a package’s
arena (Transfer), and (3) performing a switch between execution
environments (Prolog, Epilog, Execute).
Common Aspects: LitterBox validates the configuration passed
to Init by ensuring that sections are aligned and non-overlapping
and that the memory views and authorized system calls can be satis-
fied. At that point, LitterBox performs an important optimization
by clustering the packages across all memory views that have the
same access rights. This clustering creates larger, logical meta-
packages that can be efficiently managed. LitterBox derives the
set of memory sections and associated access rights that, together
with system call filters, define the enclosure execution environment
description.

LitterBox code and data consist of two packages, namely user

and super. The user package is available in all execution environ-
ments and provides authorized access to Prolog, Epilog, Execute,
and Transfer hooks. The super package contains the enclosures def-
initions, the verification list of allowed call-sites to the API, and
the descriptions. It also handles the logic that validates calls to the
LitterBox API, modifies execution environments, and performs
switches.

Both hardware implementations use execution environment de-
scriptions to initialize their underlying hardware and create differ-
ent execution environments.
LBVTX: Intel Virtualization Technology extension (VT-x) [60] ex-
tends the x86 ISA to simplify hypervisor implementation. It relies
on an extended-page-table (EPT) in hardware to map host virtual
(HVA) and guest physical addresses (GPA). It defines VMX root for
a hypervisor with unmodified CPU behavior and non-root mode
for guest operating systems with restricted CPU behavior. The non-
root mode has access to the virtual machine’s CR3 register and can
manage its guest virtual (GVA) to GPA mappings.

𝐿𝐵𝑉𝑇𝑋 relies on Linux’s Kernel-based Virtual Machine (KVM)
module [2] for Intel VT-x to create a virtual machine (VM) in which
the application executes. An execution environment in the context
of 𝐿𝐵𝑉𝑇𝑋 is a page table mapping that enforces the enclosure de-
scription, in other words, its memory resources are associated with
the correct access rights in user-space. 𝐿𝐵𝑉𝑇𝑋 creates a separate
page table for each enclosure. It also allocates one trusted page
table with user-access to all packages except LitterBox’s super

to run non-enclosed code. Finally, super is mapped in the guest
kernel address space (non-root kernel mode) and implements the
guest operating system. For simplicity, 𝐿𝐵𝑉𝑇𝑋 strives to preserve
𝐺𝑃𝐴 == 𝐺𝑉𝐴 == 𝐻𝑉𝐴 whenever possible. It only breaks the in-
variant𝐺𝑃𝐴 == 𝐺𝑉𝐴 when necessary to circumvent VT-x’s 40 bits
physical address space. Once all execution environments are initial-
ized, 𝐿𝐵𝑉𝑇𝑋 enters the VM and resumes the application’s execution
in non-root user mode, with the trusted page table mappings.

To perform a switch, LitterBox functions perform a specialized
system call to our guest operating system. The system call handler
has access to the super package, and checks that the call-site to Lit-
terBox’s API corresponds to the program’s specifications supplied
to the Init function, which is found in the .verif ELF section. If
the transition is authorized, the guest operating system switches
the VM’s CR3 register (the page table root) to the target execution

environment and returns (iret). Using a single VM per application
and implementing switches as system calls, rather than instantiat-
ing a VM per enclosure, reduces both the complexity of LitterBox
management of KVM state and the overhead of switches because a
syscall is less costly than a VM EXIT.

Transfer is also implemented as a system call that updates the
relevant execution environments’ page tables. Similar to switches,
the call-site and the validity of the arguments are checked before
applying the desired modifications.

The handler filters system calls according to the current exe-
cution environment’s filter. If authorized, system calls are passed
through to the host [11] via a hypercall (VM EXIT). The system call
is performed in root user mode, which then returns to the VM with
the results (VM RESUME).

A fault triggers a VM EXIT, prints a trace of the root-cause, and
stops the program’s execution.
LBMPK

: Intel Memory Protection Keys (MPK) [33] extend the x86
ISA to enforce memory page protections without domain switches.
Page table entries are tagged using 4 previously ignored bits to en-
code 16 different tags, called keys. A new user-writable and readable
register, PKRU, uses two bits per key (32 bits total) to encode access
and write capabilities for pages tagged with the corresponding keys.
Hardware enforces PKRU permissions on data access. The Linux
kernel provides system calls to manage keys, i.e., allocate and free,
and the pkey_mprotect system call to tag a range of addresses with
a key.

𝐿𝐵𝑀𝑃𝐾 relies on Intel MPK to isolate enclosures. It allocates one
key for each meta-package. In practice, clustering packages results
in fewer than 16 meta-packages whose views fit into the 16 keys.
Libmpk [51]’s key virtualization could be used to overcome Intel
MPK’s limitation if the need arises. Similar to Erim [61], 𝐿𝐵𝑀𝑃𝐾
scans the program to ensure that only the LitterBox package
modifies the PKRU register. As in 𝐿𝐵𝑉𝑇𝑋 , all calls to the API are
checked against the verification information stored in super.

An execution environment for 𝐿𝐵𝑀𝑃𝐾 is simply the PKRU reg-
ister’s value that encodes access rights for all meta-packages.

A switch validates the transition using super’s verification and
writes the PKRU register.

A transfer is slightly more complicated as it must invoke a
pkey_mprotect system call to update the relevant page table entries’
key.

System calls are filtered by translating the FilterSyscall func-
tion into a BPF filter loaded via seccomp [6, 39], which indexes the
current environment (from the PKRU value) to a mask of permitted
system calls. We use a Linux kernel patch [45] to expose the PKRU

register to seccomp. As Intel MPK is an emerging technology, we
consider it a reasonable assumption that future versions of the ker-
nel will incorporate a similar mechanism. An alternative would be
to implement techniques similar to Erim [61] or rely on a BPF map
updated upon switches.

A fault in 𝐿𝐵𝑀𝑃𝐾 stops the program’s execution.

6 EVALUATION

This evaluation is performed on an Intel(R) Xeon(R) Gold 6132
CPU @ 2.60GHz running Ubuntu 20.04 LTS with Linux kernel
version 5.4.0-42-generic, and a patch [45] to access PKRU value in
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Baseline LBMPK LBVTX

call 45 86 924
transfer 0 1002 158
syscall 387 523 4126

Table 1: Microbenchmarks results in nanoseconds.

seccomp. We report numbers for the Go frontend implementation
based on LitterBox. The evaluation is divided into two parts: (1)
microbenchmarks to measure the cost of LitterBox’s fundamental
operations with both hardware enforcement mechanisms, and (2)
macrobenchmarks to study enclosure’s usage in realistic applica-
tions, divided into a qualitative and quantitative studies.

As a baseline, we report unmodified Go performance, noted as
Baseline, where enclosures are replaced by vanilla closures. Lit-
terBox’s Intel MPK hardware enforcement is reported as 𝐿𝐵𝑀𝑃𝐾 ,
and Intel VT-x as 𝐿𝐵𝑉𝑇𝑋 . All benchmarks run single threaded in
order to accurately quantify the overheads of domain crossings (i.e.,
switches).

6.1 Microbenchmarks

We rely on microbenchmarks to answer the following questions:
(1) What is the cost of performing a call to an enclosure? (2) What
is the basic cost of memory management calls to the transfer Lit-
terBox’s hook? (3) What overheads does LitterBox impose on
system calls?

To answer each of these question, this evaluation uses three
microbenchmarks to measure LitterBox’s overheads:

• call: measures the time required to call and return from an
empty enclosure.

• transfer: calls LitterBox’s Transfer on a 4-page memory
section.

• syscall: an enclosure performs a getuid system call in a loop.
We run each microbenchmark a million times and report the

median latency value, in nanoseconds, in Table 1. These latencies
are shared by the Go and Python frontends, as they both use Lit-
terBox’s backend.
call: The cost for the Baseline is 45𝑛𝑠 and 86𝑛𝑠 and 924𝑛𝑠 for 𝐿𝐵𝑀𝑃𝐾
and 𝐿𝐵𝑉𝑇𝑋 respectively. This translates to an overhead of ∼40𝑛𝑠
(86-45) per enclosure call for 𝐿𝐵𝑀𝑃𝐾 and less than 1 µs (924-45) for
𝐿𝐵𝑉𝑇𝑋 . 𝐿𝐵𝑀𝑃𝐾 is thus able to perform a single switch in approxi-
mately 20𝑛𝑠 by writing the PKRU register. 𝐿𝐵𝑉𝑇𝑋 switch depends on
a system call to change the CR3 register, so effectively we measure
the cost of two system calls.
transfer: The relative performance of each backend changes when
it comes to memory management. 𝐿𝐵𝑉𝑇𝑋 is able to efficiently
transfer a memory span by toggling the presence bits in the corre-
sponding page tables. 𝐿𝐵𝑀𝑃𝐾 , however, requires a pkey_mprotect

system call, which is ∼6 times slower than 𝐿𝐵𝑉𝑇𝑋 .
syscall: 𝐿𝐵𝑀𝑃𝐾 incurs negligible overheads as system call filtering
requires a few operations to accept or reject a system call based on
the PKRU value. 𝐿𝐵𝑉𝑇𝑋 relies on hypercalls to service system calls
and pays the full cost of a VM EXIT of ∼4µs. This approach is similar
to other container technologies such as gVisor [69].

These benchmarks suggest that both implementations impose
reasonable overheads when it comes to an enclosure call, as these
can potentially be amortized by the closure’s service time. While
𝐿𝐵𝑉𝑇𝑋 more efficiently handles memory sections being transferred
between packages, 𝐿𝐵𝑀𝑃𝐾 wins when it comes to filtering and
executing system calls. Thus, depending on application character-
istics, users can make an informed decision on which version of
LitterBox to use.

6.2 Macrobenchmarks

This section uses popular Github Go packages to benchmark the
performance of small applications derived from each package’s
"hello world" sample, to determine the worst-case performance
overheads of LitterBox. In these applications, enclosures are used,
in very different ways, to safely leverage the unmodified public
package. Table 6.2 reports the achieved raw performance with Go
Baseline, 𝐿𝐵𝑀𝑃𝐾 , and 𝐿𝐵𝑉𝑇𝑋 , and respective slowdowns for each
benchmark.
Reducing the application’s TCB: Enclosures drastically reduce
the trusted codebase (TCB), i.e., code executing with full access to
the program’s address space and syscall API. As shown in Table 6.2,
each application consists of less than a hundred lines of code (LOC)
that import thousands of LOC from public dependencies. In every
macrobenchmark, a single enclosure declaration, using the default
policy, completely encloses public library code and its transitive
dependencies, thus preventing any public package from accessing
and leaking sensitive information held by the application.
Processing Sensitive Images with Bild: Bild [55] is a popular
Go Github public package for parallel image processing. While
presenting attractive functionalities, such as an Invert function for
images, bild silently drags-in over 160K lines of code of unverified
origin. This is an daunting quantity of potentially harmful code
to examine while writing a simple 32 LOC application that loads
and inverts an image. We declare an enclosure to enclose the call
to bild’s Invert function. We further disallow all system calls and
extend the enclosure memory view with read-only access to the
main package that holds the sensitive image to invert. This simple
benchmark is the textbook example of how sensitive information
can be safely exposed to an untrusted package, while preventing
modifications of program state or leakage (e.g., via system calls).

The benchmark is purely computational and memory-intensive
as it allocates and computes an inverted image. 𝐿𝐵𝑉𝑇𝑋 shows a
mere 5% slowdown. As predicted by microbenchmarks in §6.1,
𝐿𝐵𝑉𝑇𝑋 overhead to call an enclosure is absorbed by the closure’s ser-
vice time and its efficient mechanism for transfers. 𝐿𝐵𝑀𝑃𝐾 achieves
a respectable 12% slowdown, attributable to the cost of frequent
transfers to populate the arena with memory spans of various sizes
to satisfy bild’s dynamic memory allocations.
Securing an HTTP server: Go provides an HTTP server imple-
mentation in the net/http package. A typical concern in web-facing
applications with TLS support is to protect private keys and cer-
tificates from potential attacks delivered via user requests. Such
attacks can, for example, attempt to trigger a buffer-overflow in the
request-handler to leak sensitive data. This benchmark defines the
request handler as an enclosure with no access to the packages used
by net/http and no system calls. To measure raw overheads, the
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Baseline LBMPK LBVTX Benchmark information

raw raw slowdown raw slowdown App TCB #LOC Enclosed #LOC #Stars #Contributors #Public deps

bild 13.25ms 14.88ms 1.12x 13.91ms 1.05x 32 166K 2.9K 15 1
HTTP 16991reqs/s 16738reqs/s 1.02x 9560.14reqs/s 1.77x 31 - - - -
FastHTTP 22867reqs/s 22025reqs/s 1.04x 11375reqs/s 2.01x 76 374K 13.1K 100 3

Table 2: Macrobenchmarks results.

handler’s logic only selects a 13KB in-memory static HTML page
to service the request. This is a typical use of enclosures to prevent
potentially harmful code from accessing sensitive resources.

Once again, the observations made in §6.1 are confirmed. As the
benchmark is primarily dominated by socket operations, 𝐿𝐵𝑉𝑇𝑋 ’s
high overhead in servicing system calls introduces a 1.77× slow-
down. This time, as the enclosure does not perform dynamicmemory
allocations, 𝐿𝐵𝑀𝑃𝐾 is able to perform almost as well as the baseline.
Using a PublicHTTPFramework: FastHTTP [62] is an industry-
grade Github public Go package that implements a performance-
oriented HTTP server. FastHTTP offers high throughput, as long
as we can trust over a 100 programmers and more than 350K LOC.
To prevent FastHTTP from accessing an application’s sensitive re-
sources, we create and run the server in an enclosure, only allowed
to perform net-related system calls (i.e., socket operations). The
enclosure forwards requests to a trusted handler goroutine via go
channels. This benchmark shows how trusted callbacks can eas-
ily be implemented. To measure overheads precisely, the trusted
handler simply returns 13KB static HTML pages as before. In a
more realistic deployment, the handler would access a private data-
base or other sensitive information, which would be completely
unavailable to the enclosure running the FastHTTP server.

Similar to the simple HTTP experiment, 𝐿𝐵𝑀𝑃𝐾 achieves a
throughput comparable to the baseline. We observe a small slow-
down that seems to be due to the server’s consumption of dynamic
memory. This cost is however greatly diminished by FastHTTP
efficient usage of memory, e.g., HTTPRequest object reuse across
requests. This allows 𝐿𝐵𝑀𝑃𝐾 to avoid numerous costly transfers.
𝐿𝐵𝑉𝑇𝑋 has a 2× slowdown due to system calls. Note that the 𝐿𝐵𝑉𝑇𝑋
slowdown in FastHTTP is larger that in HTTP. This is not due to an
increase in the frequency of system calls as FastHTTP and HTTP
have a similar system call trace. However, FastHTTP service time
to accept connections and parse requests is significantly smaller,
while the system call overhead remains the same.

6.3 Usability

We consider a wiki-like web-app [7, 56] that stores its pages in a
Postgres database, as depicted in Figure 5. This web-app is written
in Go, relies on the deprecated pq [22] public library as a Postgres
driver and on the mux [58] package to route HTTP requests consist-
ing of GET (read pages) and POST (create a page). Together, pq and
mux incorporate 44 public Github packages as dependencies.

To prevent any public package from subverting our application,
we rely on two enclosures that communicate with trusted code via
Go channels.

First, the HTTP server B○ consisting of mux and its transitive
dependencies is enclosed without access to the database, the file-
system, or the rest of the application holding sensitive information,

Figure 5: Enclosures isolating the HTTP server and the data-

base driver in a wiki-like web application.

e.g., page templates and the database password. It is however au-
thorized to create and read 1○/write 8○ to its own network sock-
ets. Similar to the FastHTTP experiment, HTTP handlers forward
parsed requests to trusted code on a private Go channel 2○.

Second, pq and its natural dependencies are isolated in an enclo-
sure C○, acting as a proxy server only allowed to communicate with
Postgres via a pre-defined network socket. This enclosure has no
access to the HTTP server’s logic, the file-system, and network op-
erations on other sockets. This database proxy server accepts SQL
requests on a Go channel 3○, communicates them to Postgres, 4○
and 5○, and returns the result to trusted code 6○.

The trusted code base, i.e., non-enclosed A○, consists of the appli-
cation’s glue code, responsible for reading requests forwarded by
the enclosed handlers 2○, contacting the enclosed database proxy
server 3○, validating the SQL query result 6○, and generating and
forwarding 7○ the HTML response.

The throughput slowdown is similar to the one in the FastHTTP
experiment.

6.4 Python Enclosures
The CPython extension is an unoptimized prototype. While § 6.1
presents reasonable overheads for LitterBox basic operations, we
would like to study how the challenges described in § 5.2 affect
the performance of Python programs. This section quantifies the
impact of these limitations on the Python enclosures performance
and provide insight into improving enclosure on this platform.

Consider a Python program with a single enclosure that encapsu-
lates the use of the matplotlib module. User sensitive data from a
secret module is shared read-only with a closure that generates a
plot from the data and writes the result to disk. The experiment runs
using 𝐿𝐵𝑉𝑇𝑋 to understand the relative impact of each overhead,
including system calls.

We first try a conservative approach where each reference count
operation and garbage collection triggers a switch to a trusted envi-
ronment before returning to the enclosure, as described in § 5.2. This
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experiment shows a ∼18x increase in execution time for enclosures,
as compared to standard Python. We measure nearly 1M switches
due to reference counting and garbage collection. The delayed ini-
tialization of the enclosure environment, including computation of
package dependencies, enclosuresmemory views, and configuration
of the underlying hardware mechanism (KVM), represents 4.3 per-
cent of the measured slowdown. System call overheads (requiring a
VM exit) account for less than 1 percent of the slowdown. This can
be explained since the system calls (futex and write) have a service
time larger than the system call overhead measured in § 6.1.

We run a second experiment to simulate changes that allow up-
dating a read-only object’s reference count without a switch. To
do so, the secret module is mapped with read-write access and
switches for reference count operations are disabled. The measured
slowdown is now ∼1.4x and is dominated by the delayed initial-
ization cost. Note that this cost has to be paid once, at the first
invocation of an enclosure and can be amortized if the enclosure is
called multiple times.

From this experiment, we believe that decoupling CPython data
and metadata would enable more efficient support of enclosures and
should be the main focus of future work.

6.5 Security

This section shows that enclosures can address the threats from the
malicious packages cited in §1 [15–18]. To this end, we re-created
Python and Go packages that perform the same attacks as the
original malicious ones. These attacks mostly access local secrets,
either within the program’s memory or on the local file system (e.g.,
private SSH keys), and attempt to exfiltrate them via the network
or open backdoors on the local system.

Enclosures easily detect and protect against most attacks with
a basic configuration, i.e., the default memory view and limited
system calls, while still allowing valid behaviors to run successfully.
However, a few packages [15, 17] presented a challenge. These pack-
ages provide a valid functionality that requires access to a secret
and system calls that could be used to exfiltrate sensitive data. For
example, the ssh-decorater package [15] allows SSHing to a given
IP address and executing python commands on the remote server.
The public library was, however, infected with malicious code ex-
filtrating user credentials to another server, via a POST request. To
prevent this attack, we modify the application code to pass a pre-
allocated socket and private key to the enclosed ssh-decorater

public package, therefore enabling us to disable socket creation and
file-system access. Another solution extends the sysfilter categories
to only allow connect system calls to a list of pre-defined IP ad-
dresses, allowing us to grant socket creation and file-system access
to ssh-decorater, while preventing it from contacting a malicious
server. Note, however, that the valid remote host can still be used
as a relay to send the credentials to the malicious server.

A similar issue arose with malicious clones of the Python Django
framework. To protect against these, we took an approach similar
to the one used in FastHTTP with secured callbacks.

7 DISCUSSION

Granularity: Packages’ composition and size make possible effec-
tive isolation inside an application’s address space. Their coarser

granularity is far easier to manage than individual objects, and
better fits the granularity of page-based hardware isolation mech-
anisms. Moreover, packages can often be clustered into efficient
meta-packages, as explained in §5.3. Clustering reduces the number
of keys needed to tag an entire address space and, in many cases,
fits into the 16 possible Intel MPK keys.
Explicit scoping: Enclosures utilize dynamic scoping to control
the application of restrictions on program resources. Enclosures
isolate untrusted packages by explicitly enclosing invocations of
their functions. An alternative approach to protect against public
packages could automatically enforce a transition to a restricted
execution environment on every single untrusted package function
invocation. This approach is, however, limiting as compared to
enclosures for 3 reasons: 1) it requires modification of untrusted
package code, 2) it imposes a switch per call into a package, pre-
vents programmers from controlling switches, and might result in
large overheads, and 3) enclosures can emulate this approach, as
mentioned in § 3.2.
Hardware enforcement: As the need for in-application isola-
tion grows, hardware should evolve to provide efficient, reliable,
and easy-to-use enforcement mechanisms. Intel MPK offers a first-
generation solution that exploits unused bits in the PTE to store
protection keys on existing hardware. However, Intel’s decision to
permit key modification by unprivileged code is debatable, espe-
cially given system calls’ low cost. An ideal solution would combine
MPK’s low overheads and ease-of-use with VT-x’s robust protec-
tion model, scalability to multiple address spaces (each with 16
keys), and the ability to filter system calls in a protected library op-
erating system [11]. This last aspect is similar to the gVisor/Sentry
mechanism for containers [69].
Capabilities: Capability support, as proposed by CHERI [67] or
CODOMs [63], is an attractive approach that offers simplicity, ex-
pressiveness, and strong guarantees at the cost of more substantial
hardware changes. LitterBox, with its decoupling of the API and
hardware implementations, could support capabilities in the future.

8 RELATEDWORK

Isolation is the combination of a policy (what is isolated) and mech-
anism (how is the isolation enforced). The system may restrict
interactions for various reasons, such as limiting error propagation
or constraining untrusted components. LitterBox focuses on un-
trusted packages that share the same address space as a trusted
program. Intra-address space isolation has been studied along dif-
ferent dimensions, we list here key differentiating factors.
Operating systemmechanisms: The most common software iso-
lation mechanism is operating system processes. While the applica-
tion and its packages could be partitioned into separate processes,
the cost of IPC and the complexity of argument marshaling along
with the high implementation complexity limit this approach to a
few examples such as web browsers [41].

Previous work proposed incorporating some process isolation
and controlmechanismswithin an address space [13, 32, 40].Wedge’s
sthreads restrict memory accesses and system call capabilities as-
sociated with a thread [13]. LWC’s light-weight contexts extend
this approach by providing control over the memory view, system
call capability, and execution state inside an object [40]. SMV’s
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secure memory views provide a more straightforward approach, a
uniquely identified memory domain that can be accessed when it is
attached to the current thread [32]. Common to all these approaches
is that they require code refactoring to use the new mechanisms.

By contrast, enclosures offer amore natural separation that closely
integrates with the language. Unlike LWC, a developer does not
need to be aware of all of a package’s transitive dependencies or
their layout in memory and can, with a single line of code, com-
pletely encapsulate them. Moreover, LitterBox could employ these
systems to enforce memory isolation and syscall filtering. LWC
presents an interesting OS abstraction and could provide an alterna-
tive LitterBox backend that does not require specialized hardware
(e.g., Intel VT-x).
Virtualization mechanisms: Virtualization enables a hypervisor
to apply different access permissions to a collection of memory
pages shared among several virtual machines. These VMs can en-
capsulate code running in the same address space, with different
access rights. Dune [11] uses Intel VT-x [60] to virtualize the process
abstraction and isolate software components. SIM [53] with Intel
VT-x protects a trusted security monitor running in an untrusted
guest. Nexen [54] and HyperSafe [65] focus on protecting and iso-
lating hypervisors. LXD [47], Nooks [57], and Nested Kernel [21]
isolate kernel submodules. TrustVisor [44] is a thin hypervisor that
isolates portions of an application. SeCage [42] takes a data-driven
approach, by automatically partitioning an application into security
domains, based on the secrets they access, and isolates them from
each other with Intel VT-x.

Unlike Secage, enclosures enforce security domain boundaries
based on packages. This simplifies an application’s partitioning,
especially for environments where static and dynamic analysis is
hard. Enclosures make it easier for developers to reason about iso-
lated compartments and prevent accidental sharing of sensitive
data, e.g., via valid pointer references passed to the untrusted pack-
age. Enclosures further allow fine-grain schemes, such as exposing
sensitive data to untrusted packages, while preventing it from being
modified.

Virtualization generally incurs (high) performance overhead due
to extended page tables and hypercalls. Intel MPK provides more
specialized hardware support with lower overheads. For example,
Hodor [31] shows that Intel MPK [33] isolates data-plane libraries
with far smaller overheads than Intel VT-x.

Similarly, enclosures based on LitterBox support both Intel VT-x
and Intel MPK as isolation backend mechanisms.
Programming language and runtime mechanisms: Program-
ming languages provide information hiding and abstraction mech-
anisms, a weak form of isolation. These are software-engineering
mechanisms meant to decouple components, rather than robust
run-time isolation mechanisms. The frequent escapes from unsafe
languages or run-time reflection demonstrates that this cat-and-
mouse game is not a real security solution.

Software Fault Isolation (SFI) [64] adds memory isolation to
unsafe languages by inserting dynamic checks on accesses. Control-
Flow Integrity (CFI) [8] guarantees that only valid code areas can
be executed. Together, CFI and SFI guarantee that only a subset of
the application may access the protected memory region. However,
these techniques require non-trivial static and dynamic analyses

with non-negligible costs in terms of complexity and overheads. An
alternative solution embodied by NaCl [68], XFI [73], WebAssem-
bly [30], and CloudFlare’s [71] use of V8 isolates [26] are akin to
Proof-Carrying code [48] and enforce restrictions on which ma-
chine instructions can access segmented memory [52].

Enclosures built on top of LitterBox combine several of these
approaches. Their close integration in a programming language
allows statically delimited memory view boundaries and control of
the generated code. Similar to PCC, the resulting binary abides by
a certain format, verified by LitterBox along call-sites to its API,
and leveraged to efficiently apply hardware-enforced isolation.
Language-basedhardware-enforcedmechanisms: Isolation can
be provided by extending a language with security domains and
enforcing isolation with specialized hardware. SOOAP [29] is a se-
curity analysis framework that relies on annotations to help refactor
and compartmentalize existing applications. It could be used in con-
junction with LibMPK [51], a library that virtualizes and manages
MPK keys, to provide strong isolation guarantees. Erim [61], using
Intel MPK, and Shreds [20], using ARM memory domains [10], ex-
pose isolated memory pools and associate code allowed to access
them. Memsentry [36] provides an LLVM pass to implement data
encapsulation, selectively enforced by MPK or other technologies.
Similarly, Glamdring [38] relies on annotations to mark sensitive
data and isolate code accessing it inside Intel SGX [1] enclaves.
Glamdring and enclosures’ specifications differ as they solve two
(different) problems. Enclosures annotate the entry points of top-
level packages, which are the fundamental abstraction they isolate,
as secrets are for Glamdring. Gotee [25] isolates trusted code with
its own memory pool inside SGX enclaves. JITGuard [23] relies on
Intel SGX to protect jitted code.

In essence, most of these solutions focus on data encapsula-
tion. Enclosures take a different approach: (1) resource partitioning
closely follows the natural static package-dependence graph of
the program; (2) enclosures promote packages to a higher-level
construct embodying a basic unit of resources programmatically
manipulated by developers to be isolated or shared according to
strict policies. Instead of a strict "all-or-nothing" partitioning, en-
closures provide a way to compose packages to form the memory
view exposed to a closure.
Hardware extensions:Appropriate hardware support wouldmake
it easy to isolate packages. Multics’s segments [12], implemented
on the vintage GE 645, provide fine-grain access control appropriate
for enclosures. More recent work has proposed extensions to mod-
ern processor to control memory accesses within a single address
space. Mondrian memory protection [66] (MMP) implements word-
granularity hardware-enforced memory isolation. Its permission
control granularity would be ideal for isolating program objects.
IMIX [24] and MicroStache [46] extend the Intel x86 ISA with in-
structions to access safe memory regions. CODOMs [63] tags code
pages with keys delimiting the memory resources and privileged in-
structions they are allowed to use. Capability Hardware Enhanced
RISC Instructions [67] (CHERI) is a hardware extension that allows
fine-grained compartmentalization and enforces spatial, referential,
and temporal memory safety. CHERI operates at the object-level
and requires a deeper understanding and instrumentation of third-
party packages than enclosures.
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As LitterBox exposes a stable high-level API and hides hard-
ware details, any of these technologies could be added as a hardware-
enforced isolation mechanism without requiring any changes to
the application or the programming language itself. CODOMs and
CHERI expressiveness makes them particularly appealing candi-
dates. CHERI could be used as a non-page based LitterBox back-
end, which would reduce memory fragmentation or allow to dis-
criminate access to CPython’s data and metadata while keeping
them co-located (§ 6.4).

Enclosures’ most similar project is Verona [28], a recently open-
sourced Microsoft project that introduced a safe, infrastructure
programming language. Like enclosures, it provides linear regions
that compartmentalize legacy components by encapsulating their
code, data, and dynamic allocations. The language executes unsafe
components in sandboxes and looks to using CHERI in the future.
Unlike enclosure, and to the best of our knowledge, Verona does
not provide developers with a fine-grain method to composing
access policies to the program’s resources on a per code invocation-
basis, and requires the application’s main logic to be rewritten in a
different language.

9 CONCLUSION

Enclosures provide a mechanism to execute untrusted packages
inside a restricted environment, easily tunable by programmers,
that limits access to a program’s memory and its system resources.
Using packages, and their transitive dependencies, as the basic unit
of shareable resources results in easy-to-understand andmanipulate
isolation boundaries within an application.

Enclosures are language-independent and make no assumptions
about the safety of the code. Instead, LitterBox provides support
for enclosure policies based on hardware-based isolation mecha-
nisms.

Our evaluation proves that enclosures can be efficiently added
to Go, a language with a complex runtime, and provide robust
isolation guarantees using both Intel VT-x and Intel MPK. Our
Python implementation confirms the generality of the approach
and support for dynamic languages.
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