BlueShield: Detecting Spoofing Attacks in Bluetooth Low Energy Networks

Jianliang Wu¹, Yuhong Nan¹, Vireshwar Kumar¹, Mathias Payer², Dongyan Xu¹

¹ Purdue University ² EPFL

Motivation

Bluetooth Low Energy (BLE) devices are ubiquitous

*.))

- Smart homes
 - O E.g., Smart lock
- Smart buildings
 - E.g., temperature sensors

[1]Bluetooth Market Update 2018 (https://www.bluetooth.com/markets/market-report)

Background

- BLE discovery procedure
 - Advertising and scanning
 - No authentication in advertising message
- BLE spoofing attack
 - Feed malicious data to the user device (master device)

Master

Background

- BLE security mechanism
 - Pairing
 - Encryption and authentication
 - Pairing is not mandatory, many devices (~80%) do not support/enable pairing (no encryption)^[1]
 - Spoofing enabling vulnerabilities in different layers
 - Vulnerable encryption (app layer)
 - Design & implementation flaws (Bluetooth stack)
 - o-day vulnerabilities (other parts of both devices and smartphones)

[1]: https://www.owasp.org/images/archive/6/6f/20170811005623%21OWASP2017_HackingBLEApplications_TalMelamed.pdf

BlueShield: design objectives

- Vulnerability (and device) agnostic
 - No ad-hoc, case-by-case software-level fix
 - Support billions of legacy devices
 No device firmware modification or reverse engineering needed
- Practical and effective
 - Fully transparent to deployment environment
 - No intervention to the BLE device and the user under normal usage scenario
 - Off-the-shelf, easy to deploy
 Low-cost, commodity hardware
 - High accuracy and low latency

Challenge

1. How to protect all different layers?

Solution

Focusing on the discovery step – advertising messages

- Easy fix: sign advertising messages
- But it needs **firmware/protocol modification** (not practical)

Challenge

2. How to protect devices that do not support firmware modification?

Solution

Monitoring advertising messages externally

• We can detect spoofing attack if we can identify malicious advertising messages

BLE uses 3 advertising channels

Challenge

2. How to protect devices that do not support firmware modification?

Solution

Monitoring advertising messages externally

- We can detect spoofing attack if we can identify malicious advertising messages
- Use 3 collectors cover all advertising channels

Challenge

2. How to protect devices that do not support firmware modification?

Solution

Monitoring advertising messages externally

- We can detect spoofing attack if we can identify malicious advertising messages.
- Use 3 collectors cover all advertising channels
- But the attacker can forge the advertising content

Advertising (no authentication)

Connection Request

Challenge

3. How to distinguish malicious advertising from the benign ones?

Physical features

- Received Signal Strength Indicator (RSSI), Location
- Carrier Frequency Offset (CFO), Device (radio) specific

Challenge

3. How to distinguish malicious advertising from the benign ones?

Physical features

- Received Signal Strength Indicator (RSSI), Location
- Carrier Frequency Offset (CFO), Device (radio) specific
- Monitoring these physical features (to detect abnormal changes)
- But it will introduce high false positives

Challenge

3. How to distinguish malicious advertising from the benign ones?

Protocol features to reduce false positives

- Advertising interval
- State transition

Use different detect mechanism in different state

Time

Detecting strong adversary (SDR)

- Software Defined Radio (SDR) can mimic some physical feature (CFO, RSSI)
- Moving target defense
 CFO and RSSI varies on the same collector from different channels

Detecting strong adversary (SDR)

- Software Defined Radio (SDR) can mimic some physical feature (CFO, RSSI)
- Moving target defense
 CFO and RSSI varies on the same collector from different channels
 - Re-assign the channels after a random period

Detecting strong adversary (SDR)

- Software Defined Radio (SDR) can mimic some physical feature (CFO, RSSI)
- Moving target defense
 CFO and RSSI varies on the same collector from different channels
 - Re-assign the channels after a random period
 - Because of the randomness the attacker cannot mimic all these features

System design

Architecture – profiling overview

- Advertising pattern
- Advertising interval (INT)

Feature Value					
Device ID & Name	1, n097w				
MAC Address	0xD1 76 A3 1A F4 7F				
Advertising Data	<u>0x06 09 4E 3</u> 0 39 37 57				
Advertising Pattern	Intermittent				
Lower Bound of INT	1280 ms				

INT inspection

- Compare observed interval with the interval in the device's profile
 - Check whether I < INT</p>

RSSI and CFO inspection

 Compare RSSI (CFO) feature of lookback window with observation window
 Advertising Packet Connect Reguest Packet

Lookback window Advertising State Connection State Time

• RSSI (CFO) feature of lookback window

$$f_c(x_i) = \frac{1}{\sigma_0 \sqrt{2\pi}} \cdot e^{-\frac{(x_i - u_0)^2}{2\sigma_0^2}}$$

• RSSI (CFO) feature of observation window

$$_{C} = \frac{1}{N_{0}} \sum_{i=1}^{N_{0}} -\log f_{C}(x_{i}) \qquad L$$

Effectiveness

Device	Device	Advertising	Observation	INT		CFO		RSSI		Overall	
ID	Name	Period (s)	Window (s)	FP	FN	FP	FN	FP	FN	FP	FN
1	Nest Protect Smoke Detector	1.28	3.84	0.00	0.00	0.80	0.00	0.97	5.84	1.76	0.00
2	Nest Cam Indoor Camera	0.15	0.45	0.00	0.00	1.38	17.74	3.59	21.15	4.92	3.69
3	SensorPush Temperature Sensor	1.28	3.84	0.00	0.00	0.56	4.46	1.43	5.22	1.98	0.23
4	Tahmo Tempi Temperature Sensor	2.00	6.00	0.00	0.00	0.64	0.00	1.32	22.94	1.95	0.00
5	August Smart Lock	0.30	0.90	0.00	0.00	1.12	4.85	1.26	1.60	2.37	0.08
6	Eve Door&Window Sensor	1.28	3.84	0.00	0.00	0.77	8.17	1.64	1.46	2.40	0.12
7	Eve Button Remote Control	1.28	3.84	0.00	0.00	0.98	1.41	1.18	3.00	2.15	0.04
8	Eve Energy Socket	0.15	0.45	0.00	0.00	0.60	1.67	0.85	1.55	1.44	0.03
9	Ilumi Smart Light Bulb	0.10	0.30	0.00	0.00	0.88	14.28	1.48	15.73	2.35	2.25
	Average	0.87	2.61	0.00	0.00	0.86	5.84	1.52	8.72	2.37	0.72

- Low false positive (2.37%)
 - Only 1 false alarms in a week's heavy usage
- Low false negative (0.72%)
- Responsiveness (within 3 seconds)

Effectiveness of protocol feature

- The user uses a device 5 times per day
 - IoT device usage report^[1]
- Reduce false positives significantly

[1]. <u>https://voicebot.ai/2018/04/02/smart-speaker-owners-use-voice-assistants-nearly-3-times-per-day/</u>

Physical feature inspection with different parameters

- Different thresholds
 - Tradeoff between FP and FN
- Different observation window sizes
 - Use smaller size to be more responsive
- Impact of distance (RSSI)
 - o.5 m is far enough to detect spoofing device

0.25

0.5

Relative distance (m)

0.1

10

2.5

Administrator/user notification

- Notifying the administrator when spoofing attacks are detected.
- Notifying the user when the user is connecting to a malicious device (with an app installed).

Detection demo: (Eve) Door sensor

Summary

- BlueShield framework for detecting BLE spoofing attacks
 - Using robust protocol and physical features
 - Low-cost commodity hardware
 - Fully transparent to users
- Evaluation with 9 real-world devices
 Low false positive and false negative rate
- Open source

https://github.com/allenjlw/BlueShield

Thank you! Questions?

This work was supported in part by ONR under Grant Noo014-18-1-2674.

wu1220@purdue.edu

