
T-Fuzz: fuzzing by program transformation
Hui Peng

Purdue University
peng124@purdue.edu

Yan Shoshitaishvili
Arizona State University

yans@asu.edu

Mathias Payer
Purdue University

mathias.payer@nebelwelt.net

Abstract—Fuzzing is a simple yet effective approach to discover
software bugs utilizing randomly generated inputs. However, it
is limited by coverage and cannot find bugs hidden in deep
execution paths of the program because the randomly generated
inputs fail complex sanity checks, e.g., checks on magic values,
checksums, or hashes.

To improve coverage, existing approaches rely on imprecise
heuristics or complex input mutation techniques (e.g., symbolic
execution or taint analysis) to bypass sanity checks. Our novel
method tackles coverage from a different angle: by removing
sanity checks in the target program. T-Fuzz leverages a coverage
guided fuzzer to generate inputs. Whenever the fuzzer can
no longer trigger new code paths, a light-weight, dynamic
tracing based technique detects the input checks that the fuzzer-
generated inputs fail. These checks are then removed from the
target program. Fuzzing then continues on the transformed
program, allowing the code protected by the removed checks
to be triggered and potential bugs discovered.

Fuzzing transformed programs to find bugs poses two chal-
lenges: (1) removal of checks leads to over-approximation and
false positives, and (2) even for true bugs, the crashing input on
the transformed program may not trigger the bug in the original
program. As an auxiliary post-processing step, T-Fuzz leverages
a symbolic execution-based approach to filter out false positives
and reproduce true bugs in the original program.

By transforming the program as well as mutating the input, T-
Fuzz covers more code and finds more true bugs than any existing
technique. We have evaluated T-Fuzz on the DARPA Cyber
Grand Challenge dataset, LAVA-M dataset and 4 real-world
programs (pngfix, tiffinfo, magick and pdftohtml). For
the CGC dataset, T-Fuzz finds bugs in 166 binaries, Driller in
121, and AFL in 105. In addition, found 3 new bugs in previously-
fuzzed programs and libraries.

I . I N T R O D U C T I O N

Fuzzing is an automated software testing technique that
discovers faults by providing randomly-generated inputs to a
program. It has been proven to be simple, yet effective [1], [2].
With the reduction of computational costs, fuzzing has become
increasingly useful for both hackers and software vendors, who
use it to discover new bugs/vulnerabilities in software. As such,

fuzzing has become a standard in software development to
improve reliability and security [3], [4].

Fuzzers can be roughly divided into two categories based on
how inputs are produced: generational fuzzers and mutational
fuzzers. Generational fuzzers, such as PROTOS [5], SPIKE [6],
and PEACH [7], construct inputs according to some provided
format specification. By contrast, mutational fuzzers, including
AFL [8], honggfuzz [9], and zzuf [10], create inputs by ran-
domly mutating analyst-provided or randomly-generated seeds.
Generational fuzzing requires an input format specification,
which imposes significant manual effort to create (especially
when attempting to fuzz software on a large scale) or may
be infeasible if the format is not available. Thus, most recent
work in the field of fuzzing, including this paper, focuses on
mutational fuzzing.

Fuzzing is a dynamic technique. To find bugs, it must trigger
the code that contains these bugs. Unfortunately, mutational
fuzzing is limited by its coverage. Regardless of the muta-
tion strategy, whether it be a purely randomized mutation or
coverage-guided mutation, it is highly unlikely for the fuzzer
to generate inputs that can bypass complex sanity checks in
the target program. This is because, due to their simplicity,
mutational fuzzers are ignorant of the actual input format
expected by the program. This inherent limitation prevents
mutational fuzzers from triggering code paths protected by
sanity checks and finding “deep” bugs hidden in such code.

Fuzzers have adopted a number of approaches to better
mutate input to satisfy complex checks in a program. AFL [8],
considered the state-of-art mutational fuzzer, uses coverage
to guide its mutation algorithm, with great success in real
programs [11]. To help bypass the sanity checks on magic
values in the input files, AFL uses coverage feedback to heuris-
tically infer the values and positions of the magic values in the
input. Several recent approaches [12], [13], [14], [15] leverage
symbolic analysis or taint analysis to improve coverage by
generating inputs to bypass the sanity checks in the target
program. However, limitations persist — as we discuss in
our evaluation, state-of-the-art techniques such as AFL and
Driller find vulnerabilities in less than half of the programs
in a popular vulnerability analysis benchmarking dataset (the
challenge programs from the DARPA Cyber Grand Challenge).

Recent research into fuzzing techniques focuses on finding
new ways to generate and evaluate inputs. However, there
is no need to limit mutation to program inputs alone. In
fact, the program itself can be mutated to assist bug finding
in the fuzzing process. Following this intuition, we propose

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.

Transformational Fuzzing, a novel fuzzing technique aimed
at improving the bug finding ability of a fuzzer by disabling
input checks in the program. This technique turns the dynamic
code coverage problem on its head: rather than necessitating
time-consuming and heavyweight program analysis techniques
to generate test cases to bypass complex input checks in the
code, we simply detect and disable these sanity checks. Fuzzing
the transformed programs allows an exploration of code paths
that were previously-protected by these checks, discovering
potential bugs in them.

Of course, removing certain sanity checks may break the
logic of the original program and the bugs which are found in
transformed programs may thus contain false positives, poten-
tially overwhelming the analyst. To remove false positives, we
develop a post-processing symbolic execution-based analysis.
The remaining inputs reproduce true bugs in the original
program. Though this method is complex and heavyweight
(like test case mutation techniques of related work), it only
needs to be done to verify detections after the fact, and (unlike
existing test case mutation techniques) does not slow down the
actual analysis itself.

To show the usefulness of transformational fuzzing, we
developed a prototype named T-Fuzz. At its base, it employs
an off-the-shelf coverage-guided fuzzer to explore a program.
Whenever the fuzzer can no longer generate new inputs to trig-
ger unexplored code paths, a lightweight dynamic tracing-based
approach discovers all input checks that the fuzzer-generated
inputs failed to satisfy, and the program is transformed by
selectively disabling these checks. Fuzzing then continues on
the transformed programs.

In comparison to existing symbolic analysis based ap-
proaches, T-Fuzz excels in two aspects: (1) better scalability:
by leveraging lightweight dynamic tracing-based techniques
during the fuzzing process, and limiting the application of
heavyweight symbolic analysis to detected crashes, the scala-
bility of T-Fuzz is not influenced by the need to bypass complex
input checks; and (2) the ability to cover code paths protected
by “hard” checks.

To determine the relative effectiveness against state-of-the-
art approaches, we evaluated T-Fuzz on a dataset of vulnerable
programs from the DARPA Cyber Grand Challenge (CGC),
the LAVA-M dataset, and four real-world programs relying on
popular libraries (pngfix/libpng, tiffinfo/libtiff,
magick/ImageMagick and pdftohtml/libpoppler).
In the CGC dataset, T-Fuzz finds bugs in 166 binaries out of
296, improving over Driller [12] by 45 binaries and over AFL
by 61 binaries, and demonstrating the effectiveness of trans-
formational fuzzing. Evaluation of the LAVA-M dataset shows
that T-Fuzz significantly outperforms Steelix and VUzzer in
the presence of “hard” input checks, such as checksums. The
ground truth provided by these two datasets allows us to
determine that our tool is able to filter out false positives at
the cost of surprisingly few false negatives (6%-30%). Finally,
the evaluation of T-Fuzz on real-world applications leads to
the discovery of 3 new bugs.

In summary, this paper makes the following contributions:

Header(4) Keys(95) Len(4) Data(Len) CRC(4)

Fig. 1: Secure compressed file format

1) We show that fuzzing can more effectively find bugs by
transforming the target program, instead of resorting to
heavy weight program analysis techniques.

2) We present a set of techniques that enable fuzzing to
mutate both inputs and the programs, including techniques
for (i) automatic detection of sanity checks in the target
program, (ii) program transformation to remove the de-
tected sanity checks, (iii) reproducing bugs in the original
program by filtering false positives that only crash in the
transformed program.

3) We evaluated T-Fuzz on the CGC dataset, LAVA-M
dataset and 4 real-world programs. Experimental results
show the effectiveness of our technique as compared to
other state-of-art fuzzing tools.

4) We found 3 new bugs: two in magick/ImageMagicK
and one in pdftohtml/libpoppler.

I I . M O T I VAT I O N

State-of-art mutational fuzzers like AFL (American Fuzzy
Lop) [8] and honggfuzz [9] — called coverage guided fuzzers —
use coverage as feedback from the target program to guide the
mutational algorithm to generate inputs. Specifically, they keep
track of a set of interesting inputs that triggered new code paths
and focus on mutating the interesting inputs while generating
new inputs. However, generation of inputs to pass through
complex sanity checks remains a well-known challenge for
mutational fuzzers because they are ignorant of the expected
input format. When mutational fuzzers fail to generate inputs
to bypass the sanity checks, they become “stuck” and continue
to generate random inputs without covering new code paths.

As an example, Figure 1 shows a secure compressed file
format: the first 4 bytes are a file header which contains
hardcoded magic values (“SECO”); the Keys field declares
95 unique chars whose ASCII values must be within the range
of [32, 126]; the Len field specifies the length of the following
compressed data; and finally a 4-byte CRC field to integrity
check the compressed data. The example is based on CGC
KPRCA 00064, extended with a CRC check.

Listing 1 is a program that parses and decompresses the
compressed file format shown above. It has a “deep” stack
buffer overflow bug in decompress function in line 31. Before
calling decompress, the program performs a series of checks
on the input:
C1. check on the magic values of the header field in line 8.
C2. check for range and uniqueness on the next 95-byte Keys

field in line 13-18.
C3. check on the CRC field for potential data corruption in

line 24.
If any of these checks fail, the input is rejected without calling
decompress, thereby not triggering the bug.

These checks highlight the challenges in mutational fuzzers
and related techniques. First of all, it takes a lot of effort for a

2

1

2 #define KEY_SIZE 95
3 int sc_decompress(int infd, int outfd) {
4 unsigned char keys[KEY_SIZE];
5 unsigned char data[KEY_SIZE];
6 char *header = read_header(infd)
7 // C1: check for hardcoded values
8 if (strcmp(header, "SECO") != 0)
9 return ERROR;

10 read(infd, keys, KEY_SIZE);
11 memset(data, 0, sizeof(data));
12 // C2: range check and duplicate check for keys
13 for (int i = 0; i < sizeof(data); ++i) {
14 if (keys[i] < 32 || keys[i] > 126)
15 return ERROR;
16 if (data[keys[i] - 32]++ > 0)
17 return ERROR;
18 }
19 unsigned int in_len = read_len(infd);
20 char *in = (char *) malloc(in_len);
21 read(infd, in, in_len);
22 unsigned int crc = read_checksum(infd);
23 // C3: check the crc of the input
24 if (crc != compute_crc(in, in_len)) {
25 free(in);
26 return ERROR;
27 }
28 char *out;
29 unsigned int out_len;
30 // Bug: function with stack buffer overflow
31 decompress(in, in_len, keys, &out, &out_len);
32 write(outfd, out, out_len);
33 return SUCCESS;
34 }

Listing 1: An example containing various sanity checks

mutational fuzzer like AFL [8] to bypass C1 without the help
of other techniques. As mutational fuzzers are unaware of the
file format, they will struggle to bypass C2 or C3. Additionally,
although symbolic analysis based approaches like Driller [12]
can quickly bypass C1 and C2 in this program, they will fail
to generate accurate inputs to bypass C3 as the constraints
derived from the checksum algorithm are too complex for
modern constraint solvers [16]. It is therefore unlikely that the
buggy decompress function will be triggered through either
mutational fuzzing or symbolic analysis.

Regarding sanity checks in the context of fuzzing, we make
the following observations:

1) Sanity checks can be divided into two categories: NCC
(Non-Critical Check) and CC (Critical Check). NCCs are
those sanity checks which are present in the program logic
to filter some orthogonal data, e.g., the check for a magic
value in the decompressor example above. CCs are those
which are essential to the functionality of the program,
e.g., a length check in a TCP packet parser.

2) NCCs can be removed without triggering spurious bugs as
they are not intended to prevent bugs. Removal of NCCs
simplifies fuzzing as the code protected by these checks
becomes exposed to fuzzer generated inputs. Assume
we remove the three checks in the decompressor above,
producing a transformed decompressor. All inputs gener-
ated by the fuzzer will be accepted by the transformed
decompressor and the buggy decompress function will be

covered and the bug found.
3) Bugs found in the transformed program can be reproduced

in the original program. In the decompressor above, as
the checks are not intended for preventing the stack buffer
overflow bug in the decompress function, bugs found
in the transformed decompressor are also present in the
original decompressor. Assume that the fuzzer found a
bug in the transformed decompressor with a crashing input
X , it can be reproduced in the original decompressor by
replacing the Header, Keys, and CRC fields with values
that satisfy the check conditions in the program.

4) Removing CCs may introduce spurious bugs in the
transformed program which may not be reproducible in
the original program. These false positive bugs need to
be filtered out during a post-processing phase to ensure
that only the bugs present in the original program are
reported.

NCCs are omnipresent in real-world programs. For example
on Unix systems, all common file formats use the first few bytes
as magic values to identify the file type. In network programs,
checksums are widely used to detect data corruption.

Based on these observations, we designed T-Fuzz to improve
fuzzing by detecting and removing NCCs in programs. By
removing NCCs in the program, the code paths protected
by them will be exposed to the fuzzer generated inputs and
potential bugs can be found. T-Fuzz additionally helps fuzzers
cover code protected by “hard” sanity checks like C3 in
Listing 1.

I I I . T- F U Z Z I N T U I T I O N

Figure 2 depicts the main components and overall workflow
of T-Fuzz. Here we summarize its main components, the details
will be covered in the following section.
Fuzzer: T-Fuzz uses an existing coverage guided fuzzer, e.g.,

AFL [8] or honggfuzz [9], to generate inputs. T-Fuzz
depends on the fuzzer to keep track of the paths taken by
all the generated inputs and realtime status information
regarding whether it is “stuck”. As output, the fuzzer
produces all the generated inputs. Any identified crashing
inputs are recorded for further analysis.

Program Transformer: When the fuzzer gets “stuck”, T-Fuzz
invokes its Program Transformer to generate transformed
programs. Using the inputs generated by the fuzzer,
the Program Transformer first traces the program under
test to detect the NCC candidates and then transforms
copies of the program by removing certain detected NCC
candidates.

Crash Analyzer: For crashing inputs found against the trans-
formed programs, the Crash Analyzer filters false positives
using a symbolic-execution based analysis technique.

Algorithm 1 shows how a program is fuzzed using T-Fuzz.
First, T-Fuzz iteratively detects and disables NCC candidates
that the fuzzer encounters in the target program. A queue
(programs) is used to save all the programs to fuzz in
each iteration, and initially contains the original program. In

3

Fuzzer Program
Transformer

Transformed
Programs

Original
Program

Crash
Analyzer

Bug reports

False
Positives

Inputs

Crashing
Inputs

Fig. 2: Overview of T-Fuzz

each iteration, T-Fuzz chooses a program from the queue and
launches a fuzzer process (in the algorithm, the invocation
of Fuzzer) to fuzz it until it is unable to generate inputs
that further improve coverage. Using inputs generated by the
fuzzer before it gets “stuck”, T-Fuzz detects additional NCC
candidates and generates multiple transformed programs (by
invoking Program_Transformer) with different NCCs
disabled. The transformed programs are added to the queue
for fuzzing in the following iterations. All crashes found by
the Fuzzer in each iteration are post-processed by the Crash
Analyzer to identify false positives.

Algorithm 1: Fuzzing with T-Fuzz
Input: program: original program

1 programs← {program}
2 while programs 6= ∅ do
3 p← Choose Program(programs)
4 inputs← Fuzzer(p)
5 programs←

programs ∪ Program Tranformer(p, inputs)

I V. T- F U Z Z D E S I G N

In this section we describe T-Fuzz and discuss the technical
details of its key components. T-Fuzz uses an off-the-shelf
version AFL for its fuzzer. The design and details of mutational
fuzzing are orthogonal to this work and covered in [17] for
AFL.
Detecting NCCs: Detecting NCCs is the most important step
in T-Fuzz. To this end, different approaches are possible. For
performance reasons, in T-Fuzz we over-approximate NCCs
to all the checks that fuzzer-generated inputs could not bypass
and leverage an imprecise, light-weight dynamic tracing based
approach to detect them. This gives us a set of NCC Candidates
(shown in Section IV-A). As the detected NCC Candidates may
contain other sanity checks, fuzzing the transformed program
may result in false positives.
Program Transformation: Program Transformation is the
process of removing the detected NCC candidates in the
target program. In T-Fuzz, we use binary rewriting to negate
detected NCC candidates in the target program. The details
are presented in Section IV-C.

Filtering out False Positives and Reproducing true bugs:
As mentioned above, the bugs found by fuzzing the transformed
program may contain false positives. To help the analyst
identify true bugs, as post processing, we provide a symbolic
analysis pass that filters false positives (Section IV-D). As it
relies on symbolic analysis, it may not work in the presence
of “hard” checks. In that case, manual analysis is needed.

A. Detecting NCC Candidates

To detect the NCCs in a program, different options are
available with varying precision and overhead. For example,
we can use complex data flow and control flow analysis to track
dependencies between the sanity checks in the program and
input. This approach has good precision, but involves very high
overhead (which is extremely detrimental for fuzzing, as fuzzers
are heavily optimized for performance), and often needs to be
based on fairly brittle techniques (which is detrimental to the
applicability of the technique). Considering this, in T-Fuzz, we
use a less precise, but lightweight approach that approximates
NCCs; we use the set of checks that could not be satisfied by
any fuzzer-generated inputs when the fuzzer gets stuck.

Sanity checks are compiled into conditional jump instruc-
tions in the program, and represented as a source basic block
S with 2 outgoing edges in the control flow graph (CFG)1.
Each outgoing edge corresponds to either True or False of the
condition, which are denoted as T and F respectively. Failing
to bypass a sanity check means that only the T or F edge is
ever taken by any fuzzer-generated input.

In T-Fuzz we use all the boundary edges in the CFG — the
edges connecting the nodes that were covered by the fuzzer-
generated inputs and those that were not — as approximation
of NCC candidates. Denote all the nodes in the CFG of the
program as N and all the edges as E, and let CN be the
union of executed nodes, CE be the union of taken edges by
all inputs in I . The boundary edges mentioned above can be
formalized as all edges e satisfying the following conditions:

1) e is not in CE;
2) source node of e is in CN ;
Algorithmically, T-Fuzz first collects the cumulative node

and edge coverage executed by the fuzzer generated inputs.
Then, it uses this cumulative coverage information to calculate
the NCC candidates. T-Fuzz uses a dynamic tracing based
approach to get the cumulative edge and node coverage for a
set of inputs. As shown in Algorithm 3, for each input i, it
invokes dynamic trace to get the sequence of executed edges
under input i. The union of edges and nodes in all traces of
inputs is returned.

Algorithm 2 shows how NCC candidates are detected
based on the cumulative edge and node coverage collected by
Algorithm 3. It builds the CFG of the program and then iterates
over all the edges, returning those that satisfy the conditions
shown above as NCC candidates.

1To simplify the discussion we assume that switch statements are compiled
to a tree of if conditions, instead of a jump table, although the tool itself makes
no such assumption.

4

Algorithm 2: Detecting NCC candidates
Input: program: The binary program to be analyzed
Input: CE: cumulative edge coverage
Input: CN : cumulative node coverage

1 cfg ← CFG(program)
2 NCC ← ∅
3 for e ∈ cfg.edges do
4 if e 6∈ CE ∧ e.source ∈ CN then
5 NCC ← NCC ∪ {e}

Output: NCC: detected NCC candidates

Algorithm 3: Calculating cumulative edge and node cov-
erage

Input: inputs: inputs to collect cumulative coverage
1 CE ← ∅
2 CN ← ∅
3 for i ∈ inputs do
4 trace← dynamic trace(i)
5 for e ∈ trace do
6 CE ← CE ∪ {e}
7 CN ← CN ∪ {(e.source, e.destination)}

Output: CE: cumulative edge coverage
Output: CN : cumulative node coverage

We use the following example to demonstrate the effect of
this algorithm. Listing 2 takes 16 bytes as input and uses the
first two bytes as magic values and the third byte to decide
whether to use format1 or format2 to process the input.
Figure 3a shows the CFG of the program.

Assume the fuzzer component has generated a set of in-
puts {“123...”, “A12..”, “AB ...”, “AB{...”}, and gets “stuck”
without being able to cover format1 and format2 we
are interested in. Running our algorithm we can easily
detect the sanity checks that are guarding the invocation
of format1 and format2. As “123...” triggers execu-
tion path A→H, “A12..” triggers execution path A→B→H,
“AB ..” triggers A→B→C→E→G→H, and “AB{..” triggers
A→B→C→D→H, the cumulative node and edge coverage are
{A, B, C, D, E, G, H} and { A→H, A→B, B→H, B→C, C→D,
D→H, C→E, E→G, G→H} (see Figure 3b), and the detected
NCC candidates are {C→D, E→H, G→I} (see Figure 3c).
Obviously D→F and G→I are the sanity checks that preventing
the fuzzer generated inputs to cover format1 and format2.

B. Pruning Undesired NCC Candidates

The NCC candidates detected using the algorithm in Sec-
tion IV-A is an over-approximation of sanity checks and may
contain undesired checks. Before feeding the NCC candidates
from Algorithm 2 into the Program Transformer, a filtering
step prunes any undesired candidates that we deem unlikely
to help bug finding. We list the types of undesired checks we
encountered, the consequences of removing these checks, and
our approaches to remove undesired checks.

1 void main() {
2 char x[16];
3 read(stdin, x, 16);
4

5 if (x[0] == ’A’ && x[1] == ’B’) {
6 if (x[2] >= ’a’) {
7 if (x[2] <= ’z’) {
8 format1(x);
9 } else {

10 goto failure;
11 }
12 } else {
13 if (x[2] >= ’A’ && x[2] <= ’Z’) {
14 format2(x);
15 } else {
16 goto failure;
17 }
18 }
19 }
20 failure:
21 error();
22 }

Listing 2: An example demonstrating the effect of NCC
detection algorithm

1 void main() {
2 char x[10];
3

4 if (read(0, x, 10) == -1)
5 goto failure;
6 // main logic for processing x
7 ...
8 return;
9 failure:

10 error();
11 }

Listing 3: An program showing check for error code

Algorithm 2 in Section IV-A detects NCC candidates in all
executed (or not executed) code. When fuzzing, we are often
interested in just the program executable or a specific library.
In a first step, we therefore prune any candidates that are not
in the desired object.

The second source of undesired checks are checks for error
codes that immediately terminate the program. For example
in the program shown in Listing 3, the return value of the
read system call is checked for possible errors in line 4. As
read errors happen infrequently, the error checking code is not
executed and thus detected as NCC candidate.

Treating these checks as NCCs does not result in useful
detections from T-Fuzz. Consider the detected check shown in
Listing 3. Removing the check results in a program execution
where only the error handling code is executed before the
program is abnormally terminated. It is unlikely for the fuzzer
to find bugs along this path.

Given that the program often terminates with very short code
paths after detecting such a severe error, we heuristically use the
number of basic blocks following the detected NCC candidate
as the length of code paths and define a threshold value to tell
an error handling code path. The intuition behind this approach
is to focus on NCCs that result in a large amount of increased
coverage compared to NCCs that immediately terminate the
program under test (due to, e.g., a severe error).

5

x[0] == ‘A’

x[1] == ‘B’

x[2] >= ‘a’

x[2] >= ‘A’

x[2] <= ‘Z’

x[2] <= ‘z’

format1

format2error

A

B

C

D E

F G

H I

(a) CFG of example program in Listing 2.

x[0] == ‘A’

x[1] == ‘B’

x[2] >= ‘a’

x[2] >= ‘A’

x[2] <= ‘Z’

x[2] <= ‘z’

format1

format2error

A

B

C

D E

F G

H I

(b) Cumulative edge and node coverage
of input set {“123...”, “A12...”, “AB ...”,
“AB{...”}. Cumulative nodes are greyboxes
and cumulative edges are solid arrows.

x[0] == ‘A’

x[1] == ‘B’

x[2] >= ‘a’

x[2] >= ‘A’

x[2] <= ‘Z’

x[2] <= ‘z’

format1

format2error

A

B

C

D E

F G

H I

(c) NCC candidates detected (red dashed
arrows).

Fig. 3: How NCC candidates are detected

C. Program Transformation

We considered different options to remove detected NCC
candidates, including as dynamic binary instrumentation, static
binary rewriting, and simply flipping the condition of the
conditional jump instruction. Dynamic binary instrumentation
often results in high overhead and static binary translation
results in additional complexity due to the changed CFG.
On the other hand, flipping conditions for conditional jumps
is straight-forward and neutral to the length of the binary,
providing the advantages of static rewriting without the need
for complex program analysis techniques. This technique
maintains the inverted path condition in the program, and the
path condition in the original program can be easily recovered.

T-Fuzz transforms programs by replacing the detected NCC
candidates with a negated conditional jump. Doing so maintains
the structure of the original program while keeping necessary
information to recover path conditions in the original program.
As the addresses of the basic blocks stay the same in the
transformed program, the traces of the transformed program
directly map to the original program. Maintaining the trace
mapping greatly reduces the complexity of analyzing the
difference between the original program and transformed
program in the Crash Analyzer.

Algorithm 4 shows the pseudo code of the Program Trans-
former. The Program Transformer takes a program to transform
and NCC candidates to remove as input. As there is at most
one jump instruction in a basic block, it simply scans all the
instructions in the source block of the NCC candidate and
overwrites the first conditional jump instruction with its negated
counterpart instruction. To keep track of the modified condi-
tional jump (by invocation of negate conditional jump), the
addresses of modified instructions are passed in as argument,
and the address of each modified instruction is recorded and
returned as part of the output.

Algorithm 4: Transforming program
Input: program: the binary program to transform
Input: c addrs: the addresses of conditional jumps

negated in the input program
Input: NCC: NCC candidates to remove

1 transformed program← Copy(program)
2 for e ∈ NCC do
3 basic block ←

BasicBlock(transformed program, e.source)
4 for i ∈ basic block do
5 if i is a conditional jump instruction and

i.addr /∈ c addrs then
6 negate conditional jump(program, i.addr)
7 c addrs← c addrs ∪ {i.addr}
8 break

Output: transformed program: the generated program
with NCC candidate disabled

Output: c addrs: the locations modified in the
transformed program

D. Filtering out False Positives and Reproducing Bugs

As the removed NCC candidates might be meaningful guards
in the original program (as opposed to, e.g., magic number
checks), removing detected NCC edges might introduce new
bugs in the transformed program. Consequently, T-Fuzz’s Crash
Analyzer verifies that each bug in the transformed program is
also present in the original program, thus filtering out false
positives. For the remaining true positives, an example input
that reproduces the bug in the original program is generated.

The Crash Analyzer uses a transformation-aware combi-
nation of the preconstrained tracing technique leveraged by
Driller [12] and the Path Kneading techniques proposed by
ShellSwap [18] to collect path constraints of the original
program by tracing the program path leading to a crash in

6

start

end

Node1

Node2 Node3

Node4

Node5 Node6

TF

F T

Fig. 4: An example of transformed program

the transformed program. The satisfiability of the collected
path constraints indicates whether the crash is a false positive
or not. If the path constraints are satisfiable, the Crash Analyzer
reproduces the bug in the original program by solving the path
constraints.

To illustrate the idea behind the algorithm, we show a
transformed program P whose CFG is represented in Figure 4,
and a crashing input I . I executes a code path shown as grey
nodes in Figure 4, with the crash in Node6 at address CA.
Node1 and Node4 contain conditional jumps that are negated by
the Program Transformer and because of this, the T edges are
taken when executing I . The constraints associated with NCCs
in Node1 and Node4 are denoted as C1 and C4 respectively.

When the Crash Analyzer traces the transformed program,
it maintains two sets of constraints: one for keeping track of
the constraints in the transformed program (denoted as CT)
the other for keeping track of that in the original program
(denoted as CO). Before the tracing starts, I is converted
to a preconstraint (denoted as PC) and added to CT , this
ensures that the trace will follow the code path shown in
Figure 4. While tracing the transformed program, if the basic
block contains a negated conditional jump, the inverted path
constraint associated with the conditional jump is added to
CO, otherwise, the path constraints are added to CO. In this
example, ¬C1 and ¬C4 are added to CO. When the tracing
reaches the crashing instruction in the program, the cause of
the crash (denoted as CC) is encoded to a constraint and also
added to CO. For example, if it is an out-of-bound read or
write, the operand of the load instruction is used to encode the
constraint, if it is a divide by zero crash, the denominator of
the div instruction is used to encode the constraint. If the path
constraints in CO can be satisfied, it means that it is possible
to generate an input that will execute the same program path
and trigger the same crash in the original program. Otherwise
it is marked as a false positive.

The pseudo code of the Crash Analyzer is shown in Algo-
rithm 5. It takes the transformed program and the addresses
of negated conditional jumps, a crashing input and the crash
address in the transformed program as input. It traces the
transformed program with the crashing input as pre-constraints
using preconstraint trace instruction by instruction, and
collects the path constraints returned by it in TC. In case a

negated jump instruction is encountered, the inverted constraint
is saved in CO. In the end, the satisfiability of constraints in
CO is checked, if it is unsatisfiable, the input is identified as
a false positive, otherwise the constraints collected in CO can
be used to generate input to reproduce the bug in the original
program.

Algorithm 5: Process to filter out false positives
Input: transformed program: the transformed

program
Input: c addrs: addresses of negated conditional jumps
Input: input: the crashing input
Input: CA: the crashing address

1 PC ← make constraint(input)
2 CT ← PC
3 CO ← ∅
4 TC, addr ←

preconstraint trace(transformed program,CT, entry)
5 while addr 6= CA do
6 if addr ∈ c addrs then
7 CO ← CO ∪ ¬TC
8 else
9 CO ← CO ∪ TC

10 TC, addr ←
preconstraint trace(transformed program,CT, i)

11 CO ← CO ∪ extract crashing condition(TC)
12 result← SAT (CO)

Output: result: A boolean indicating whether input is a
false positive

Output: CO: The set of constraints for generating the
inputs in the original program

Note that, to err on the side of not overwhelming human
analysts with false detections, the Crash Analyzer errs on the
side of introducing false negatives over allowing false positives.
That is, it is possible that detections marked as false positives
by the Crash Analyzer, because they could not be directly
reproduced in a symbolic trace, do actually represent bugs
in the program. This will be discussed in detail in the case
study shown in Section V-E. Further improvements to the
Crash Analyzer, beyond transformation-aware symbolic tracing,
would improve T-Fuzz’s effectiveness.

E. Running Examples

To illustrate how the idea of filtering false positives and
reproducing bugs in the original program works, we provide
several concrete examples.

Listing 4 demonstrates a fuzzer’s weakness to bypass NCCs.
It reads an integer from the user and checks it against a specific
value. Then a second integer is read from the user and used
as a pointer to write an integer into the memory space. As
the likelihood that the fuzzer can generate the specific value
is exceedingly small, it is unlikely to find the bug.

Assume that the fuzzer has generated a few inputs that could
not bypass the check in line 5 and the NCC candidate detecting

7

1 void main() {
2 int x, y;
3 read(0, &x, sizeof(x));
4 read(0, &y, sizeof(y));
5 if (x == 0xdeadbeef)
6 *(int *)y = 0;
7 }

Listing 4: A simple example showing how Crash Analyzer
reproduce bugs in the original program

algorithm has identified the transition from line 5 to line 6 as
a NCC candidate. Then the Program Transformer generates
a transformed program, negating the check condition (x !=
0xdeadbeef). Then the fuzzer can easily find the bug in
the transformed program.

Assume the fuzzer triggered the bug in the transformed
program with x = 0 and y = 1. When the Crash Analyzer
traces the transformed program, ¬(x! = 0xdeadbeef) will
be added to CO when it reaches the negated conditional
jumps shown in line 5. And when tracing reaches the crashing
instruction in line 6, the destination of the memory write will
be deemed as the crashing condition and thus y == 1 will
be added to CO. As {¬(x! = 0xdeadbeef), y == 1} is
satisfiable, the crash is a true bug in the original program.
And input (x = 0xdeadbeef, y = 1) can be used to
reproduce the bug in the original program.

Listing 5 is an example demonstrating how the Crash
Analyzer filters out false positives. The example program
contains a list of secrets in memory and reads an index from
the user to retrieve the secret at the position. To prevent out-
of-bound read, it checks the index is within the valid range or
not at line 6.

Assume the fuzzer generated inputs cannot bypass the checks
in line 6 and the algorithm has detected the transition from line
6 to line 7 as a NCC candidate and the Program Transformer
has generated a program with the negated condition (index
< 0 || index > 3) in line 6. Fuzzing the transformed
program, we could get a crash input index = 0x12345678
that incurs an invalid memory reference.

The Crash Analyzer traces the transformed program in the
same way shown as above, and when it reaches the condition
statement in line 6, the negated constraint (index >= 0 &&
index <= 3) is added to CO. And when tracing reaches the
crashing instruction shown in line 7, the operand for memory
read will be deemed as the crashing condition, thus index ==
0x12345678 will be added to CO, as {index >= 0 &&
index <= 3, index == 0x12345678} is unsatisfiable,
it is reported as a false positive.

V. I M P L E M E N TAT I O N A N D E VA L U AT I O N

We have implemented our prototype in Python based on a
set of open source tools: the Fuzzer component was built on
AFL [8], the Program Transformer was implemented using the
angr tracer [19] and radare2 [20], and the Crash Analyzer was
implemented using angr [21].

To determine T-Fuzz’s bug finding effectiveness, we per-
formed a large-scale evaluation on three datasets (the

1 void main() {
2 char secrets[4] = "DEAD";
3 int index;
4 read(0, &index, sizeof(index));
5

6 if (index >= 0 && index <= 3)
7 output(secrets[index]);
8 }

Listing 5: An example showing how Crash Analyzer filters
out false positives

DARPA CGC dataset, the LAVA-M dataset, and a set
of 4 real-world programs built on wide-spread libraries,
consisting of pngfix/libpng, tiffinfo/libtiff,
magick/ImageMagick, and pdftohtml/libpoppler)
and compared T-Fuzz against a set of state-of-art fuzzing tools.

The experiments were run on a cluster in which each node
is running Ubuntu 16.04 LTS and equipped with an Intel i7-
6700K processor and 32 GB of memory.

A. DARPA CGC Dataset

The DARPA CGC dataset [22] contains a set of vulnerable
programs used in the Cyber Grand Challenge event hosted
by DARPA. These programs have a wide range of authors,
functionalities, and vulnerabilities. Crucially, they also provide
ground truth for the (known) vulnerabilities in these programs.
The dataset contains a total of 248 challenges with 296
binary programs, as some of the challenges include multiple
vulnerable binaries. For each bug in these programs, the dataset
contains a set of inputs as a Proof of Vulnerability. These inputs
are used as ground truth in our evaluation. Programs in this
dataset contain a wide range of sanity checks on the input that
are representative of real world programs, and thus are used
widely as benchmark in related work [12], [13], [14].

In this evaluation, we run the CGC binaries with three
different configurations: (1) to evaluate T-Fuzz against heuristic
based approaches, we run AFL on the set of CGC binaries
; (2) to evaluate T-Fuzz against symbolic execution-based
approaches, we run Driller [12] on the CGC binaries; (3) we
run T-Fuzz on the same set of binaries. Each binary is fuzzed
for 24 hours with an initial seed of “fuzz”.

AFL. In this experiment, each binary is assigned one CPU
core. Before fuzzing starts, we create a dictionary using
angr [21]to help AFL figure out the possible magic values
used in the program.

Driller. When running the experiment with Driller [23],
each binary is assigned one CPU core for fuzzing and one
CPU core for dedicated concolic execution (i.e., Driller uses
two CPU cores, double the resources of the other experiments).
For resource limits, we use the same settings as the original
Driller evaluation [12].

T-Fuzz. To evaluate T-Fuzz, we assign the same CPU limits
as for AFL and use one CPU core (half the resources of the
Driller experiment). When multiple transformed binaries are
generated, they are queued and fuzzed in first-in-first-out order.

To get an idea of the overall effectiveness of the system, we
evaluate the three different configurations and discuss the bugs

8

T-Fuzz Driller
AFL

Binaries

Fig. 5: Venn diagram of bug finding results

TABLE I: Details of experimental results

Method Number of Binaries
AFL 105
Driller 121
T-Fuzz 166
DrillerrAFL 16
T-FuzzrAFL 61
DrillerrT-Fuzz 10
T-FuzzrDriller 45

they found. To validate the T-Fuzz results (i.e., the stability
of T-Fuzz’s program transformation strategy), we performed
the DARPA CGC evaluation three times and verified that the
same set of vulnerabilities was found each time. This makes
sense, as aside from randomness in the fuzzing process, the
T-Fuzz algorithm is fully deterministic.

a) Comparison with AFL and Driller: As the results in
Figure 5 and Table I show, T-Fuzz significantly outperforms
Driller in terms of bug finding. Given the time budget and
resource limits mentioned above, T-Fuzz found bugs in 166
binaries (out of 296), compared to Driller which only found
bugs in 121 binaries and AFL which found bugs in 105 binaries.
All of the bugs found by AFL were discovered by both Driller
and T-Fuzz. T-Fuzz found bugs in 45 additional binaries in
which Driller did not, while failing to find bugs in 10 that Driller
managed to crash. It is important to note that all the bugs found
by T-Fuzz mentioned here are true positives, verified using the
ground truth that the CGC dataset provides. The false positives
resulting from T-Fuzz’s analysis are discussed later.

Out of these 166 binaries in which T-Fuzz found crashes,
45 contain complex sanity checks that are hard for constraint
solvers to generate input for. Failing to get accurate input that
is able to bypass the “hard” sanity checks from a symbolic
execution engine, the fuzzing engine (AFL) in Driller keeps
generating random inputs blindly until it uses up its time
budget without making any progress in finding new code
paths. This is where the difference between Driller and T-
Fuzz comes in. Once the fuzzer gets “stuck”, T-Fuzz disables
the offending conditional checks, and lets the fuzzer generate
inputs to cover code previously protected by them, finding
new bug candidates. We use a case study in Section V-E to

demonstrate the difference in detail.
Driller found bugs in 10 binaries for which T-Fuzz failed to

find (true) bugs. This discrepancy is caused by 2 limitations
in the current implementation of T-Fuzz. First, if a crash
caused by a false positive stemming from an NCC negation
occurs in the code path leading to a true bug, the execution of
the transformed program will terminate with a crash without
executing the vulnerable code where the true bug resides (L1).
T-Fuzz “lost” to Driller in three of the 10 binaries because of
this limitation. Secondly, when the true bug is hidden deep in
a code path containing many sanity checks, T-Fuzz undergoes
a sort of “transformation explosion”, needing to fuzz too many
different versions of transformed program to trigger the true
bug (L2). While this is not very frequent in our experiments,
it does happen: T-Fuzz failed to find the bugs in the remaining
7 binaries within the 24-hour time budget. We plan to explore
these issues in T-Fuzz in our future work.

These results show that T-Fuzz greatly improves the per-
formance of bug finding via fuzzing. By disabling the sanity
checks, T-Fuzz finds bugs in 45 more CGC binaries than Driller.
The additional bugs found by T-Fuzz are heavily guarded by
hard checks and hidden in deep code paths of programs.

Of course, there is no requirement to use only a single
analysis when performing fuzzing in the real world. The
union of detections from T-Fuzz and Driller is 176 identified
bugs, significantly higher than any other reported metric from
experimentation done on the CGC dataset.

b) Comparison with other tools: In Steelix [13], 8 bina-
ries of the CGC dataset were evaluated. Steelix only found
an additional bug in KPACA 00001. As mentioned in the
Steelix paper, the main challenge for fuzzing it is to bypass the
check for magic values inside the program. Using a manually-
provided seed that reaches the sanity check code in the program,
Steelix detects the comparison against magic values in the
program and successfully generates input that bypassed the
sanity check, finding the bug in less than 10 minutes. T-Fuzz
finds the bug in its first transformed program in around 15
minutes – without requiring manual effort to provide a seed
that reaches the checking code.

In VUzzer [14], 63 of the CGC binaries were evaluated with
a 6-hour time budget, among which VUzzer found bugs in 29.
T-Fuzz found bugs in 47 of the 63 binaries, 29 of which were
found within 6 hours. In the 29 binaries in which VUzzer
found bugs, T-Fuzz found bugs in 23 of them (in 6 hours).
T-Fuzz failed to find the bugs within a 24-hour time budget in
the remaining 6 for the same reasons mentioned above (2 for
L1 and 4 for L2). However, VUzzer is unable to run on the full
CGC dataset, making a comprehensive comparison difficult.

B. LAVA-M Dataset

The LAVA dataset contains a set of vulnerable programs
created by automatically injecting bugs using the technique
proposed in [24]. LAVA-M is a subset of the LAVA dataset
consisting of 4 utilities from coreutils, each of which contains
multiple injected bugs. The authors evaluated a coverage
guided fuzzing tool (FUZZER) and a symbolic analysis based

9

tool (SES) for 5 hours [24]. The dataset was also used in
VUzzer [14] and Steelix [13] as part of their evaluation. As at
the time of this evaluation, Steelix is not available and VUzzer
cannot be run (due to dependencies on a closed IDA plugin),
we ran T-Fuzz for 5 hours on each of the binaries in LAVA-M
dataset to compare our results with those stated by the authors
of VUzzer and Steelix in their papers.

The evaluation results are summarized in Table II. The
results of T-Fuzz is shown in the last column and results from
other work are shown in other columns. It is important to
note that the bugs mentioned here are bugs that have been
confirmed by Crash Analyzer or manually. We first run Crash
Analyzer on the reported bugs and then manually analyzed the
ones marked as false positives by Crash Analyzer. From the
results we can see that T-Fuzz found almost the same number
of bugs as Steelix in base64 and uniq, far more bugs in
md5sum and less bugs in who than Steelix. The reasons are
summarized as follows:

• Steelix and VUzzer performed promisingly well on
base64, uniq and who because of two important facts.
First of all, bugs injected into these programs are all
protected by sanity checks on values copied from input
against magic bytes hardcoded in the program. Thus, the
static analysis tools used in Steelix or VUzzer can easily
recover the expected values used in the sanity checks that
guard the injected bugs. Secondly, the LAVA-M dataset
provides well-formated seeds that help the fuzzer reach
the code paths containing injected bugs. If either of the
conditions fails to hold, Steelix and VUzzer would perform
worse. However, with the inability to evaluate Steelix
(which is unavailable) and VUzzer (which we could not
run), this is hard to verify.

• T-Fuzz can trigger the bugs in code paths protected
by “hard” checks which both Steelix and VUzzer can
not bypass. In md5sum, T-Fuzz found 15 bugs that
were not found by Steelix. These bugs are protected
by sanity checks on values computed from the MD5
sum of specified files, instead of being copied from the
input directly. As the expected values can no longer be
constructed easily using the hardcoded values present in
the program, Steelix failed to find these bugs.

• T-Fuzz performed worse than Steelix in who due to the
limited time budget. As the number of injected bugs
is huge and each injected bug is protected by a sanity
check, T-Fuzz was limited by the emergent issue of
“transformal explosion” and generated 578 transformed
programs. Within 5 hours, T-Fuzz only found 63 bugs.

In summary, T-Fuzz performs well in comparison with
state-of-art fuzzing tools in terms of bug finding even given
conditions favorable for other counterparts. In the presence of
“hard” checks on the input, e.g. checksums, T-Fuzz performs
better than existing techniques for finding bugs ”guarded” by
such checks.

C. Real-world Programs

We evaluated T-Fuzz on a set of real-world program/library
pairs (pngfix/libpng, tiffinfo/libtiff, magick-
/libMagickCore, and pdftohtml/libpoppler) and
compare it against AFL in terms of crashes found. Each
program was fuzzed for 24 hours with random seeds of 32
bytes.

Table III summarizes the number of unique true-positive
crashes found by T-Fuzz and AFL. T-Fuzz found 11, 124, 2
and 1 unique crashes in pngfix, tiffinfo, magick and
pdftohtml respectively. AFL did not trigger any crashes in
pngfix, magick and pdftohtml and only found less than
half of the crashes T-Fuzz found in tiffinfo. As random
seeds were provided, AFL got stuck very quickly, failing to
bypass the sanity checks on the file type bytes (the file header
for PNG files, the “II” bytes for TIF files, etc.). Within 24
hours, although AFL succeeded in generating inputs to bypass
these checks, it failed to generate inputs that could bypass
further sanity checks in the code, thus being unable to find
bugs protected by them. In particular, in pngfix, magick,
and pdftohtml, the bugs found by T-Fuzz are hidden in
code paths protected by multiple sanity checks, and thus were
not found by AFL; in tiffinfo, AFL found crashes, failing
to find the 71 additional crashes caused by code paths that are
guarded by more sanity checks.

These larger real-world programs demonstrate drawbacks of
the underlying symbolic execution engine: angr simply does
not have the environment support to scale to these programs.
While this is not something that we can fix in the prototype
without extensive effort by the angr team itself, our observation
is that T-Fuzz actually causes surprisingly few false positives
in practice. For example, for pdftohtml, the true positive
bug was the only alert that T-Fuzz generated.

After inspecting the crashes resulting from T-Fuzz, we found
3 new bugs (marked by * in Table III): two in magick and
one in pdftohtml. It is important to note that these bugs
are present in the latest stable releases of these programs,
which have been intensively tested by developers and security
researchers. One of the new bugs found in magick has
already been fixed in a recent revision, and we have reported
the remaining 2 to the developers [25], [26], waiting to be
acknowledged and fixed. Importantly, AFL failed to trigger
any of these 3 bugs. As these bugs are hidden in code paths
protected by several checks, it is very hard for AFL to generate
inputs bypassing all of them. In constrast, T-Fuzz successfully
found them by disabling checks that prevented the fuzzer-
generated input to cover them.

D. False Positive Reduction

T-Fuzz utilizes a Crash Analyzer component to filter out false
positive detections stemming from program transformations.
This component is designed to avoid the situation, common
in related fields such as static analysis, where a vulnerability
detection tool overwhelms an analyst with false positives. In
this section, we explore the need for this tool, in terms of its
impact on the alerts raised by T-Fuzz.

10

TABLE II: LAVA-M Dataset evaluation results

program Total # of bugs FUZZER SES VUzzer Steelix T-Fuzz
base64 44 7 9 17 43 43
md5sum 57 2 0 1 28 49
uniq 28 7 0 27 24 26
who 2136 0 18 50 194 63

TABLE III: Real-world programs evaluation results, with
crashes representing new bugs found by T-Fuzz in magick
(2 new bugs) and pdftohtml (1 new bug) and crashes repre-
senting previously-known bugs in pngfix and tiffinfo.

Program AFL T-Fuzz
pngfix + libpng (1.7.0) 0 11
tiffinfo + libtiff (3.8.2) 53 124
magick + ImageMagick (7.0.7) 0 2*
pdftohtml + libpoppler (0.62.0) 0 1*

False-positive-prone static analyses report false positive
rates of around 90% for the analysis of binary software [21],
[27]. Surprisingly, we have found that even in the presence
of program transformations that could introduce unexpected
behavior, T-Fuzz produces relatively few false-positive bug
detections. We present an analysis of the alerts raised by T-
Fuzz on a sampling of the CGC dataset and LAVA-M dataset
in Table IV and Table V, along with the reports from our Crash
Analyzer and ratio of false negatives.

In the CGC dataset, T-Fuzz provides the Crash Analyzer
component with 2.8 alerts for every true positive detection on
average, with a median of 2 alerts for every true positive. In
the LAVA-M dataset, T-Fuzz only raised Crash Analyzer with
1.1 alerts for each true bug on average. Compared to static
techniques, this is a significant advantage — even without the
Crash Analyzer component, a human analyst would have to
investigate only three alerts to locate an actual bug. Compared
with other fuzzing techniques, even with the aggressive false
positive reduction performed by the Crash Analyzer (resulting
in only actual bug reports as the output of T-Fuzz), T-Fuzz
maintains higher performance than other state-of-the-art sys-
tems.

As mentioned in Section IV-D, the Crash Analyzer may
mark as false positives detections that actually do hint at a bug
(but are not trivially repairable with the adopted approach),
resulting false negative reports. E.g., if there is a “hard” check
(e.g., checksum) that was disabled in the code path leading
to a crash found by T-Fuzz, applying Crash Analyzer on the
crash would involve solving hard constraint sets. As current
constraint solvers can not determine the SATness of such hard
constraint sets, Crash Analyzer would err on the false negative
side and mark it as a false bug. Another example is shown in
Section V-E. In the selected sample of CGC dataset shown in
Table IV, Crash Analyzer mark detected crash in the first 3
binaries as false alerts. In LAVA-M dataset, Crash Analyzer
has an average false negative rate of 15%. It shows a slightly
higher false negative rate (30%) in md5sum because 15 of
the detected crashes are in code paths protected by checks on

TABLE IV: A sampling of T-Fuzz bug detections in CGC
dataset, along with the amount of false positive alerts that
were filtered out by its Crash Analyzer.

Binary # Alerts # True Alerts # Reported Alerts % FN
CROMU 00002 1 1 0 100%
CROMU 00030 1 1 0 100%
KPRCA 00002 1 1 0 100%
CROMU 00057 2 1 1 0
CROMU 00092 2 1 1 0
KPRCA 00001 2 1 1 0
KPRCA 00042 2 1 1 0
KPRCA 00045 2 1 1 0
CROMU 00073 3 1 1 0
KPRCA 00039 3 1 1 0
CROMU 00083 4 1 1 0
KPRCA 00014 4 1 1 0
KPRCA 00034 4 1 1 0
CROMU 00038 5 1 1 0
KPRCA 00003 6 1 1 0

TABLE V: T-Fuzz bug detections in LAVA-M dataset, along
with the amount of false positive alerts that were filtered out
by its Crash Analyzer.

Program # Alerts # True Alerts # Reported Alerts % FN
base64 47 43 40 6%
md5sum 55 49 34 30%
uniq 29 26 23 11%
who 70 63 55 12%

MD5 checksums.

E. Case Study

CROMU 000302 contains a stack buffer overflow bug (line
11) in a code path guarded by multi-stage “hard” checks. As
shown in Listing 6, to reach the buggy code, the input needs
to bypass 10 rounds of checks and each round includes a basic
sanity check (line 19), a check on checksum (line 25) and a
check on the request (line 30, in handle packet).

When T-Fuzz fuzzes this binary, after roughly 1 hour of
regular fuzzing,the fuzzer gets “stuck”, failing to pass the
check in line 25. T-Fuzz stops the fuzzer and uses the fuzzer-
generated inputs to detect NCC candidates, pruning undesired
candidates using the algorithm from Section IV-A, returning
a set of 9 NCC candidates. Next T-Fuzz transforms the
original program and generates 9 different binaries (shown as
CROMU 00030 0-CROMU 00030 8 in Figure 6) with one
detected NCC candidate removed in each. They are then fuzzed
and transformed sequentially in FIFO order in the same way

2This program simulates a game over a protocol similar to IEEE802.11 and
is representative of network programs.

11

CROMU_00030

CROMU_00030_0 CROMU_00030_1 ... CROMU_00030_6 CROMU_00030_8...

CROMU_00030_0_0 CROMU_00030_1_0 CROMU_00030_6_0 CROMU_00030_8_0...

Fig. 6: The transformed binaries T-Fuzz generates and fuzzes

1 int main() {
2 int step = 0;
3 Packet packet;
4 while (1) {
5 memset(packet, 0, sizeof(packet));
6 if (step >= 9) {
7 char name[5];
8 // stack buffer overflow BUG
9 int len = read(stdin, name, 25);

10 printf("Well done, %s\n", name);
11 return SUCCESS;
12 }
13 // read a packet from the user
14 read(stdin, &packet, sizeof(packet));
15 // initial sanity check
16 if(strcmp((char *)&packet, "1212") == 0) {
17 return FAIL;
18 }
19 // other trivial checks on the packet

omitted
20 if (compute_checksum(&packet) != packet.

checksum) {
21 return FAIL;
22 }
23 // handle the request from the user, e.g.,

authentication
24 if (handle_packet(&packet) != 0) {
25 return FAIL;
26 }
27 // all tests in this step passed
28 step ++;
29 }
30 }

Listing 6: Code excerpt of CROMU 00030, slightly
simplified for readability

as the original. When CROMU 00030 6 (marked as grey in
Figure 6), which is the binary with the check in line 8 negated,
is fuzzed, a crash is triggered within 2 minutes, which is the
true bug in the original binary. The total time it takes T-Fuzz
to find the bug is about 4 hours, including the time used for
fuzzing the original binary (CROMU 00030) and the time for
fuzzing CROMU 00030 0-CROMU 00030 5. After the real
bug is found by fuzzing CROMU 00030 6, T-Fuzz continues
to fuzz and transform other (transformed) binaries until it uses
up its time budget.

It is important to note that T-Fuzz can also find the bug by
fuzzing the transformed binary with the sanity checks in line
25 and 30 negated. In that case, all the user provided input
“bypasses” these two complex checks and the buggy code in
line 11 is executed after looping for 10 iterations. As we fuzz

the transformed binaries in FIFO order, this configuration is
not reached within the first 24 hours.

In contrast, Driller failed to find the bug in this binary.
Driller’s symbolic execution engine cannot produce an accurate
input to bypass the check in line 25, as it is too complex.
Unable to get inputs to guide execution through the sanity
check, the fuzzer blindly mutates the inputs without finding
any new paths until it uses up its time budget. Note also that
it is highly unlikely for Driller to generate input to bypass the
check in line 30 even without the check in line 25 because of
the complexity involved in encoding the state of the protocol.

Listing 6 also showcases an example where Crash Analyzer
marks a true bug as a false positive. As the step variable is
not read from user and initialized as 0 in line 2, when the
Crash Analyzer reaches the crash in CROMU 00030 6, the
accumulated constraints set is {step == 0, step >= 9} which
is UNSAT, thus it is marked as false positive. This bug was
identified by manual analysis.

V I . R E L AT E D W O R K

A large body of related work has tried to improve the
efficiency of fuzzing. For example, Rebert et al. [28] and
Woo et al.[29] propose empirical seed selection and fuzzing
scheduling algorithms to find more bugs in a given limited
computation budget, in AFLFast [30] and AFLGo [31] Böhme
et al. model fuzzing as a Markov chain, assigning more fuzzing
energy on low-frequency paths. The directions of such work are
orthogonal to the fundamental challenge that fuzzer-generated
inputs cannot bypass the complex sanity checks in programs.
Thus in this section, we focus our discussion on related work
that improves fuzzing by bypassing sanity checks in programs.

A. Feedback based Approaches

Feedback based approaches make heuristics of possible
magic values and their positions in the input based on feedback
from the target program. E.g., AFL [8] and libFuzzer [32]
can automatically guess syntax tokens based on the change in
coverage and mutate input based on those tokens [33]. Further,
AFL-lafintel [34] and improve the feedback by dividing a check
on multiple bytes values into multiple nested checks on one
byte values and Steelix [13] introduces “comparison progress”
of checks to the feedback.

These approaches are based on hindsight to extend coverage
past a check, i.e., the fuzzer must have already generated/mu-
tated an input that passes some check in the program. Also,

12

these approaches cannot handle checks on values computed
on the fly or based on other input values such as checksums.
T-Fuzz, on the other hand, is not limited by such restrictions.

B. Symbolic and Concolic Execution based Approaches

Symbolic execution encodes the sanity checks along a
program path as a set of constraints (represented as logical
formula), reducing the problem of finding a passing input
to solving the encoded constraints. Several tools have imple-
mented symbolic execution, e.g., KLEE [35], Veritesting [36],
SAGE [37], DART [38], SYMFUZZ [39], CUTE [40], Smart-
Fuzz [41], and Driller [12], covering domains like automatic
testcase generation, automatic bug finding and fuzzing.

Among the tools mentioned above, Driller [12] is the closest
to T-Fuzz. Driller uses selective concolic execution to generate
inputs when the fuzzer gets “stuck”.As mentioned in previous
sections, symbolic and concolic execution based approaches,
including Driller, suffer in scalability and ability to cover code
paths protected by “hard” checks, where T-Fuzz excels.

C. Taint Analysis based Approaches

Dynamic taint analysis identifies the dependencies between
the program logic and input. Taintscope [15] focuses mutating
the security-sensitive parts of the input identified by dynamic
taint analysis. Other works apply additional analysis based on
the identified dependencies to improve input generation, e.g.,
VUzzer uses data-flow and control analysis, Dowser [42] and
BORG [43] use symbolic analysis.

Dynamic taint analysis is heavy weight, application of
other techniques (data and control flow analysis in VUzzer
and symbolic analysis in Dowser and BORG) adds up the
overhead. In contrast,T-Fuzz only uses lightweight dynamic
tracing technique for identifying and disabling sanity checks
in the target program.

D. Learning based Approaches

This category of approaches generate inputs by learning
from large amount of valid inputs. E.g., Skyfire [44] and
Learn&Fuzz [45] generate seeds or inputs for the fuzzer using
the learned probabilistic distribution of different values from
samples, while GLADE [46] generates inputs based on the
synthesized grammar learned from provided seeds.

Learning based approaches has been shown to be effective
in generating well structured inputs (e.g., XML files) for
fuzzers in Skyfire [44] and Learn&Fuzz [45]. However, it is
difficult to learn less structured inputs like images or complex
dependencies among different parts of data like checksums
without external knowledge. In addition, learning requires a
large corpus of valid inputs as training set. In contrast, T-Fuzz
does not have such limitations.

E. Program transformation based approaches

Some existing work uses the idea of program transformation
to overcome sanity checks in the target program, but requires
significant manual effort. E.g., Flayer [47] relies on user
provided addresses of the sanity checks to perform transfor-
mation. TaintScope [15] depends on a on a pair of inputs

with one able to bypass a sanity check on checksum and the
other not, requiring a significant amount of manual analysis.
MutaGen [48] depends on the availability and identification
of program code that can generate the proper protocols, a
process involving much manual effort. In addition, they use
dynamic instrumentation to alter the execution of the target,
which typically involves a slowdown of 10x in execution speed.

T-Fuzz is the only program transformation-based technique,
known to us, that is able to leverage program transformation,
in a completely automated way, to augment the effectiveness
of fuzzing techniques.

V I I . C O N C L U S I O N S

Mutational fuzzing so far has been limited to producing
new program inputs. Unfortunately, hard checks in programs
are almost impossible to bypass for a mutational fuzzer (or
symbolic execution engine). Our proposed technique, transfor-
mational fuzzing, extends the notion of mutational fuzzing to
the program as well, mutating both program and input.

In our prototype implementation T-Fuzz we detect whenever
a baseline mutational fuzzer (AFL in our implementation) gets
stuck and no longer produces inputs that extend coverage. Our
lightweight tracing engine then infers all checks that could
not be passed by the fuzzer and generates mutated programs
where the checks are negated. This change allows our fuzzer
to produce input that trigger deep program paths and therefore
find vulnerabilities hidden deep in the program itself.

We have evaluated our prototype on the CGC dataset,
the LAVA-M dataset, and 4 real-world programs (pngfix,
tiffinfo, magick and pdftohtml). In the CGC dataset,
T-Fuzz finds true bugs in 166 binaries, improving the re-
sults by 45 binaries compared to Driller and 61 binaries
compared to AFL alone. In the LAVA-M dataset, T-Fuzz
shows significantly better performance in the presence of
“hard” checks in the target program. In addition, we have
found 3 new bugs in evaluating real-world programs: two
in magick and one in pdftohtml. T-Fuzz is available at
https://github.com/HexHive/T-Fuzz.

Future work includes developing heuristics on combining
program transformation and input mutation to better cover the
large search space and better approaches to filter the set of
candidate crashes.

A C K N O W L E D G M E N T

This material is based in part upon work supported by the
National Science Foundation under award CNS-1513783, by
ONR awards N00014-17-1-2513 and N00014-17-1-2897, and
by Intel Corporation. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of our
sponsors.

13

https://github.com/HexHive/T-Fuzz

R E F E R E N C E S

[1] R. McNally, K. Yiu, D. Grove, and D. Gerhardy, “Fuzzing: the state of
the art,” DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
EDINBURGH (AUSTRALIA), Tech. Rep., 2012.

[2] P. Godefroid, “From blackbox fuzzing to whitebox fuzzing towards
verification,” in Presentation at the 2010 International Symposium on
Software Testing and Analysis, 2010.

[3] Microsoft, “Microsoft security development lifecycle,” 2017, [Online;
accessed 10-April-2017]. [Online]. Available: https://www.microsoft.
com/en-us/sdl/process/verification.aspx

[4] Google, “Oss-fuzz - continuous fuzzing for open source software,”
2016, [Online; accessed 10-April-2017]. [Online]. Available: https:
//github.com/google/oss-fuzz

[5] J. Röning, M. Lasko, A. Takanen, and R. Kaksonen, “Protos-systematic
approach to eliminate software vulnerabilities,” Invited presentation at
Microsoft Research, 2002.

[6] D. Aitel, “An introduction to spike, the fuzzer creation kit,” presentation
slides), Aug, vol. 1, 2002.

[7] M. Eddington, “Peach fuzzing platform,” Peach Fuzzer, p. 34, 2011.
[8] M. Zalewski, “american fuzzy lop,” 2017, [Online; accessed 1-August-

2017]. [Online]. Available: http://lcamtuf.coredump.cx/afl/
[9] Google, “Honggfuzz,” 2017, [Online; accessed 10-April-2017]. [Online].

Available: https://google.github.io/honggfuzz/
[10] caca labs, “zzuf - multi-purpose fuzzer,” 2017, [Online; accessed

10-October-2017]. [Online]. Available: http://caca.zoy.org/wiki/zzuf
[11] M. Zalewski, “The bug-o-rama trophy case,” 2017, [Online; accessed

20-Septempber-2017]. [Online]. Available: http://lcamtuf.coredump.cx/
afl/#bugs

[12] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16, 2016,
pp. 1–16.

[13] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu, “Steelix:
program-state based binary fuzzing,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering. ACM, 2017,
pp. 627–637.

[14] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing,” in NDSS, 2017.

[15] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection,” in
SP’10. Washington, DC, USA: IEEE Computer Society, 2010, pp.
497–512. [Online]. Available: http://dx.doi.org/10.1109/SP.2010.37

[16] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-
based exploit generation is possible: Techniques and implications,” in
SP’08. IEEE, 2008, pp. 143–157.

[17] M. Zalewski, “Technical whitepaper for afl-fuzz,” 2017, [Online;
accessed 1-August-2017]. [Online]. Available: http://lcamtuf.coredump.
cx/afl/technical details.txt

[18] T. Bao, R. Wang, Y. Shoshitaishvili, and D. Brumley, “Your exploit is
mine: Automatic shellcode transplant for remote exploits,” in Security
and Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017, pp. 824–839.

[19] github, “tracer: Utilities for generating dynamic traces,” 2017, [Online;
accessed 21-Oct-2017]. [Online]. Available: https://github.com/angr/
tracer

[20] radare2 team, “radare2: unix-like reverse engineering framework and
commandline tools,” 2017, [Online; accessed 21-Oct-2017]. [Online].
Available: https://github.com/radare/radare2

[21] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna, “Sok: (state
of) the art of war: Offensive techniques in binary analysis,” in SP’16,
May 2016, pp. 138–157.

[22] L. Lunge Technology, “Cgc corpus,” 2017, [Online; accessed 20-
September-2017]. [Online]. Available: http://www.lungetech.com/2017/
04/24/cgc-corpus/

[23] S. Group, “Driller: augmenting afl with symbolic execution!”
2017, [Online; accessed 20-Septempber-2017]. [Online]. Available:
https://github.com/shellphish/fuzzer

[24] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson,
F. Ulrich, and R. Whelan, “Lava: Large-scale automated vulnerability
addition,” in SP’16), May 2016, pp. 110–121.

[25] I. team, “assertion error in relinquishmagickresource,” 2018,
[Online; accessed 23-Jan-2018]. [Online]. Available: https:
//github.com/ImageMagick/ImageMagick/issues/955

[26] bugzilla, “Bug 104798 - endless loop resulting oom,” 2018, [Online;
accessed 26-Jan-2018]. [Online]. Available: https://bugs.freedesktop.org/
show bug.cgi?id=104798

[27] D. A. Ramos and D. R. Engler, “Under-constrained symbolic execution:
Correctness checking for real code.” in USENIX Security Symposium,
2015, pp. 49–64.

[28] A. Rebert, S. K. Cha, T. Avgerinos, J. M. Foote, D. Warren, G. Grieco,
and D. Brumley, “Optimizing seed selection for fuzzing.” USENIX,
2014.

[29] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley, “Scheduling black-box
mutational fuzzing,” in CCS. ACM, 2013, pp. 511–522.

[30] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox
fuzzing as markov chain,” in CCS. ACM, 2016, pp. 1032–1043.

[31] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in CCS, 2017, pp. 1–16.

[32] L. team, “libfuzzer – a library for coverage-guided fuzz testing,”
2018, [Online; accessed 28-Jan-2018]. [Online]. Available: https:
//llvm.org/docs/LibFuzzer.html

[33] M. Zalewski, “afl-fuzz: making up grammar with a dictionary in hand,”
2015, [Online; accessed 16-September-2017]. [Online]. Available: https://
lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html

[34] afl lafintel, “Circumventing fuzzing roadblocks with compiler
transformations,” 2017, [Online; accessed 16-September-2017]. [Online].
Available: https://lafintel.wordpress.com/

[35] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs.” in
OSDI, vol. 8, 2008, pp. 209–224.

[36] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing symbolic
execution with veritesting,” in Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014, pp. 1083–1094.

[37] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: whitebox fuzzing for
security testing,” Queue, vol. 10, no. 1, p. 20, 2012.

[38] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed automated random
testing,” in ACM Sigplan Notices, vol. 40, no. 6. ACM, 2005, pp. 213–
223.

[39] S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive mutational
fuzzing,” in Security and Privacy (SP), 2015 IEEE Symposium on. IEEE,
2015, pp. 725–741.

[40] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine
for c,” in ESEC/FSE-13. New York, NY, USA: ACM, 2005, pp. 263–272.
[Online]. Available: http://doi.acm.org/10.1145/1081706.1081750

[41] D. Molnar, X. C. Li, and D. Wagner, “Dynamic test generation to find
integer bugs in x86 binary linux programs.” in SEC, vol. 9, 2009, pp.
67–82.

[42] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowser: a
guided fuzzer to find buffer overflow vulnerabilities,” in SEC’13, 2013,
pp. 49–64.

[43] M. Neugschwandtner, P. Milani Comparetti, I. Haller, and H. Bos, “The
borg: Nanoprobing binaries for buffer overreads,” in SP’15. ACM, 2015,
pp. 87–97.

[44] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed
generation for fuzzing,” 2017.

[45] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning for
input fuzzing,” CoRR, vol. abs/1701.07232, 2017. [Online]. Available:
http://arxiv.org/abs/1701.07232

[46] O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing program
input grammars,” in PLDI 2017. New York, NY, USA: ACM, 2017,
pp. 95–110. [Online]. Available: http://doi.acm.org/10.1145/3062341.
3062349

[47] W. Drewry and T. Ormandy, “Flayer: Exposing application internals.”
WOOT, vol. 7, pp. 1–9, 2007.

[48] U. Kargén and N. Shahmehri, “Turning programs against each other: high
coverage fuzz-testing using binary-code mutation and dynamic slicing,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 2015, pp. 782–792.

14

https://www.microsoft.com/en-us/sdl/process/verification.aspx
https://www.microsoft.com/en-us/sdl/process/verification.aspx
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
http://lcamtuf.coredump.cx/afl/
https://google.github.io/honggfuzz/
http://caca.zoy.org/wiki/zzuf
http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf.coredump.cx/afl/#bugs
http://dx.doi.org/10.1109/SP.2010.37
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://github.com/angr/tracer
https://github.com/angr/tracer
https://github.com/radare/radare2
http://www.lungetech.com/2017/04/24/cgc-corpus/
http://www.lungetech.com/2017/04/24/cgc-corpus/
https://github.com/shellphish/fuzzer
https://github.com/ImageMagick/ImageMagick/issues/955
https://github.com/ImageMagick/ImageMagick/issues/955
https://bugs.freedesktop.org/show_bug.cgi?id=104798
https://bugs.freedesktop.org/show_bug.cgi?id=104798
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://lafintel.wordpress.com/
http://doi.acm.org/10.1145/1081706.1081750
http://arxiv.org/abs/1701.07232
http://doi.acm.org/10.1145/3062341.3062349
http://doi.acm.org/10.1145/3062341.3062349

	Introduction
	Motivation
	T-Fuzz Intuition
	T-Fuzz Design
	Detecting NCC Candidates
	Pruning Undesired NCC Candidates
	Program Transformation
	Filtering out False Positives and Reproducing Bugs
	Running Examples

	Implementation and Evaluation
	DARPA CGC Dataset
	LAVA-M Dataset
	Real-world Programs
	False Positive Reduction
	Case Study

	Related work
	Feedback based Approaches
	Symbolic and Concolic Execution based Approaches
	Taint Analysis based Approaches
	Learning based Approaches
	Program transformation based approaches

	Conclusions
	References

