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ABSTRACT
Applications for TinyOS, a popular operating system for em-
bedded systems and wireless sensor networks, are written
in nesC, a C dialect prone to the same type and memory
safety vulnerabilities as C. While availability and integrity
are critical requirements, the distributed and concurrent na-
ture of such applications, combined with the intrinsic un-
safety of the language, makes those security goals hard to
achieve. Traditional memory safety techniques cannot be
applied, due to the strict platform constraints and hardware
differences of embedded systems.

We design nesCheck, an approach that combines static
analysis and dynamic checking to automatically enforce mem-
ory safety on nesC programs without requiring source mod-
ifications. nesCheck analyzes the source code, identifies the
minimal conservative set of vulnerable pointers, finds static
memory bugs, and instruments the code with the required
dynamic runtime checks. Our prototype extends the existing
TinyOS compiler toolchain with LLVM-based passes. Our
evaluation shows that nesCheck effectively and efficiently en-
forces memory protection, catching all memory errors with
an overhead of 0.84% on energy, 5.3% on code size, up to
8.4% on performance, and 16.7% on RAM.

1. INTRODUCTION
Wireless Sensor Networks (WSNs) are deployed in criti-

cal, real-time applications, where availability and integrity
are of paramount importance. WSN nodes are embedded
systems that often manage confidential information, such
as private keys and aggregated data, making confidentiality
and integrity key requirements. However, the distributed
and concurrent nature of WSN applications, together with
the intrinsic type and memory unsafety of C/C++, make it
hard to achieve these security goals.

TinyOS [21] is an open source operating system designed
for low-power wireless embedded systems, such as WSN
motes and smart meters [19]. TinyOS programs consist of
separate software components statically linked through in-
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terfaces. Common components include routing and packet
radio communication, sensor measurements, and storage.
The language used to program TinyOS applications is nesC,
a dialect of the C language optimized for the resource con-
straints of low-power embedded devices [13]. Because of the
strict constraints in terms of memory, storage, and energy,
neither TinyOS nor the underlying hardware provide any
memory protection or virtual memory mechanism between
processes or kernel and user-space. Moreover, the nesC lan-
guage makes it easy to write memory-unsafe code, inheriting
all the type and memory safety problems of C.

Memory corruption in the software running on a single
node may allow an attacker to take over the node, read pri-
vate data, or even disseminate incorrect data and degrade
the entire network. Note that embedded platforms do not
have code injection protection or ASLR, so a holistic defense
like memory safety becomes even more important. More
critically, since all the nodes run the same software image, an
attacker may exploit a single vulnerability to take control of
every node in the network. Concrete examples of such dev-
astating attacks have been shown for Harvard-architecture-
based sensor nodes such as the MicaZ motes [11], as well as
Von Neumann-architecture-based ones such as the popular
TelosB motes [15]. In these attacks, a well-crafted network
packet sent to a vulnerable node can take control of the node
and propagate as a self-replicating worm to the entire net-
work through multi-hop communications [12, 14, 16, 32, 36].
All of these critical attacks would be prevented by enforcing
memory safety.

Existing memory safety techniques [26, 24, 4, 29] are not
applicable to embedded systems, nesC, or TinyOS, as they
are designed for general-purpose systems. Adapting them to
embedded systems is unfeasible without extensive redesign.
In fact, they have heavy requirements in storage, mem-
ory, presence of an MMU, and hardware memory-protection
mechanisms. However, embedded systems fundamentally
differ from regular computing systems, having scarce mem-
ory, no MMU, no protection against code injection and code
reuse, and often not even a distinction between kernel-space
and user-space. For example, widespread sensor motes like
the Memsic TelosB [23] only provide 10kB of RAM and
48kB of program flash memory; previously proposed mem-
ory safety approaches result in significantly bigger code size
and more intensive memory usage. Moreover, the perfor-
mance degradation that many existing solutions impose is
not acceptable for energy-constrained, real-time WSNs ap-
plications. In fact, solutions such as CCured reported slow-
downs ranging from 20% to 200% [26]. Given the resource
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constraints, a straightforward porting of common implemen-
tations for memory protection techniques to embedded sys-
tems is infeasible. A tailored solution for memory and type
safety for TinyOS applications is therefore needed.

For TinyOS applications, the code for applications, li-
braries, and operating system is entirely available at compile
time. This allows us to effectively leverage whole-program
static analysis to ensure memory safety with a fallback to
dynamic checking instrumentation if we run into aliasing
issues. Moreover, by statically identifying and removing un-
necessary checks for memory accesses that will never result
in memory errors, it is possible to achieve low performance
overhead.

Based on such considerations, we design nesCheck, a novel
scheme that combines static analysis, type inference, and dy-
namic instrumentation techniques to enforce memory safety
on embedded systems for existing nesC programs. The goal
of nesCheck is to protect embedded software against mem-
ory vulnerabilities with negligible overhead and without re-
quiring any source code modification. nesCheck statically
analyzes the source code, identifies the potentially danger-
ous pointer variables, automatically infers the minimum set
of dynamic runtime checks needed to enforce memory safety
based on pointer access flow, and instruments the code ap-
propriately.

On one hand, solutions that enforce memory safety en-
tirely dynamically have resource requirements that cannot
be satisfied on embedded platforms; on the other hand,
static solutions based on whole-program analysis are not ap-
plied in practice as they lead to exponential state explosion.
nesCheck is novel in tailoring its design to the challenges and
constraints of the embedded world, where whole-program
analysis is feasible but memory and performance overhead
are of concern, by relying entirely on static analysis alone
whenever possible and falling back on runtime protection
only when needed. Instead of porting incremental defenses,
our approach enforces low-overhead spatial memory safety
for all code running on embedded systems.

To evaluate our approach, we implement nesCheck as a
combined static analysis/dynamic checker on top of the LLVM
compiler framework. The static analysis infers types and re-
moves as many checks as possible while the dynamic checker
enforces safety. We then integrate our checker into the ex-
isting nesC toolchain. We evaluate nesCheck on standard
TinyOS application benchmarks, and show that it effectively
enforces memory safety on WSN applications, while mini-
mizing the runtime performance overhead (0.84% on energy,
5.3% on code size, up to 8.4% on performance, and 16.7%
on RAM). These benchmarks are the standard benchmarks
for evaluating WSN and present realistic usage scenarios for
embedded systems. Porting full desktop benchmarks like
SPEC CPU2006 is unrealistic due to the hardware and per-
formance constraints of embedded devices (just the test in-
put of a single benchmark is orders of magnitudes larger
than all the available memory on the target platforms).

The contributions of our work are: (i) Design of an inter-
procedural whole-program static analysis mechanism, based
on type tracking and pointer usage, without the need for
programmer annotations; (ii) Design of dynamic instrumen-
tation for efficient memory safety enforcement on highly con-
strained embedded platforms, without MMU or kernel/user
space separation; (iii) Evaluation of efficiency and effective-
ness of our approach through implementation prototype.

2. ADVERSARIAL MODEL
We assume that the attacker can inject and intercept ar-

bitrary packets in the network. We also assume that the ap-
plication has memory vulnerabilities known to the attacker.
She will exploit them to take control of a node by means
of code injection/reuse attacks or leak private information
from the node. The attacker has the power to compromise
the integrity, availability, or confidentiality of the node.

Physical attacks targeting the nodes, hardware attacks,
or flashing/programming individual nodes with a malicious
firmware are out of scope.

3. BACKGROUND

3.1 Memory Safety Vulnerabilities
The root cause of all memory safety vulnerabilities is the

dereferencing of invalid pointers. There are two main cat-
egories of memory safety vulnerabilities: spatial memory
safety vulnerabilities, resulting from pointers pointing to ad-
dresses outside the bounds of the allocated memory area,
and temporal memory safety vulnerabilities, resulting from
the usage of pointers after the corresponding memory areas
are deallocated (e.g. use-after-free errors).

Our current prototype of nesCheck targets spatial mem-
ory safety, but can be extended to enforce temporal safety as
well, by lock and key mechanisms [25]. However, as mem-
ory in well-developed WSN applications is allocated stati-
cally instead of dynamically, temporal safety errors are not
a pressing issue for applications that comply with the devel-
opment guidelines for TinyOS. This includes all the applica-
tions that ship with the standard distribution of TinyOS, as
well as most larger-scale WSN applications. Examples of the
memory vulnerabilities that nesCheck protects against are
out-of-bounds accesses to pointers on the stack and heap,
uninitialized uses, and null dereferencing.

3.2 TinyOS
nesC. nesC is an event-driven dialect of C. Its additional

features include the concept that programs are built out of
components, statically linked through interfaces.

Dynamic allocation. In the early versions of TinyOS,
no dynamic memory allocation was allowed. This constraint,
partially relaxed in recent releases, is still highly encouraged,
as the lack of memory protection and separation can easily
lead to involuntary stack smashing when the heap grows into
the stack [37]. Specialized components (e.g., TinyAlloc),
were introduced to support dynamic allocation, but behind
the scenes they simply manage a large chunk of pre-allocated
memory. Disabling dynamic allocation has the advantage,
from a memory safety standpoint, that most required infor-
mation is available at compile-time, and little work is left
for dynamic detection.

Compilation and execution model. The standard
TinyOS compilation pipeline is composed of several steps.
First, the nesC code is processed and all the required compo-
nents, including the operating system, are linked together.
Under this model, all code, libraries, and OS components
are statically known at compile time. The resulting single
nesC code is cross-compiled to C code, in turn compiled na-
tively into a binary image for the specific target platform.
Such single binary image – containing both user code and
OS code – runs as a single executable, assuming complete
control over the hardware at all times. The memory address



Figure 1: nesCheck pipeline (lighter blocks are ex-
isting steps of the nesC compiler toolchain).

space is shared among all components, both user and system
code. For this reason, the official development guidelines
for TinyOS recommend to (i) keep the state of the various
components private, (ii) communicate only through exposed
interfaces, and (iii) avoid transferring pointers between dif-
ferent pieces of code. All these characteristics of the TinyOS
compilation and execution model make it a particularly good
fit for static analysis

4. THE NESCHECK APPROACH
Figure 1 shows the architecture of the final pipeline for

nesCheck. Our main memory safety goals are listed below.
nesCheck performs both static bug detection – for memory
accesses that will always result in a violation regardless of
the execution path – and runtime bug catching – for mem-
ory accesses that could potentially lead to memory corrup-
tions, depending on the execution flow. (i) Bugs: (Static)
Find all statically provable memory bugs and report them
as errors; (ii) Vulnerabilities: (Static) Find all potentially
unsafe memory accesses, determine and exclude those that
will never result in a memory corruption (in a conserva-
tive way), and report the remaining ones as warnings; (iii)
Checks: (Dynamic) Instrument all remaining vulnerable
locations with dynamic runtime checks, and catch all mem-
ory errors at runtime. We provide a proof sketch about
nesCheck’s memory safety in Appendix A

4.1 Static Analysis
nesCheck uses static analysis in order to enforce an ex-

tended type system on the pointer variables, and subse-
quently compute and propagate metadata for the vulnera-
ble pointers. Our approach uses an inter-procedural whole-
program analysis technique, carried out on the Static Single
Assignment (SSA) form [9] representation of the code. In
SSA form, each variable is written to at most once, intro-
ducing a fresh variable every time the value is updated with
a destructive assignment operation. While the code is in
SSA form, the heap remains in non-SSA form, meaning that
the same memory location can be written to multiple times
through the same and different pointers. Therefore, even
though in SSA form each variable is only assigned once, a
new value is assigned with a store operation to a memory
location previously loaded with a load operation, making it
possible to connect together different instructions operating
on the same logical variable.

4.1.1 Extended Type System and Type Inference
In order to provide type safety, identify the potentially

dangerous memory accesses, and avoid dynamic checks on
the provably safe operations, it is necessary to understand
the role played by the various pointers in the code and their
interrelations. We thus enforce a type system inspired by
CCured [26], that categorizes pointers according to their us-
age into different classes with specific characteristics. The
pointer types that we consider are the following: (i) Safe
pointer to τ : it can only be null or point to a value of
type τ . At runtime, it may only need a null-pointer check.
(ii) Sequence pointer to τ : like a Safe pointer, it can
be null or point to a value of type τ . However, a Sequence
pointer can also be interpreted as an integer, and be ma-
nipulated via pointer arithmetic. At runtime, it may need a
null-pointer check, as well as a bounds check if casted to a
safe pointer of base type τ . (iii) Dynamic pointer: it is a
pointer that cannot be statically typed. At runtime, it may
need null-pointer and bounds checks, as well as dynamic
type checks.

The type inference engine gathers information from the
source code to classify pointer declarations according to the
extended type system. The engine focuses on all locations in
which pointer variables are used and classifies them, in a fix-
point iteration, by analyzing their usage. Our type inference
algorithm is shown in Algorithm 1.

The type inference algorithm uses 3 rules:

1 All pointers are classified as Safe upon their declaration;

2 Safe pointers subsequently used in pointer arithmetic are
re-classified as a Sequence;

3 Safe or Sequence pointers interpreted with different types
in different locations are re-classified as a Dynamic. This
includes casting between different levels of indirection
(e.g., int** to int*), and between different root types
(e.g., int* to void*).

nesCheck’s type inference engine effectively enforces a to-
tal ordering Dynamic ≺ Sequence ≺ Safe on pointer types,
so the type of a pointer is updated only if the new type is
more restrictive. For example, assume the following code:

1 int *arr , *p, n;

2 arr = malloc (5 * sizeof(int));

3 n = (int)arr;

4 p = arr [3];

Algorithm 1: nesCheck’s type inference algorithm

foreach declaration of pointer variable p do
classify(p, SAFE);

foreach instruction I using pointer p do
r ← result of(I);
if I performs pointer arithmetic then

classify(p, SEQ);
classify(r, SAFE);

if I casts p to incompatible type then
classify(p, DYN);
classify(r, DYN);



The pointer *arr is classified as Safe upon declaration. When
casted from int* to int, *arr is reclassified as Dynamic
since Dynamic ≺ Safe holds according to the total order-
ing. However, when used in pointer arithmetic, the type of
*arr is not changed as the total ordering constraint Sequence ≺
Dynamic is not satisfied.

Note that no extra rules are necessary for several non-
obvious cases, because the analysis runs on SSA form. For
instance, indirect calls (e.g., callbacks or function pointers)
are classified as Dynamic by nesCheck’s type inference be-
cause of the use of void* pointers. Another case includes
pointers to pointers, or pointers to structs containing point-
ers. If the inner type is classified as Dynamic, the outer type
must be classified as Dynamic as well. A concrete example of
this is int * q1 * q2, where q1 and q2 are pointer kinds. If
q2 is Dynamic, then q1 should also be Dynamic. The three
rules presented suffice in correctly classifying these point-
ers, since an access to that pointer as a whole will result in
two subsequent load instructions, that will propagate the
Dynamic classification between the different levels of indi-
rection.

After the type inference completes, all the pointers are
classified. The rules guarantee that the final assignments
are a conservative over-approximation, potentially classify-
ing non-Dynamic pointers as Dynamic pointers, but never
the opposite. This fundamental property ensures the cor-
rectness of the memory safety enforcement. The subse-
quent optimizations will compensate the potential perfor-
mance degradation of conservative classification.

Type Inference Validation. We discuss the nesCheck
type inference engine based on the example used in CCured [26]:

1 int **a;

2 int i;

3 int acc;

4 int **p;

5 int *e;

6 acc = 0;

7 for (i=0; i<100; i++) {

8 p = a + i;

9 e = *p;

10 while ((int) e % 2 == 0)

11 e = *(int**)e;

12 acc += ((int)e >> 1);

13 }

The program sums an array of “boxed integers”, a data
type with double interpretation: when odd, its 31 most sig-
nificant bits can be interpreted as an integer, otherwise it
represents the pointer to another boxed integer.

The expected behavior of the type inference engine is to
classify **a as Sequence – since it is used in pointer arith-
metic at line 8 – and *e as Dynamic – since it is casted
and used with different types at different locations (i.e., as
pointer at line 11 and as integer at line 12). All the other
pointers should be classified as Safe. It is possible to verify
that, according to our type inference algorithm, the correct
classification of **a as Sequence pointer is achieved by the
application of Rule 2 , while *e is correctly classified as Dy-

namic by Rule 3 applied at line 12. All the other pointers

are classified as Safe upon their declaration, by Rule 1 , and
their classification never changes.

Through this example and others constructed specifically
to exercise unusual pointer usages, we verify that nesCheck

Figure 2: Comparison of bounds metadata in
nesCheck to the traditional approach.

Figure 3: Explicit metadata variables.

correctly classifies all of the pointer types according to our
extended type system.

4.1.2 Metadata Computation and Propagation
The metadata maintained by nesCheck for each pointer

contains information about the memory area to which such
pointer points. Differently from the traditional tracking of
base b and bound e for each pointer, nesCheck’s metadata
includes the size of the areas towards both lower and higher
memory addresses (denoted with sl and sh, respectively),
with respect to the current address stored in the pointer
variable. Figure 2 shows a graphical comparison of our
metadata structure and the more traditional one. As an
example, let int* p be a pointer to an array of 5 integers,
and assume int* p1 = &p[2]. The metadata for p will be
(sl = 0, sh = 5·sizeof(int)), while the metadata for p1 will
be (sh = (5−2)·sizeof(int), sl = (5−2−1)·sizeof(int)).
This construction simplifies bounds checking by checking
only one “side” instead of two if we can infer the direction
of a sequential pointer; for example, in a common scenario
such as a monotonically increasing (or decreasing) loop, the
compiler can safely remove one check.

nesCheck computes the metadata information for each
pointer with different strategies, depending on the specific
pointer. For static allocations, such as arrays of fixed size or
pointers to structs, nesCheck directly computes the size of
the allocated memory. While dynamic memory allocation is
discouraged in TinyOS, nesCheck supports it for complete-
ness. For dynamically allocated memory, the size is com-
puted and updated by keeping track of the parameters of
calls to functions such as malloc(), realloc(), calloc(),
and free(). In cases where a local pointer can point to
different memory areas depending on dynamic control flow
conditions, nesCheck generates and injects an explicit vari-
able to hold the metadata for this pointer, depending on the
control flow paths. Figure 3 shows a concrete example of this
scenario – with the original source code on the left and the
instrumented one on the right – where function f() performs
different allocations for pointer *p depending on the value of



the function parameter a. Explicit metadata variables are
needed for pointers accessed in basic blocks different than
the one they were defined in. Detecting this behavior is
possible as the heap is in non-SSA form. nesCheck is thus
capable of connecting the same logical variable at the dif-
ferent locations (i.e., variable declaration and assignments
in disjoint branches). In Figure 3, the different basic blocks
are highlighted as separate, numbered solid boxes. *p is
declared in block 1, but is initialized in block 2 or 3, and
accessed in block 4.

4.1.3 Metadata Table
A Metadata Table associates specific memory addresses

with their metadata information. Efficient data structures,
e.g., hashmaps, often use large virtual address spaces [24].
Embedded devices do not have a virtual memory manage-
ment mechanism; however, all the pointers that will need
an entry in the Metadata Table are known at compile time,
so nesCheck optimizes its data structure by using a dense,
array-based Binary Search Tree. Moreover, for code that
follows TinyOS’s design guidelines and therefore does not
make use of dynamic memory allocation, this data structure
can be entirely preallocated for a statically-defined size.

We decouple metadata from the pointers – compared to fat
pointers used in prior work [26, 17, 1, 10, 27, 35] – in order
to achieve a uniform memory representation for all pointers.
Moreover, since the search tree is, on average, tiny compared
to the total number of pointers, keeping it separate allows
nesCheck to choose the optimal data structure.

4.2 Dynamic Instrumentation
Dynamic checks can detect all memory errors since they

have full runtime view and dynamic information when they
are executed. In nesCheck, the metadata for each pointer
is set to zero upon declaration, then always kept up-to-date
with the actual offsets of the pointer in its memory area.

Every time a dynamic check is necessary, the respective
memory access instruction is instrumented to be preceded
by a bounds check. A failed check will terminate the execu-
tion and reboot the node, preventing memory corruptions.
With no memory separation nor difference between kernel-
land and user-land, continuing the software execution af-
ter a memory error can have unpredictable, arbitrarily bad
outcomes. Rebooting is the only safe fault-handling action
to prevent further memory corruption and potential com-
promising of the entire network on such constrained plat-
forms. The attacker could try to exploit the same vulnera-
bility again, and achieve at best a Denial of Service (DoS).
Compared to probabilistic defenses, the attacker will never
succeed against memory safety. In a debugging scenario, it
would be possible to extend our prototype to send an error
report message to the base station, including more details
about the code location that caused the error. Our current
prototype supports the explicit printing of details about the
error location on screen when the code is run in a simulator
(more about the TinyOS simulator in Section 6).

Frequent updates and lookups in the table incur high per-
formance overhead. nesCheck optimizes by adding instru-
mentation to more directly propagate the metadata.

Functions taking pointers as parameters: A pointer
appearing as a parameter in a function will assume different
values for different callers of the function. Consequently,
the pointer will also inherit different metadata properties

depending on the pointer that is passed as actual parameter
at every different call site. nesCheck enhances the signature
of all the functions that have pointer parameters to include
additional parameters for the metadata. Note that vari-
adic functions are still supported by updates and lookups
in the metadata table. As an example, a function with
a signature such as void f(int* p) is enhanced to void

f(int* p, metadata pmeta), where metadata is the type
of the data structure holding nesCheck’s metadata informa-
tion. Finally, the pointer parameter is associated with the
metadata parameter as its own metadata.

Functions returning pointers: If a function returns a
pointer, metadata propagation must also be enabled through
the return value. nesCheck enhances the signatures of such
functions and their return instructions, from a single value
to a structure containing the original returned value plus
its attached metadata. Thus, the sample function signature
int* f() will be instrumented into {int*, metadata} f().
All the return instructions will consequently be transformed
from return p; into return {p, pmeta};, where pmeta is
the metadata information for pointer p. Lastly, all call sites
for this function must be instrumented to take into account
the change in return type, unpack the two pieces of data
from the structure (i.e., the pointer and its metadata) and
associate one with the other.

4.3 Running Example
In this section, we present the working of the core compo-

nents of nesCheck on a program example (shown in Figure 4)
that is small – for ease of detailed discussion and manual
analysis of expected behaviors – but stress-intensive in the
number of advanced features and memory error corner-cases
included. We include casting of pointer types to and from
integers, index-based access of memory areas, usage of point-
ers with incompatible types depending on specified condi-
tions, and dynamic memory allocation as well, even if dis-
couraged by TinyOS, to ensure the correctness of nesCheck
even in face of wrong programming styles.

While the analysis and instrumentation of the program in
nesCheck is carried out sequentially one entire function at a
time, here we follow the execution flow for a more effective
presentation. First of all, nesCheck rewrites the signatures
for testMT_aux to {foo_t*, meta_t} testMT_aux(int* p,

meta_t pmeta), and instruments similarly testMetadataT-

able and assignLoop.
In main(), nesCheck infers the size for the metadata of

*arr to be 5 integers, from the parameter of malloc(). The
subsequent call to testMetadataTable() is then updated for
its new signature (adding as second parameter the metadata
for *arr), avoiding the need for metadata table accesses.

The testMetadataTable function initially leverages the
support function testMT_aux for obtaining a pointer to struct

foo_t, using the characteristic TinyOS pattern of global
variables in place of dynamic allocation. The field f->bar

is aliased to *p, and this time the metadata propagation re-
quires metadata table accesses, as the pointer is in a struct.
The execution resumes in the testMetadataTable function.
The storing of a numerical value inside the array member
of the struct foo_t bla at line 14 is actually translated by
Clang into a sequence of GetElementPtr statements. When-
ever necessary, such instructions are instrumented by dy-
namic runtime checks and metadata table lookups.

Following the execution, the function testDynamically-



1 typedef struct foo {

2 int a;

3 int* bar;

4 } foo_t;

5 foo_t myfoo;

6

7 foo_t* testMT_aux(int* p) {

8 foo_t* f = &myfoo;

9 f->bar = p;

10 return f;

11 }

12 void testMetadataTable(int* p) {

13 foo_t* f = testMT_aux(p);

14 (f->bar)[2] = 13;

15 }

16 void assignLoop(int* p) {

17 int i;

18 for (i = 0; i < 4; i++)

19 *(p + i) = i;

20 }

21 void testDynamicAliasing(int n) {

22 int* p;

23 int a[4];

24 int b[12];

25 if (n < 1) p = a;

26 else p = b;

27 assignLoop (&(p[1]));

28 }

29 int main() {

30 int* arr = malloc (5 * sizeof(int));

31 testMetadataTable(arr);

32 testDynamicAliasing (0);

33 }

Figure 4: Representative example for the stress-
intensive microbenchmark.

Aliasing, conceived to stress-test common dynamic aliasing
scenarios, is first instrumented with explicit metadata vari-
ables, as presented in Section 4.1.2. Then, assignLoop()

tries to assign numeric values to the first 4 elements of the
array, resulting in an out-of-bounds memory violation. How-
ever, an injected dynamic runtime check at line 19 will catch
the out-of-bounds access to the 4th element of the array, and
the execution will be diverted to a trap function.

5. IMPLEMENTATION
The implementation of nesCheck leverages the existing

TinyOS compiler toolchain and extends it with custom com-
ponents built on Clang [5] and optimization passes from the
LLVM suite [18]. The technologies used are highlighted next
to each pipeline block in Figure 1.

The nesC source code is initially processed by ncc, the
nesC compiler, that links the different nesC components to-
gether through their interfaces and translates the result to a
single C source code file. The C source is then transformed
into the LLVM Intermediate Representation (IR) language.
Such IR is a well-specified code representation offering an
abstraction layer between the source programming language
used (nesC/C) and the actual target platform code. Then,

the IR is passed to our nesCheck Static Analyzer, based on
an LLVM target-independent Optimization Pass.

The nesCheck Analysis State Manager component main-
tains the analysis state throughout the different steps, and
propagates information between the various components.
Most of the metadata is kept in memory by the Analy-
sis State Manager, and looked up and injected only when
needed for the appropriate instrumentation.

As a last step, the minimal set of required runtime checks
for the memory-manipulating instructions is computed, and
the code is instrumented accordingly. The LLVM IR uses,
in general, two separate instructions for pointer dereferenc-
ing: a GetElementPtr instruction to calculate the memory
address of the location to be accessed, and a Load or Store

instruction to actually access this memory location and, re-
spectively, place the resulting value in a variable or store a
value into the location. nesCheck’s instrumentation adds a
bounds check conditional branch before the GetElementPtr

instruction, and a trap function to be invoked whenever the
runtime check fails, to terminate the execution and reboot
the node, preventing memory corruptions.

Whenever nesCheck statically determines that any exe-
cution of the instruction being instrumented will result in
a failure of the check – i.e., the condition can be statically
determined to be always false – the user is alerted that a
constant memory bug is present, providing her with insights
useful to inspect and fix the bug.

The rest of the pipeline, after the instrumentation, re-
sumes the original TinyOS compilation toolchain, having
the instrumented code go through the gcc compiler to ob-
tain the final native binary for the desired target platform.

6. EVALUATION
The TinyOS development platform ships with several sam-

ple applications, such as radio communication, sensing, hard-
ware interaction. As done by most other TinyOS research
works [8, 4, 3, 29, 20], we use these applications as bench-
mark suite for evaluating nesCheck. In our experiments, we
instrument all executed code, including that of the TinyOS
operating system itself. Table 1 provides details on each
program in our benchmark suite. We first use these applica-
tions as-is to evaluate the performance overhead. Then, we
evaluate the overall effectiveness of nesCheck by randomly
injecting memory bugs in the benchmark applications and
verifying that all of them are caught statically or at runtime.

We evaluate nesCheck on several static metrics – such as
the number of pointer variables, their inferred type classifi-
cation, and the number of dynamic check instrumentations
– and dynamic metrics – such as the overhead of nesCheck
in terms of program size, memory, execution performance,
and energy consumption.

To evaluate performance, we compiled the applications for
TOSSIM [20], a discrete event simulator, de facto-standard
tool for TinyOS WSNs. TOSSIM simulates the behavior of
TinyOS accurately down to a very low level and precisely
times interrupts. This allowed us to perform the evalua-
tion in a controlled environment, through repeatable exper-
iments, and to increase the number of runs for each experi-
ment, while still maintaining a realistic distributed embed-
ded software execution. Each of the evaluation results has
been obtained by averaging 25 independent runs of each test.

Type Inference. The results in Figure 5 show that,
on average, 81% of the variables are classified as Safe, 13%



Application LOC Description
BaseStation 5684 Simple Active Message bridge between the serial and radio links.
Blink 5505 Blinks the 3 LEDs on the mote.
MultihopOscilloscope 11728 Data collection: samples default sensor, broadcasts a message every few readings.
Null 4261 An empty skeleton application, useful to test the build environment functionality.
Oscilloscope 6868 Data collection: radio broadcasts a message every 10 readings of default sensor.
Powerup 4306 Turns on red LED on powerup, to test deploy of app on hardware mote.
RadioCountToLeds 6751 Broadcasts a 4Hz counter and displays every received counter on the LEDs.
RadioSenseToLeds 6808 Broadcasts default sensor readings, displays every received counter on the LEDs.
Sense 5699 Periodically samples the default sensor and displays the bottom bits on the LEDs.

Table 1: TinyOS standard applications used as benchmark for nesCheck’s evaluation.
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Figure 5: Pointer classification results for the
TinyOS sample apps benchmark.

as Sequence, and 6% as Dynamic. A large number of dy-
namic runtime checks can thus already be skipped as imme-
diate consequence of the type system inference. Note that,
since the analysis is conservative, some pointers classified
as dynamic might not be so; however, as shown in the per-
formance evaluation afterwards, this does not degrade the
efficiency of our approach.

The average total number of analyzed variables, across all
the TinyOS sample applications in the benchmark, is 3, 633,
a small number that further supports our design choice of
whole-program static analysis.

Code Size and Performance Overhead. We inves-
tigate the overhead of nesCheck’s instrumentation in terms
of code size and performance, and the results are shown in
Figure 6. The programs in the benchmark total to 57, 610
lines of code. The size overhead is measured in additional
bytes of the memory-safe executable produced by nesCheck
vs. the uninstrumented one, both including the code for
the TOSSIM simulator infrastructure. The code size of the
uninstrumented programs averages to 228, 761 bytes, and
the instrumentation adds only 12, 201 bytes (5.3%) of over-
head on average. This result shows that nesCheck is suitable
for the instrumentation of programs to be deployed even on
devices very constrained in ROM.

We also measure the performance overhead of nesCheck
through the TOSSIM simulator for TinyOS. This tool is used
by a simulation driver program by repeatedly asking it to
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Figure 6: Code size and performance overhead for
the instrumented TinyOS apps, including TOSSIM.

execute the next event from the simulation queue. The dura-
tion of each event and the total number of events depend on
the complexity of the computation to be executed. There-
fore, we measure the overhead of nesCheck’s instrumenta-
tion by fixing the total simulation time to 30 real seconds,
running the simulation of the original and instrumented ap-
plications, and then measuring the number of simulated
seconds actually executed. In three cases (BaseStation,
Null and PowerUp), since the applications are merely sam-
ple “skeleton” programs to guide developers, no real events
were happening after the initial program startup. There-
fore, for those programs the reported overhead is 0, and we
do not consider them in our averages for the performance
overhead. For all the other applications that continuously
process events, we observe that TOSSIM executes more sim-
ulated seconds (in the span of 30 real seconds) for simpler
programs than for more complex ones. For example, the
simple Blink program is executed for 120185.86 simulated
seconds, while the more complex RadioSenseToLeds pro-
gram only reaches 6878.08 simulated seconds (both unin-
strumented). In fact, this confirms the intuition that fewer
events can be processed in the same time span when the
computation of each event is more complex. On average,
nesCheck introduces a performance overhead of 6.2%. We
note that the maximum overhead (incurred by the Blink

application) is still quite low, at 8.4%. We believe that this
overhead is acceptable for WSN applications.
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Memory Overhead. As discussed in Section 4.1.3, some
of the pointers require entries in a separated metadata table.
We thus measure the impact of this additional data on the
memory of the embedded devices. Figure 7 and Figure 8
present our results on the memory overhead of nesCheck for
the TinyOS applications benchmark. In particular, Figure 7
shows the number of metadata lookups added to the code
and the number of actual metadata table entries required
for each application. On average, nesCheck added only 90
metadata table entry lookup instrumentation points during
the instrumentation. Given the SSA form, there is a direct
relationship between the number of memory accesses and
the number of analyzed variables; therefore, we compare
the number of metadata lookups with the total number of
variables analyzed by nesCheck, and see that it amounts to
just 2%. When only comparing to the Dynamic pointers, it
amounts to 41%, which still represents a significant mem-
ory saving. Many of such lookups, furthermore, refer to the
same logical variable, and thus point to the same entry in
the metadata table. Thus, in fact, only 32 distinct entries
are needed on average in the metadata table, constituting
approximately 1/3 of the total lookup instrumentations for
each program. With these collected metrics, we measure the
effective RAM overhead of nesCheck for each application by
comparing the RAM occupation of the uninstrumented pro-
gram – as reported by the nesC toolchain when compiling
for the TelosB motes platform [23] – with the size of the
metadata table in the instrumented version – representing
the effective memory overhead. Figure 8 presents both these
metrics side by side for ease of presentation. The numbers
vary greatly for the different applications, as the number
of metadata table entries is completely dependent on the
data structures used by each program. However, the aver-
age overhead is 16%, and in all cases the total memory re-
quirement remains significantly below the 10kb RAM limit
of the TelosB platform chosen for this experiment.

Checks Reduction. As part of our experimental anal-
ysis, we collected statistics about the number of runtime
checks added to the programs during the instrumentation,
together with the checks that are removed as part of nesCheck’s

1818

56

3650

6

490

6

356

456

132

774.44

120

88

496

24

108

24

100

100

104

129.33

0 200 400 600 800 1000 1200 1400 1600 1800 2000

BaseStation

Blink

MultihopOscilloscope

Null

Oscilloscope

Powerup

RadioCountToLeds

RadioSenseToLeds

Sense

Average

Original RAM Overhead
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Figure 9: Checks added and checks skipped in the
instrumented TinyOS sample apps benchmark.

check reduction. This metric includes the reduction both
due to pointer kind classification and our additional anal-
ysis of pointer usage, which leads to removing additional
checks whenever memory accesses can be statically verified
as safe. As shown in Figure 9, the complete analysis and in-
strumentation of nesCheck for all the TinyOS applications
overall reduces, on average, the required checks by 20% of
the total potentially vulnerable locations, greatly reducing
the performance overhead in enforcing memory safety. For
the whole benchmark suite, an average of 452 checks are
added, and 110 are skipped.

Energy Overhead. The power consumption for the vari-
ous operations – such as computation, radio communication,
standby or sleep – varies across the different sensor mote
hardware platforms. However, on all platforms, the majority
of the power consumption is always caused by wireless trans-
mission and reception, as well as the transitions between the
on and off states of the radio. Shnayder et al., for example,
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Figure 10: Fault injection results on TinyOS bench-
mark.

quantitatively measure that, in many cases, active CPU cy-
cles in WSN applications are very small, and have negligible
effect on total power consumption [30]. The instrumenta-
tion of nesCheck in TinyOS programs does not introduce
any additional radio communication, while instead adding
some runtime computation for the dynamic checks. There-
fore, the energy overhead is, intuitively, proportional to the
performance overhead that we measured in our experiments
by a factor of CPU energy consumption.

Since measuring the energy consumption directly on the
motes’ hardware is difficult [33], to quantify this metric we
leverage the energy model proposed by Polastre et al. [28].
We refer to the MicaZ motes hardware platform datasheet [22]
(being the platform simulated by TOSSIM), and multiply
the battery voltage by current draw and time. With those
calculations, the energy overhead for nesCheck amounts on
average to 0.84%, a negligible quantity that supports our
analytical expectations.

Fault Injection. To evaluate the effectiveness of nesCheck
in preventing all memory errors, we randomly injected mem-
ory vulnerabilities and bugs in the TinyOS applications.
We injected 500 random faults in each applications in the
TinyOS benchmark, for a total of 4, 500 faults. In partic-
ular, each time we selected one random memory access, al-
tered its indices to produce a memory error, and included
an extra printing instruction to mark the moment when the
memory fault occurs; we then instrumented the application
and executed it. We expected nesCheck to correctly find
the fault, either statically or at runtime, and prevent the
out-of-bounds access. Figure 10 shows our results. On av-
erage, 22% of the injected faults were statically caught at
compile time. 37% of the faults were injected in areas of the
code that were not executed at runtime. For the injected
faults that were executed at runtime (41% on average), 100%
were correctly caught by the dynamic checks placed by the
nesCheck’s instrumentation, i.e., no fault occurred and went
uncaught.

Naive vs. Optimized Approach. While a direct com-
parison of nesCheck with traditional techniques such as Soft-
Bound or CCured is infeasible due to (i) constraints of em-
bedded systems, and (ii) the missing implementation of Soft-
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Figure 11: Naive vs. optimized instrumentation on
TinyOS benchmark.

Bound or CCured for embedded systems, we measure the
performance benefits of nesCheck’s check reduction to get
an estimate of the improvement over those traditional tech-
niques. We run nesCheck with (“optimized”) and without
(“naive”) check reduction optimizations, and run it on all the
applications in the benchmark (excluding those that did not
yield events in our performance overhead evaluation) Fig-
ure 11 shows a comparison of the overhead of the naive and
optimized executions of the instrumented programs. We ob-
serve an overhead reduction of 41.13% on average, showing
how nesCheck’s check reduction effectively leads to signifi-
cant performance improvements.

7. LIMITATIONS
Currently, a sensor node instrumented with nesCheck is

rebooted when a dynamic check fails. Since this might not
always be the best option, in the future, we plan to work on
more advanced, programmer-guided recovery mechanisms,
with the goal of maintaining the network as functional as
possible even in the presence of memory errors.

An attacker could attempt to repeatedly trigger a mem-
ory error, which nesCheck’s protection would counter by re-
booting the software, to achieve DoS. However, nesCheck’s
memory safety guarantees ensure that a memory safety error
cannot be used for malicious intents (except for DoS).

More powerful computing platforms (e.g., Raspberry PI)
are becoming increasingly available. However, they are im-
practical for common WSN application purposes, with sig-
nificantly higher cost, energy requirements, and size, as com-
pared to low-power WSN nodes. The latter have the advan-
tages of being cheap, easily replaceable, deployable in bulk,
and in need of little energy. Even when such more advanced
devices will become sufficiently cost-effective for large de-
ployments, efficiency would still remain a critical concern
for memory safety techniques, as the number and scale of
applications deployed on them would consequently increase
as well. We plan to work in this direction to investigate
how nesCheck can be ported to more powerful platforms,
and leverage the additional capabilities of these platforms
to further improve performance.



Our evaluation did not find instances of memory bugs in
TinyOS – a reasonable outcome since the code base is small
and has been widely used for several years (i.e., bugs were
fixed), while at the same time seeing very few modifications
(i.e., no new bugs). Also, at runtime, nesCheck evaluates
only the executed code paths, not all possible code paths.

The current prototype of nesCheck enforces spatial mem-
ory safety. Our approach could, however, be extended to
also enforce temporal memory safety. Note that most WSN
applications do not use dynamic memory allocation, and are
therefore fully protected by spatial safety alone. Neverthe-
less, we plan to extend our implementation of nesCheck to
explicitly address temporal safety, and design mechanisms
tailored for embedded platforms to enforce it.

When determining the set of vulnerable pointers, (a) false
negatives (i.e., pointers marked as Safe when they are not)
cannot occur, as nesCheck is conservative in case of ambigu-
ity, and (b) false positives (i.e., pointers not marked as Safe
when they are) do not compromise the security invariants
but only cause performance degradation. Our experimental
analysis shows that nesCheck’s overall overhead is small.

Lastly, the scalability of the system, and further overhead
reduction, are of great importance. We plan to investigate
whether the integration of Bounded Model Checking tech-
niques [2] in nesCheck helps in that direction, as it would en-
able the use of formal verification techniques for proving the
safety of seemingly dangerous memory accesses, therefore
further reducing the overhead. Note that there are several
issues that make formal verification on embedded software
hard. Several patterns – such as direct communication with
hardware registries for sensing, network packets, frequent in-
terrupts, or the use of bit fields – cause the search space for
formal verification to quickly explode. Dynamic checks are
able to cope with these patterns, at the price of performance.

8. RELATED WORK
Memory safety is an ongoing research topic [34]. Attacks

to WSN software through memory vulnerabilities have been
widely investigated. Against common belief that Harvard-
architecture devices would prevent code injection attacks,
Francillon et al. [11] showed a detailed exploit for code in-
jection without size limitation through carefully crafted net-
work packets. Giannetsos et al. carried out a similar study [15],
targeting Von Neumann-architecture devices. These two
works cover most common architectures for WSNs, able to
exploit, for example, both MicaZ and TelosB motes.

From the defense point of view, research work has typ-
ically taken three different directions: runtime protection,
formal analysis and symbolic execution. nesCheck uses an
approach that enhances the runtime protection class of mech-
anisms with static analysis techniques.

Runtime protection. Necula et al. introduce an ex-
tended type system for CCured [26]. CCured uses pointer
classification as a static analysis technique to infer safe point-
ers that do not need bounds checks; however, it instruments
all non-safe pointers in the code with runtime checks, poten-
tially generating many unnecessary checks. nesCheck over-
comes this issue by leveraging more extensive static anal-
ysis techniques to conservatively detect whether some of
the sequence pointers can be left unchecked too, as well as
detecting statically-recognizable memory violations. Soft-
Bound [24] is a compile-time approach that instruments C
code to enforce spatial memory safety by (i) keeping track

of the properties of each the pointed memory area, and (ii)
wrapping each memory access with a bounds check. Its
design is geared towards platforms with large amounts of
memory and virtual memory mechanisms, as it needs to
maintain metadata about each pointer at runtime. Such re-
sources are not available on constrained embedded devices.
nesCheck leverages static analysis (see Section 4.1) to mini-
mize the number of pointers whose metadata is managed in-
memory at runtime, replacing the global metadata with lo-
cal stack variables or conservatively removing the metadata
completely (for specific pointers). While nesCheck too lever-
ages dynamic runtime checking to enforce memory safety, it
tailors and optimizes this approach to the specific character-
istics of nesC applications in order to improve performance.
Compared to the notable solutions just discussed, as well as
other traditional ones, nesCheck works for embedded soft-
ware, being designed specifically for their constraints, chal-
lenges, and advantages. One of the most relevant approaches
for memory protection in WSN applications – and TinyOS in
particular – is Safe TinyOS [8]. Cooprider et al. investigate
issues related to the implementation of memory protection
for TinyOS programs by formalizing the problem and the
requirements, and developing optimizations that make run-
time checks more viable under the strict performance con-
straints of WSN software. Safe TinyOS relies on the Deputy
source-to-source compiler [7] to infer necessary information
for the code instrumentation. Note that the Deputy project
is no longer maintained. Safe TinyOS, however, puts much
of the analysis burden on the programmers, requiring them
to either annotate the code with specific type definitions
and safety guidelines, or to declare entire components as
“trusted” and therefore skipped by the tool. nesCheck, on
the other hand, automates the entire process, with no need
for source code modifications. Also, nesCheck reduces the
potential runtime overhead by removing unnecessary checks
before the instrumentation.

Formal analysis. Bucur et al. [4] propose a source-to-
source transformation tool to make TinyOS code processable
by the CBMC [6] bounded model checking [2] proving tool.
The well-known limitations of formal verification, in particu-
lar the search space explosion, are inherited by this approach
too. Even though Bucur et al. propose several optimizations
to reduce the complexity to be handled, large-scale applica-
tions can still suffer by long times for analysis and potential
undecidability if the state becomes too big to be handled.

Symbolic execution. Sasnauskas et al. [29] build an
approach on top of the Klee symbolic execution framework
to debug TinyOS applications before deployment. Just like
for the formal analysis-based approaches, the bottlenecks for
these designs are: (i) the need for a good model definition
of the application to be tested, and (ii) the rapid explosion
of the search state. If either part of the design results in a
non-complete coverage of every possible vulnerability, then
not all the bugs can be effectively identified. Conversely,
since nesCheck leverages runtime checks for all the memory
accesses that cannot be statically proven as safe, in a conser-
vative way, nesCheck is guaranteed to always catch all the
potential vulnerabilities and prevent memory corruption.

Hardware. Francillon et al. [12] propose a hardware
modification to split the stack in a control flow stack and
a data stack. While this is an interesting idea, it would re-
quire hardware manufacturers to change the platform (an
economically burdensome path unlikely to be pursuable).



nesCheck’s software-only approach does not require changes
to the hardware platform, nor to the source code.

9. CONCLUSIONS
We presented nesCheck, an approach that combines whole-

program static analysis and dynamic checking techniques to
efficiently enforce memory safety on nesC programs, with-
out requiring any source modification. nesCheck implements
techniques to determine the presence of static memory bugs
in the code, as well as to instrument it with the required set
of runtime checks. It focuses on minimizing the overhead for
the dynamic checks, considering the strict constraints of em-
bedded systems. Through extensive evaluation benchmarks
– both on specifically constructed programs and the stan-
dard TinyOS applications – we showed the effectiveness of
nesCheck in enforcing memory protection while minimizing
the runtime performance overhead (0.84% on energy, 5.3%
on code size, up to 8.4% on performance, and 16.7% on
RAM).
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APPENDIX
A. PROOF OF SAFETY

In this section, we sketch a formal proof of memory safety
for nesCheck. First, we give the intuition of the rules for
type inference. Then, we follow the general structure of
the proof of SoftBound [31], while focusing on the features
relevant for nesCheck. We tackle the complexity of the nesC
language by focusing the proof on an abstract subset of nesC
that captures most of the fundamental primitives. We keep
the formalism, operational semantics tractation and proof
short, while still remaining sound in showing safety.

A.1 Grammar and Operational Semantics
The syntax we use models programs in their processed

IR form, already reduced to atomic data types (int and
pointers) and simple operations. Table 2 shows the grammar
we consider for our proof. We use LHS and RHS to denote
left-hand side and right-hand side, respectively. Note that,
while most WSN applications do not use dynamic memory
allocation, we include it in our formal grammar for the sake
of generality. In our simplified operational semantics, we
consider an environment E that models the stack with a
map S from variable names to addresses and types, models
the type inference with a map Γ from variable names to
pointer categories, and models the heap with a partial map
M from addresses to values.

Atomic Types t ::= int | p*
Pointer Types p ::= t | s | void
Struct Types s ::= struct{f ; f}
Struct Fields f ::= (id:t)

LHS Expr. lhs ::= x | *lhs | lhs.id | lhs->id
RHS Expr. rhs ::= val | rhs+rhs | &lhs | (a)rhs

| sizeof(p) | malloc(rhs) | lhs
Commands c ::= c ; c | lhs = rhs

Table 2: Grammar used in the formal proof of safety.

Using some and none to denote presence or absence of a
value, we model nesC’s memory access primitives as follows:
(i) read M l: if l is an allocated memory location, return
some, otherwise return none; (ii) write M l v: if l is an
allocated memory location, set the content to the value v;
(iii) malloc M s: if M has an available region of size s,
allocate and return it, otherwise fail.

The normal C operational semantics processes assignments
by writing the result of the expression in the RHS operand
to the address calculated from the LHS operand. For this
proof, we extend the traditional operational semantics of
C by including new outcomes for operations (that include
memory errors) and tracking of pointers metadata. A result
r can therefore be: (i) v(sl,sh), a value v with the attached
metadata for the size of the memory region towards the lower
(sl) and higher (sh) memory addresses (see Section 4.1.2);
(ii) a memory address l; (iii) Success; (iv) MemoryError if
a bounds check failed; (v) MemoryExhaustion if M did not
have enough free memory upon a malloc operation.

Using the above definitions, we formalize nesCheck’s oper-
ational semantics with four classes of rules. First, the rules
for type inference and propagation. Second, the (E, lhs)⇒l

r : a rule specifies how LHS expressions are evaluated (no
changes to the environment). Third, the (E, rhs)⇒r (E′, r :
a) rule specifies how RHS expressions are evaluated (poten-
tial changes to the environment; if successful, r is v(sl,sh)).
Lastly, (E, c)⇒c (E′, r : a) is the rule to execute commands
(r must be a success or failure result). Here we omit rules
straightforwardly representing standard C semantics, and
just show the rules most relevant for nesCheck’s semantics.

A.2 Type Inference
We present some of the rules for type inference, that for-

malize the rules presented in Section 4.1.1. For example,
pointer arithmetic on a Safe or Sequence pointer causes the
result to be of Sequence kind, while casting a Safe or Se-
quence pointer to an incompatible type (Section 4.1.1 defines
two types as “incompatible” when, for example, they have
different levels of indirection or have same level of indirection
but different root types) results in a Dynamic pointer:

T

Γ(x) = τ
τ ∈ {Safe, Seq, Dyn}

Γ ` x : τ

ArithT1

Γ ` e1 : τ
τ ∈ {Safe, Seq}

Γ ` e2 : int

Γ ` e1 + e2 : Seq
ArithT2

Γ ` e1 : τ
τ = Dyn

Γ ` e2 : int

Γ ` e1 + e2 : Dyn

IllegCast

(E, x)⇒l l : t
incompatible(t, t′)

Γ ` (t′)x : Dyn

No memory access to Safe pointers is subject to dynamic
bounds checks; conversely, all memory accesses to Dynamic
pointers are instrumented with runtime checks. For a mem-
ory access to a Sequence pointer, if nesCheck can statically
determine that it will never result in an out of bounds op-
eration, it will not be instrumented with a dynamic check.
We therefore define a predicate safe(∗p) that is true (>) iff
the memory access ∗p does not require bounds checks, false
(⊥) otherwise:

http://www.cis.upenn.edu/acg/softbound/


safe(∗p) =


> if Γ ` p : Safe ∨

(Γ ` p : Seq ∧ ∗p not out of bounds)

⊥ otherwise

nesCheck declares a memory access as never out of bounds
only if the in-memory metadata propagated up to that ac-
cess statically indicates the safety of the operation. The re-
sult of the predicate safe(∗p) for memory accesses on that
pointer removes the need to carry the pointer type over
to the dynamic bounds checks rules. The formal proof of
CCured [26] shows it is safe to leave memory accesses unin-
strumented, and the same proof also applies in our case to
statically-provable Sequence pointers accesses.

A.3 Dynamic Bounds Checks
The bounds checking operational rules are very similar to

those of SoftBound, so we omit most of them for brevity.
We present here the rules for the evaluation of a pointer
dereference operation, both in case of success:

DerefSuccess

(E, lhs)⇒l p : t∗
read (E.M) p = some v(sl,sh)

safe(p) ∨ (sl ≥ 0 ∧ sh ≥ sizeof(t))

(E, ∗lhs)⇒l v : t

and in the case of memory error (failed bounds check):

DerefFail

(E, lhs)⇒l p : t∗
read (E.M) p = some v(sl,sh)

sl < 0 ∨ sh < sizeof(t)

(E, ∗lhs)⇒l MemoryError : t

Other rules, such as those for type casts and pointer arith-
metic, need to ensure that metadata information is propa-
gated correctly:

PtrArithm

(E, ptr)⇒r (E′, l(sl,sh) : p∗)
(E′, val)⇒r (E′′, off(sl′,sh′) : int)

l′ = l + off ∗ sizeof(p)
sl′ = sl + off ∗ sizeof(p)
sh′ = sh− off ∗ sizeof(p)

(E, ptr + val)⇒r (E′, l′(sl′,sh′) : p∗)

TypeCast

(E, rhs)⇒r (E′, v(sl,sh) : t)
t′ 6= int

(E, (t′)rhs)⇒r (E′, v(sl,sh) : t′)

For the formal rule for integer-to-pointer cast, we follow
SoftBound’s approach of zeroing out the metadata to avoid
potentially undefined behaviors:

TypeCastIntToPtr

(E, rhs)⇒r (E′, v(sl,sh) : t)
t = int

(sl′, sh′) = (0, 0)

(E, (t′)rhs)⇒r (E′, v(sl′,sh′) : t′)

With this support infrastructure of rules in place, we note
that the operational rules for values that are valid at run-
time and need runtime bounds checks are fully equivalent to
their corresponding rules in SoftBound’s formal model [24].
Therefore, they satisfy the same safety invariants and ensure
memory safety for those values, as proven for SoftBound (in
Theorems 4.1 and 4.2, and Corollary 4.1 in [24]). Reducing
our formal definitions and methodology to the respective

ones in the SoftBound paper allows for a proof by reduc-
tion, with the aim of presenting a set of theoretical concepts
that the reader is already familiar with, and that can rely
on the full formalization of SoftBound.

While adding bounds checks to every memory access is
surely sound, as shown by the proof in SoftBound, by com-
bining the latter with the proof in CCured we improve the
performance overhead by removing unnecessary checks while
still remaining sound. Thus, given the operational seman-
tics rules above, every memory access in nesCheck is either
safe at runtime – resulting in a correct access – or causes
the application to stop – due to a detected memory error.
Therefore, the nesC applications analyzed and instrumented
by nesCheck fulfill the set memory safety goals.

B. SOURCE CODE
The source code for our implementation of nesCheck will

be made available at https://github.com/HexHive/nesCheck.
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