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Appendix: HISTORICAL REMARKS ON COMPILER
CONSTRUCTION

F. L. Bauer
Technical University of Munich

Munich, Germany

Historical Remarks on Compiler Construction

D. E. KNUTH [81] has observed (in 1962!) that the early history of cimpiler construc-
tion is difficult to assess. Maybe this, or maybe the general unhistorical attitude
of our century is responsible for the widespread ignorance about the origins of com-
piler construction. In addition, the overwhelming lead of the USA in the general de-
velopment of computers and their application, together with the language barrier, has
in fact favoured negligence of early developments in Middle Europe and in the Soviet
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TURING AWARD LECTURE

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan
horses? Perhaps it is more important to trust the people who wrote the
software.

KEN THOMPSON

pile” is called to compile the next line of source. Figure
3.2 shows a simple modification to the compiler that
will deliberately miscompile source whenever a partic-
ular pattern is matched. If this were not deliberate, it
would be called a compiler “bug.” Since it is deliberate,
it should be called a “Trojan horse.”

The actual bug I planted in the compiler would
match code in the UNIX “login” command. The re-
placement code would miscompile the login command
so that it would accept either the intended encrypted

password or a particular known password. Thus if this
" tnllad o isarvr and the hingry were 11eed

MORAL

The moral is obvious. You can't trust code that you did
not totally create yourself. (Especially code from com-
panies that employ people like me.) No amount of
source-level verification or scrutiny will protect you
from using untrusted code. In demonstrating the possi-
DIIILY O LH1S KINd Of atlack, I piCked onl e G compiler.
I could have picked on any program-handling program
such as an assembler, a loader, or even hardware mi-
crocode. As the level of program gets lower, these bugs
will be harder and harder to detect A well-installed
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CORRECTNESS OF A COMPILER FOR
ARITHMETIC EXPRESSIONS*

JOHN McCARTHY and JAMES PAINTER
1967

1 Introduction

This paper contains a proof of the correctness of a simple compiling algorithm
for compiling arithmetic expressions into machine language.

The definition of correctness, the formalism used to express the description
of source language, object language and compiler, and the methods of proof are
all intended to serve as prototypes for the more complicated task of proving the
correctness of usable compilers. The ultimate goal, as outlined in references
11], [2], [3] and [4] is to make it possible to use a computer to check proofs that
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Testing Verification

Whalley, '94, vpoiso

McKeeman, 98 Goerigk,’00 (in ACL2)
McPeak & Wilkerson, ’03, Delta

Lacey et al.’02
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Formal veritication of a Realistic Compiler

3y Xavier Leroy

Communications of the ACM, Vol. 52 No. 7, Pages 107-115
10.1145/1538788.1538814

Comments

vEwas: B [0 @& B¢ SHARE: M & Q@ [8+ Lf]

This paper reports on the development and formal verification (proof of semantic preservation) of CompCert,
1 compiler from Clight (a large subset of the C programming language) to PowerPC assembly code, using the
Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified
compiler is useful in the context of critical software and its formal verification: the verification of the compiler
guarantees that the safety properties proved on the source code hold for the executable compiled code as well.

Back to T p

1. Introduction

Can you trust your compiler? Compilers are generally assumed to be semantically transparent: the compiled
optimizing compilers—are complex programs that perform complicated symbolic transformations. Despite
intensive testing, bugs in compilers do occur, causing the compilers to crash at compile-time or—much worse
—to silently generate an incorrect executable for a correct source program.







Dead Store Elimination

#include <string>
using std::string;

#include <memory>

// The specifics of this function are
// not important for demonstrating this
const string getPasswordFromUser() const;

bool isPasswordCorrect() {
bool isPasswordCorrect = false;
string Password( "password");

if (Password == getPasswordFromUser())
isPasswordCorrect = true;

}

// This line is removed from the optimized code
// even though it secures the code by wiping

// the password from memory.

memset (Password, 0, sizeof(Password));

return isPasswordCorrect;

From the GCC mailing list, 2002

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8537
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https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8537
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8537

From: "Joseph D. Wagner" <wagnerjd@prodigy.net>
To: <fw@gcc.gnu.org>,
<gcc-bugsf@gcc.gnu.org>,
<gcc-prsf@gcc.gnu.orqg>,
<nobody@gcc.gnu.org>,
<wagnerjd@prodigy.net>,
<gcc-gnatsf@gcc.gnu.org>

Cc:
Subject: RE: optimization/8537: Optimizer Removes Code Necessary for Security
Date: Sun, 17 Nov 2002 08:59:53 -0600

Direct quote from:
http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Bug-Criteria.html

"If the compiler produces valid assembly code that does not correctly
execute the input source code, that is a compiler bug."

So to all you naysayers out there who claim this is a programming error
or poor coding, YES, IT IS A BUG!

From the GCC mailing list, 2002

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8537
10
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Motivating Questions:

Can a formally verified, correctly implemented
compiler optimization introduce a security
bug not present in the source!
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Automated Soundness Proofs
for Dataflow Analyses and Transformations via Local Rules

Sorin Lerner Todd Millstein PLDI 2003
Univ. of Washington UCLA
lerns@cs.washington.edu todd@cs.ucla.edu

. Enka Rlpe Cralg Chambers
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Provmg Correctness of Compiler Optimizations by

Temporal Logic -
POPL 2002

David Lacey Neil D. Jones Eric Van Wyk Carl Christian Frederiksen

Formal Certification of a Compiler Back-end
or: Programming a Compiler with a Proof Assistant

Xavier Leroy POPL 2006

Simple Relational Correctness Proofs for
Static Analyses and Program Transformations
(revised)

Nick Benton POPL 2004
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Motivating Questions:

Can a formally verified, correctly implemented
compiler optimization introduce a security
bug not present in the source!
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Motivating Questions:

Can a formally verified, correctly implemented
compiler optimization introduce a security
bug not present in the source!
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Memory Dead sFore elimir)a.tion
, Function call inlining
Persistence Code motion
Side Subexpression Elimination
Strength reduction
Channels Peephole Optimizations
Language Undefinedness in C/C++

j Memory model issues
SPeC|ﬁCS Synchronization issues




Function Call Inlining

char *getPWHash() {
// code performing a secure computation
// assuming a trusted execution environment.

}

void compute() {

// local variables
long i, J;
char *sha;

// Code in this function does not assume
// a trusted execution environment.

//call secure function
sha=getPWHash () ;

(from the paper)
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Side Channels

*SCALE=\(2); # 2 or 8, that is the question:- Value of 8 results
in 16KB large table, which is tough on L1 cache, but eliminates
unaligned references to it. Value of 2 results in 4KB table, but
7/8 of references to it are unaligned. AMD cores seem to be
allergic to the latter, while Intel ones - to former [see the
table]l. I stick to value of 2 for two reasons: l. smaller table
minimizes cache trashing and thus mitigates the hazard of side-
channel leakage similar to AES cache-timing one; 2. performance
gap among dirrerent pU-archs 1s smaller.

&set label ("roundsdone",16);
MOV "esi",&DWP (0, "ebx")); # reload argument block
&mov "edi" ,&DWP (4, "ebx"));
&MOV "eax" ,&DWP (8, "ebx"));

for($1i=0;$1i<8;$i++) { &pxor(@mm[Si],&QWP(S$i*8,"edi")); }
for($i=0;$1i<8;$i++) { &pxor(@mm[S$i],&QWP(S$i*8,"esi"));
for($1i=0;$1i<8;$i++) { &movqg(&QWP(Si*8,"esi"),@mm[S$i]);

&§lea ("edi",&DWP(64,"edi")); # inp+=64

&sub ("eax",1); # num--

&jz (&label("alldone"));

&mov (&DWP (4, "ebx"),"edi"); # update argument block
&mov (&DWP (8, "ebx"), "eax");

&Jjmp (&label ("outerloop"));

https://github.com/openssl/openssl/blob/e0fc796 | c4fbd27577fb519d9aea2dc788742715/cr

whrlpool/asm/wp-mmx.pl
17



https://github.com/openssl/openssl/blob/e0fc7961c4fbd27577fb519d9aea2dc788742715/crypto/whrlpool/asm/wp-mmx.pl
https://github.com/openssl/openssl/blob/e0fc7961c4fbd27577fb519d9aea2dc788742715/crypto/whrlpool/asm/wp-mmx.pl
https://github.com/openssl/openssl/blob/e0fc7961c4fbd27577fb519d9aea2dc788742715/crypto/whrlpool/asm/wp-mmx.pl
https://github.com/openssl/openssl/blob/e0fc7961c4fbd27577fb519d9aea2dc788742715/crypto/whrlpool/asm/wp-mmx.pl

Common Subexpression Elimination

int crypt(int k*){ int crypt(int k*){

int key = 0; int key = 0;

if (k[0]==0xCODE) { if (k[0]==0xCODE) {
key=k[0]*15+3; key=k[0]*15+3;
key+=k[1]*15+3; key+=k[1]*15+3;

key+=k[2]*15+3; key+=k[2]*15+3;
} else { else {
key=2%15+3; // replaced by
key+=2+*15+3; tmp = 2*15+3;
key+=2+*15+3; key = 3*tmp;

(from the paper)
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Undefinedness (null dereferences)

static unsigned int

static unsigned int
tun chr poll(struct file *file, &

oll table * wait tun chr poll(struct file *file,
? B ! ! poll table * wait)
struct tun file *tfile {

. struct tun file *tfile
>private data; —

struct tun struct *tun >private_data;
n struct tun struct *tun

__tun get(tfile); tun get(tfile);

struct sock *sk = tun->sk; struct sock *sk = tun—>sk:
P— e - - = m ’

unsigned int mask = 0;

1f (!tun
1f (!tun) return POLLERR;
return POLLERR;

Fun with NULL pointers, part 1

Ry =T | By now, most readers will be familiar with the local kernel exploit
?u){)}l gg?;ggg forbet recently posted by Brad Spengler. This vulnerability, which affects
! the 2.6.30 kernel (and a test version of the RHELS "2.6.18" kernel), is
interesting in a number of ways. This article will look in detail at how the exploit works and the
surprising chain of failures which made it possible.

http://lwn.net/Articles/341773/
19



http://lwn.net/Articles/341773/
http://lwn.net/Articles/341773/

Date Mon, 7 May 2007 11:55:15 -0700 (PDT)
From Linus Torvalds <> S+1
Subject Re: [patch] CFS scheduler, -v8

On Mon, 7 May 2007, Johannes Stezenbach wrote:

>

> One baffling example where gcc rewrites code is when
> conditionals depend on signed integer overflow:

Your example is a good one, but my private beef has been in alias
handling. Alias analysis is an important part of optimization, and there's
two kinds: the static (and exact, aka "safe") kind that you can do
regardless of any language definitions, because you *know* that you aren't
actually changing behaviour, and the additional type-based heuristics that
the C language allows.

So which ones would you expect a compiler to consider more important?

And which one do you think gcc will use?

Right. You can have static analysis that *guarantees* that two objects
alias, but if gcc determins that they have different types and thus might
not alias, it decides to use the heuristic instead of the firm knowledge,
and generate code that doesn't work.

"Because the language definition allows it".

Oh well.



https://lkml.org/lkml/2007/5/7/213
https://lkml.org/lkml/2007/5/7/213

SOSP 2013

Towards Optimization-Safe Systems:
Analyzing the Impact of Undefined Behavior

X1 Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama
MIT CSAIL

Abstract

This paper studies an emerging class of software bugs
called optimization-unstable code: code that is unexpect-
edly discarded by compiler optimizations due to unde-
fined behavior in the program. Unstable code is present
in many systems, including the Linux kernel and the Post-
gres database. The consequences of unstable code range
from incorrect functionality to missing security checks.

To reason about unstable code, this paper proposes
a novel model, which views unstable code in terms of
optimizations that leverage undefined behavior. Using
this model, we introduce a new static checker called Stack
that precisely identifies unstable code. Applying Stack
to widely used systems has uncovered 160 new bugs that
have been confirmed and fixed by developers.

CHRE *butf = waas
char *buf_end = ...;
unsigned int len = ...;
if (buf + len >= buf_end)
return; /* len too large */
if (buf + len < buf)
return; /* overflow, buf+len wrapped around */
/* write to buf[@..len-1] */

Figure 1: A pointer overflow check found in several code bases.
The code becomes vulnerable as gcc optimizes away the second if
statement [13].

unstable code happens to be used for security checks, the
optimized system will become vulnerable to attacks.

This paper presents the first systematic approach for
reasoning about and detecting unstable code. We imple-
ment this approach in a static checker called Stack, and
use it to show that unstable code is present in a wide







Observations

Comepiler correctness proofs show that the
“behaviour” of the code is the same before
and after a transformation.
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A Simple, Correct Transformation

int increment(int a int increment(int a
int b a
b
return b return a




A Simple, Correct Transformation

int increment(int a) { int increment(int a) {
int b = a;

b++;
return b; return a + 1;

} }

pl, a:5 p3, a:5, b:6

m——

=

pc, x:5, y:10 pc, x:5, y:10 pc, x:5, y:10 pc, x:5, y:10

IIIIIIIIIIIIIIII --)>
Call stack Call stack

Call stack Call stack

call inc(x); l

pc’, x:5 3

Call stack
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A Simple, Correct Transformation

int increment(int a) { int increment(int a) {
int b = a;

b++;
return b; return a + 1;

} }

pc, x:5, y:10

Call stack
ﬁ

pc’, x:5, y:6

call inc(x);

pc, x:5, y:10

—

call stack Call stack

40




A Simple, Correct Transformation

int increment(int a) { int increment(int a) {
int b = a;

b++;
return b; return a + 1;

} }

pl, a:5

p3, a:5, b:6

m——

=

pc, x:5, y:10 pc, x:5, y:10 pc, x:5, y:10 pc, x:5, y:10

l--)>
Call stack Call stack

call inc(x);

Call stack Call stack

|

pc’, x:5 =

J pc, x:5, y:10

call stack Call stack
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Compiler Writer vs. Attacker

Source Compiled Execution

Program Program Environment

Optimizations, Exploits,
Correctness Vulnerabilities,

oS,
Architecture,
etc.

Abstract Runtime

Machine Machine

28



More Observations

Attackers reason about details (residual state,
timing, etc.) not modelled by the abstract
semantics machine.
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A Less Abstract Execution

int increment(int a) { int increment(int a) {
int b = a;

b++;
return b; return a + 1;

} }

pl, a:5 p3, a:5, b:6

m——

=

pc, x:5, y:10 pc, x:5, y:10

pc, x:5, y:10 pc, x:5, y:10
Call stack Call stack

l--)>
Call stack Call stack
v

call inc(x); p3, as5, b:6
, a:5, b:

Call stack is closer to implementation. pc’, x:5, ¥:6

Call stack
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A Simple, Correct Transformation

int increment(int a) { int increment(int a) {
int b = a;
b++;
return b; return a + 1;

} }

I!HlIHHHIIH!HiI
Call stack
|-----)}

pc, x:5, y:5

pc, x:5, y:10

m—

Call stack Call stack
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A Less Abstract Execution

int increment(int a) { int increment(int a) {
int b = a;

b++;
return b; return a + 1;

} }

p3, a:5, b:6

pl

m——

=

pc, x:5, y:10 pc, x:5, y:10 pc, x:5, y:10

I!HII!HIIIIHI
l--)>
Call stack Call stack

J pc, x:5, y:10

>

Call stack Call stack

p3, a:5, b:6

pc, x:5, y:5 ¢
pc’, x:5, y:6

m—

Call stack Call stack

Call stack
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Formal Model vs. Proof Technique

Source Compiled Execution

Program Program Environment

Proof technique 1 Same proof technique! 1

oS,
Architecture,
etc.

Abstract Runtime

Model

Machine Machine

Different models

34






Testing for a Correctness-Security Gap

Dead store elimination

Memory Persistence Function call inlining
Code motion

Subexpression Elimination
Side Channels Strength reduction
Peephole Optimizations

Undefinedness in C/C++

Language Specifics Memory model issues
Synchronization issues
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New, Formal Machine Models

Source
Semantics
Machine

Timing
Machines

IR Assembler

Semantics Semantics
Machine Machine

Memory
Hierarchy
Machines

Power
Machines
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Parameterized Correctness Proofs

Optimization Machine Attacker

Is the code before and after optimization,
equivalent from the viewpoint of an attacker
observing the machine?

38



Weak Memory Security-Preserving
Models Compilers

Litmus tests

Memory barriers
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