
Hercules Droidot and the murder on the JNI Express

Luca Di Bartolomeo∗

EPFL
Philipp Mao∗

EPFL
Yu-Jye Tung

UC Irvine
Jessy Ayala
UC Irvine

Samuele Doria
University of Padua

Paolo Celada
EPFL

Marcel Busch
EPFL

Joshua Garcia
UC Irvine

Eleonora Losiouk
University of Padua

Mathias Payer
EPFL

Abstract

Android developers rely on native libraries to improve app
performance, often overlooking the increased security risk.
Executed in the same process as the app Dalvik bytecode, vul-
nerable libraries expose the app to low-level security threats
such as access to the app’s private data. Vulnerability dis-
covery in this environment exposes several key challenges:
(i) coping with complex cross-language interactions between
the app running on a high-level runtime environment and the
low-level code of native libraries, (ii) inference of a precise
interaction model between the app and the library, and (iii)
scaling to the breadth of the Android ecosystem.

Automatic harness generation for libraries is challenging,
especially in mixed language environments such as Android.
Existing work either slices snippets of program code, ignoring
the cross-language challenges of bringing up the Android
runtime environment or require heavy manual efforts on a
limited selection of applications. The current best practice to
discover vulnerabilities in native libraries on Android is to
task a human analyst to reverse engineer both the app and the
library along with manually writing a test harness.

Our solution, named POIROT, automatically synthesizes
fuzzing harnesses for Android native libraries without source
code or manual effort. POIROT supports bidirectional JNI
(Java Native Interface) interactions, mimics the app’s usage
of a native API, and scales to the largest apps on the Google
Play Store. We evaluated POIROT on the 3,967 most popu-
lar Android apps that use native libraries and report 4,282
unique crashes affecting 934 apps. We triaged 200 crashes
and identified 25 bugs affecting 16 native libraries included in
34 high-impact apps such as WeChat (with 3 CVEs assigned).
All the bugs have been responsibly disclosed to the respective
vendors.

*These authors contributed equally to this work

1 Introduction

Native libraries are common in Android apps: while primarily
used for performance reasons, they also introduce security
risks. The DVM (Dalvik Virtual Machine) provides an exten-
sive runtime environment for memory-safe Dalvik bytecode,
but it does not guarantee safety against native code, which
runs in the same process with access to all app data, exposing
a typical cross-language attack scenario [39]. Bugs in native
code can compromise the app and can serve as a stepping
stone to compromise the system [32]. A surprisingly high
number of apps ship native libraries containing vulnerabili-
ties [7]. This issue may stem from developers using outdated
libraries, or from the usage of custom proprietary libraries,
which are less commonly available and thus harder to test
for security bugs. Yet, automatically exploring the security
impact of native Android libraries remains under-explored.

Related work explored automatic harness synthesis for li-
brary fuzzing [21, 29–31, 57, 59]. Those approaches focused
on analyzing multiple consumers of a given library. By build-
ing and mutating a generic consumer, they try to maximize
coverage over the entire library’s code while fuzzing. Their
focus was to detect bugs in the internals of the library it-
self, irrespective of the existence of a consumer program that
could trigger those bugs. Only a few works [12, 54] focus on
vulnerabilities that manifest through a specific consumer’s
usage of a library. However, they either focus on extracting
single-function code snippets (side-stepping the challenges of
mixed-language environments [12]) or require large amounts
of manual effort for even a small number of carefully picked
targets [54].

In this work, we focus on automatically detecting vulner-
abilities in Android native libraries that a specific consumer
app could trigger, by mimicking the app’s usage of the library
while fuzzing. This problem poses three major challenges. (i)
App-specific JNI-interaction: the JNI (Java Native Interface)
abstraction layer supports bidirectional interaction between
Java and native code. Java functions can invoke native ones,
which can also interact with Java objects or invoke Java func-

tions. Supporting those interactions together with the rest of
the Android ecosystem in a fuzzing environment is challeng-
ing. (ii) App mimicry: the generated harnesses should invoke
the same sequences of native APIs that the app could poten-
tially perform during normal execution. Furthermore, native
calls may pass elaborate data types through the JNI. Those
data types could be complex Java objects (e.g., Bitmap) or
might have constraints (e.g., a string representing a file path).
There might also be semantic relationships between param-
eters (for instance, a ByteArray is passed as the first argu-
ment, and its size as the second). (iii) Scalability: To demon-
strate real-world applicability, our system needs to work on a
large, non-filtered dataset of apps. However, state-of-the-art
approaches in Android static analysis fail to scale to the size
and complexity of the majority of modern Android apps [45].

We achieve our goal by designing POIROT, the first ef-
fective solution capable of generating fuzzing harnesses to
automate the process of vulnerability detection in Android
native libraries. To solve the above challenges, the design
of POIROT necessitated several features. POIROT leverages
the behavior of a specific native library consumer (the app)
and benefits from statically analyzing the type-rich Dalvik
bytecode of this consumer. POIROT relies on two analysis
passes to emulate the app’s usage of the library: call-sequence
analysis to address API call sequences and argument-value
analysis to constrain the input space. The analysis includes
custom optimizations and is tailored to scale to modern large
apps. Then, the extracted app-specific interaction patterns are
automatically translated into a fuzzing harness. Those har-
nesses offer a customized Android environment that handles
the intricate interactions across language contexts. Finally,
we engineered an orchestrator framework allowing fuzzing
campaigns to scale horizontally on Android virtual devices.

To demonstrate the effectiveness of POIROT, we analyze
the 3,967 most popular APKs from the Google Play Store
that contain native libraries. We uncover 4,282 crashes in
the bundled native libraries. After triaging 200 of them, we
identify 34 vulnerabilities across 34 apps.

Our core contributions are as follows:
• We present the first approach for automated and scalable

Android native library fuzzing. Our analysis passes extract
API call sequences of a library and constrains the input
space of parameters by looking at a single consumer app.
POIROT exploits type-rich Java information to augment
the analysis passes. POIROT can analyze the largest APKs
available on the Google Play Store.

• We introduce a way to support arbitrary context switching
between Java and native code during fuzzing through the
JNI interface.

• We present novel forkserver optimizations to mitigate the
very expensive cost of the fork syscall in Android.

• We perform an extensive analysis of popular Android apps
and responsibly disclose 34 vulnerabilities to app and li-
brary developers. So far, 3 CVEs have been assigned.

Following best practices on fuzzing research [46] we strive
for full reproducibility. POIROT is available at https://doi.
org/10.5281/zenodo.15586318.

2 Challenges

JNI-Interaction Awareness (C1) The JNI abstraction layer
enables cross-language, bidirectional communication between
Java and native code embedded in the same Android app. Na-
tive code may create, destroy or invoke Java objects at any
time. While the execution initially starts on the Java side, na-
tive code may call back into the DVM at any time. In addition,
the native side interacts with Android-specific mechanisms
(e.g., Activities), and the additional features offered by a mo-
bile device (e.g., sensors). Simply running a fuzzer inside
an Android enviroment is not enough. The fuzzing speed
is crippled by the large amount of virtual memory mapped
in a typical application, significantly slowing down the fork
syscall.

App Mimicry (C2) Native libraries encompass a multitude
of API functions that can be invoked in various sequences.
Those native functions may contain bugs in their implemen-
tation (e.g., because apps ship outdated libraries). Android
apps usually employ only a subset of these APIs. Conse-
quently, the app should be considered vulnerable only if the
buggy function is included in its API usage. Furthermore,
the app may call these APIs in a sequence that the library
developer did not anticipate, potentially exposing vulnerabil-
ities due to its incorrect usage of the library. Previous ap-
proaches [12,21,29–31,57,59] in automatic harness synthesis
focused on finding bugs in the library itself, ignoring incorrect
usage by the consumer. For example, if an app invokes the
decode function of a video codec libray without calling first
the relevant initialization functions, then the corresponding
crash is due to a bug in the consumer app and not the library.

It is thus necessary to replicate the app’s behavior when
testing relevant parts of the library. This includes awareness
of the parameter types and any eventual parameter constraints
(e.g., a String parameter could be treated as a file path by the
native code, or an Integer represents the length of another
parameter). However, this requires recovering the app-specific
API usage. Currently, identifying such API usage requires
a human analyst, who manually reverse engineers and en-
codes them in a fuzz driver. This process is time-consuming,
demanding considerable experience and engineering effort.

Scalability (C3) Unfortunately, there are no datasets with
ground truth for vulnerable libraries in Android apps. Even
worse, Google Play stopped publishing lists with the most
downloaded apps that were used in previous work [7]. The

https://doi.org/10.5281/zenodo.15586318
https://doi.org/10.5281/zenodo.15586318

1 package example;
2 public class MyActivity extends Activity {
3

4 public native int nativeOpen(String p);
5 public native int nativeOpen2(String p);
6 public native String nativeRead();
7

8 public static void onCreate() {
9 // this will call JNI_OnLoad

10 System.loadLibrary("mylib.so");
11

12 // read user-controlled input
13 SharedPreferences prefs =
14 this.getSharedPreferences(...);
15 File file = new File(prefs.getString(
16 "/my/file/path"));
17

18 // pass File Java Object to native side
19 int fd = getFd(file);
20

21 // another call to native function
22 // that requires native file descriptor
23 String msg = nativeRead(fd);
24

25 System.out.println(msg);
26 }
27

28 public int getFd(File f) {
29 // must pass a valid path to file
30 int fd = nativeOpen(f.getAbsolutePath());
31 return fd;
32 }
33

34 }
35

36 }

1 #include <stdio.h>
2 #include <jni.h>
3

4 JNIEXPORT jint nativeOpen(JNIEnv *env, ..., jstring path) {
5 // Java style string to C
6 char *real_path = env->GetStringUTFChars(path, NULL);
7 fd = open(real_path, O_CREAT);
8 env->ReleaseStringUTFChars(path, real_path);
9 return fd;

10 }
11

12 JNIEXPORT jstring nativeRead(JNIEnv *env, ..., int fd) {
13 char msg[256];
14 if (fd == -1) return NULL; // must be valid file descriptor
15 read(fd, msg, 256);
16 // C style string to Java String
17 jstring result = env->NewStringUTF(msg);
18 return result;
19 }
20

21 JNIEXPORT jint JNI_OnLoad(JavaVM* vm, ...) {
22 JNIEnv* env;
23 vm->GetEnv(env, ...);
24 // find class to which to add native methods
25 jclass class = env->FindClass("example.MyActivity");
26 static const JNINativeMethod methods[] = {
27 {"nativeOpen", "(Ljava/lang/String)I", nativeOpen},
28 {"nativeRead", "()Ljava/lang/String", nativeRead}
29 };
30 int rc = env->RegisterNatives(class, methods, 2);
31 }

C2

C1

C2

C2

C1

C1

Figure 1: Example of challenges for fuzzing native libraries. On the left, the Java source code of an application. On the right,
the C++ source code of the relevant native library mylib.so. Underlined methods highlight every time the execution switches
context between language environments. The circles reference the challenges outlined in Section 2.

only viable alternative to demonstrate feasibility and scalabil-
ity is to conduct a large-space analysis, mitigating potential
biases through cherry-picked small datasets. The growing
complexity of the Android ecosystem, including its apps,
is challenging the capabilities of existing static analysis
tools [8, 11, 15, 24, 25, 44, 53] to analyze current apps effec-
tively. A recent study [45] proves how tools focused on call
graph generation frequently show limitations when analyzing
modern apps. Our experimental evaluation in Section 5.3 con-
firms this and highlights how common are timeouts or empty
results.

Example Figure 1 demonstrates an Android app that uses
a native library to access a file, highlighting the above chal-
lenges. The JNI_OnLoad method is a standard method in-
cluded in all JNI native libraries that takes care of registering
the exported native functions to the Java side. The DVM
automatically calls it as soon as the library is loaded. The
native code invokes the RegisterNatives JNI method to
dynamically expose functions declared in the Java code (C1).
The Java code will then call nativeOpen with a string. The
string must be a valid path to a file (C2). The native function
nativeOpen uses JNI callbacks (C1) to allocate and free a

buffer containing the bytes of the Java string. Subsequently,
nativeRead will be called, where a check that a valid file
descriptor was opened before will be performed (C2).

3 Design

POIROT is a fully automated, harness synthesis framework
for large-scale, app-specific native library fuzzing. POIROT
discovers bugs through a three-stage fuzzing pipeline (see Fig-
ure 2).

First, POIROT extracts the Dalvik bytecode (DEX) and the
native libraries from the APK. POIROT analyzes the type-
rich Java-based call sites of native library APIs found in the
Dalvik bytecode. POIROT employs a set of scalable and ef-
ficient static analysis passes to recover relevant information
for harness synthesis. For the call sequence, we perform the
analyses on top of a CFG without relying on expensive static
analysis such as symbolic execution or data-flow analysis. For
the argument analysis, although we rely on data-flow analysis,
we avoid scalability issues by performing the data-flow analy-
sis strictly intra-procedurally. The results of the static analysis

// pseudo−code o f harness

nat ive_f1 (JNIEnv ∗ , char ∗ x) ;
nat ive_f2 (JNIEnv ∗ , i n t l en) ;
. . .
char ∗ buf ;
i n t l en ;
. . .
// bare−bones DVM
JNIEnv ∗env = createJavaVM () ;
. . .
// a f t e r f o r k s e r v e r s t a r t
get_input_AFL(&buf , &l en) ;
native_f1(env , buf) ;
native_f2(env , l en) ;

DEX

onCreate onResume

native_f1

native_f2

ANALYSIS HARNESS SYNTHESIS FUZZING

Figure 2: POIROT finds bugs in Android native libraries in three stages: analysis, harness synthesis, and fuzzing.

Algorithm 1: doCallSequenceAnalysis(c,ps)
Input: function call c, method m’s program paths ps extracted at c
Output: method m’s summary store Σm

1 foreach program path p ∈ ps do
2 rs←{ };
3 foreach program statement s ∈ p do
4 if statement s is a native function call then
5 if rs is empty then
6 rs← rs∪ [s];

7 else
8 foreach call sequence cs ∈ rs do
9 cs← cs ⌢ [s];

10 else if statement s is a function call with function f then
11 Σ f ← summary store corresponding to function f ;
12 foreach call sequence cs ∈ rs.snapshot do
13 foreach function call d ∈ NotPostDomcalls(f) do
14 foreach call sequence csf ∈ Σ f (d) do
15 rs← rs∪ cs ⌢ csf ;
16 rs← rs\ cs;

17 foreach per path result r ∈ rs do
18 Σm(c)← Σm(c)∪ r;

allows POIROT to synthesize effective consumer-specific har-
nesses for JNI native libraries.

The second stage automatically synthesizes harnesses
based on the analysis results. Those include semantic infor-
mation of native call parameters (e.g., file paths, array length)
and call-sequence information (e.g., malloc before free).
The harness initializes a bare-bones DVM with Android call-
back support to mimic a real-world environment, enabling
complex bidirectional JNI interactions.

Lastly, the harness and the target library are deployed on a
farm of virtualized Android emulators on an aarch64 server.
An orchestrator script then submits fuzzing jobs to a queue
system, from which the emulators get the required data to run
the fuzzing campaign.

3.1 Call-sequence Analysis
The key goal of our call-sequence analysis is to identify API
call sequences required to properly mimic native library usage
by an app. POIROT achieves this by: (i) recovering the app
Dalvik call graph; (ii) extracting the intra-procedural paths;
and (iii) extracting the inter-procedural paths. To avoid the
scalability issues that plague existing Android static analysis
approaches [45], the analysis is custom and includes optimiza-
tions that mitigate the problem of state explosion allowing it
to scale to large apps.

As a first step, POIROT relies on Class Hierarchy Anal-
ysis [22] to build the call graph, as suggested by prior
works [9, 13, 17, 47]. Second, POIROT performs backward
paths extraction from each function call until its method entry
using a depth-first search. Third, POIROT uses Algorithm 1
to expand intra-procedural paths into inter-procedural ones.

Algorithm 1 takes as input a target function call and the
set of intra-procedural paths from the method entry to the
target function call. Based on the example from Figure 1,
we describe how the algorithm creates call sequences for the
Java methods onCreate and getFd. The algorithm takes as
input the following intra-procedural paths extracted during the
second step (denoted by a sequence of program line numbers)
for onCreate: (10,13,15,19) and (10,13,15,19,23); and the
following intra-procedural path for getFd: (30). The target
function call is the last element in the path.

While traversing a program path, if a program statement
is a native function call, it is added to that target’s call se-
quences rs (lines 5-9 of Algorithm 1). A new call sequence
is added to rs if rs is empty (line 6 of Algorithm 1). Oth-
erwise, the new call sequence is concatenated to each call
sequence in rs (lines 8-9 of Algorithm 1). For Figure 1, native
function call nativeRead is added to the rs for onCreate’s
path (10,13,15,19,23), and native function call nativeOpen
is added to rs for getFd’s path (30).

When analyzing a non-native function call f , we extend
the call sequence inter-procedurally by iterating over the non-
native function call f ’s summary store (lines 13-14 of Algo-

rithm 1) using NotPostDomcalls(f), which returns the function
calls in function f that are not post-dominated by other func-
tion calls in f (line 13). Program statement sb post-dominates
program statement sa if every program path from sa to the
function’s exit contains sb. NotPostDomcalls(f) allows Algo-
rithm 1 to compute complete call sequences in f and eliminate
partial call sequences in f (lines 14-16 of Algorithm 1). For
Figure 1, rs for onCreate’s path (10,13,15,19,23) will contain
the following call sequences after traversal: {[nativeOpen,
nativeRead]}. The call sequences are saved to their respec-
tive method’s summary store—a list of call sequences inside
a method—after the program path is traversed (lines 17-18 of
Algorithm 1).

Optimizations We design specific pruning optimizations
that exploit our specific scope (analyzing only native
calls) and enable us to analyze large apps by mitigat-
ing the problem of state explosion. During the first step
(Dalvik call-graph construction), we prune the call graph
by excluding standard library methods (e.g., "android.*",
"com.google.android.*", "com.android.*"). We ex-
clude those packages as the AOSP standard library has already
been fuzzed before and POIROT focuses on bugs in libraries
shipped by individual apps. Additionally, during the second
step (intra-procedural path extraction), instead of using the
classic approach of retaining every instruction along the pro-
gram path, we only consider native and non-library function
calls (i.e., if a basic block does not contain any function call,
our analysis will ignore it).

3.2 Argument Analysis

The argument analysis pass collects the semantics of a func-
tion’s parameters from the context of the call site of the native
function. As shown in UTopia [30], awareness of argument
values such as array length (one of the parameters is the length
of another array-typed argument) greatly reduces false posi-
tive crashes.

To collect argument values for a native function, we per-
form a backward data-flow analysis originating from the ac-
tual parameters of the native function. The data-flow analysis
is strictly intra-procedural. While this limits its precision, it
ensures scalability. The actual parameter is populated with:

1. A constant primitive type,
2. The length of another array-like parameter,
3. A filepath,
4. An empty array,
5. Otherwise, a fuzzer-provided input.

If the data-flow analysis encounters an array-length in-
struction and the addressed object is also passed to the native
function as a parameter, a corresponding constraint reflecting
this length-value relationship is saved. Furthermore, encoun-

tering an invoke of a File object retrieving its path results in
the actual parameter being considered a filepath (e.g., in Fig-
ure 1, this pass can extract the value of the path variable
passed to the nativeOpen function). Finally, if the analysis
encounters a new-array instruction and the resulting empty
Array object is passed into the native function without modi-
fication, we infer that the native function will likely populate
the array with some results to be then reused later. If the anal-
ysis pass cannot establish any knowledge about the actual
parameters, the fuzzer-provided input is used to populate it.

3.3 Harness
We now use the information collected to synthesize a harness.
The synthesized harness must accurately reflect the informa-
tion obtained from the analysis step. Each library harness
consists of multiple fuzz drivers, each designed to target a spe-
cific native function. These fuzz drivers take fuzzer-generated
input, split it, and provide the chunks as arguments for func-
tion calls.

Android Runtime To support cross-language interactions
for JNI fuzzing, mocking can provide the necessary runtime
environment to abstract the DVM functions a native library
can call [43]. This has many shortcomings, mainly due to
the complexity and large surface of the DVM functionality
(see Appendix Section A.2 for more details). Instead, we pro-
vide a functional but stripped Android environment [23] when
calling a native method. The ART (Android RunTime, im-
plemented in libart.so) exposes functions to create a bare-
bones Java VM along with a corresponding JNIEnv structure.
JNI native functions always take a pointer to this structure as
their first parameter. The JNIEnv structure contains a list of
callbacks that native libraries use to interact with the DVM
(e.g., GetStringUTFChars). Furthermore, we load into our
bare-bones DVM all the classes that the app under test im-
plements. This allows us to closely replicate the execution
environment in which an app typically invokes the native li-
braries. This approach enables POIROT to support complex
bidirectional JNI interactions.

Leveraging Analysis Results We now describe how the
results of the analysis passes are encoded in a fuzz driver.
A synthesized fuzz driver calls every function of the call
sequence in the same order. Since the call sequence reflects
the app’s usage of the native library, the fuzz driver effectively
mimics the app. The call sequence analysis pass might report
multiple different call sequences for a given native method.
This is common when some native calls are behind certain
conditions (e.g., a native initialization method that must be
called). In this case, the harness uses the longest callsequence,
as it is the one that is most likely to include all state-buliding
native methods and mimick the app better. The fuzz driver
then employs the results of the argument value analysis pass

to constrain the input space of the function arguments. For
example, when dealing with an array-length constraint, the
argument is set to the length of the fuzzer-generated input.
Similarly, for an empty array, the argument is set to a newly-
created array. In the case of a filepath, the argument is set to
a temporary filepath, and the fuzzer input is written to that
file. In all other cases, the raw fuzzer input is parsed into the
corresponding Java type (e.g., for a String argument, fuzzer
bytes are converted to a Java String object through a call to
NewStringUTF)

Input/Output Matching Functions in a given call sequence
might have data dependencies between them, as the example
in Figure 1 illustrates. To avoid expensive computational
analysis, we opt for a simple input/output matching based
on the argument and return type. For a given function, we
check if the parameters’ types match the return type of any of
the previous functions in the call sequence. In case there is
a match, the harness will forward the output of the relevant
previous function to the target native call.

Supported Java Types Our fuzz drivers support fuzzing
all Java primitive types as well as Java strings, byte arrays,
and byte buffers. In our dataset we find that by supporting
these primitive types, we support 64% of native functions;
see Figure 3. No intrinsic limitation prevents this approach
from being extended to other types: only engineering effort
is required to transform the fuzzer input into the desired ob-
ject type. Section 5.7 in our evaluation shows the amount of
human effort necessary to add support to an additional type.

4 Implementation

For the sake of reproducibility, we include technical details
of the process of replicating a lightweight Android runtime
and the signature extraction of functions that native libraries
expose. In total, our framework consists of around 7,000 lines
of code. POIROT extends Phenomenon [24, 25] to build the
Dalvik call graph. Phenomenon relies on Soot [49] to model
standard Android framework callbacks. To instrument and
fuzz the libraries we leverage dynamic binary instrumenta-
tion. We use Frida [2] with its AFL++ integration (version
4.22) [28].

Android Runtime The Android Runtime library
libart.so provides access to a method called
JNI_CreateJavaVM that creates a minimal Java VM
instance. Additionally, the library libandroid_runtime.so
exposes the function registerFrameworkNatives, which,
when supplied with a pointer to an instance of a DVM,
calls the registerNatives method to detect dynamically
registered native methods, and initializes a bare-bones
Android environment. Our fuzz driver then loads the native

lon
g int

Stri
ng

bo
ole

an
by

te[
]

do
ub

le
floa

t

Obje
ct

Byte
Buff

er
int

[]

Int
eg

er

Stri
ng

[]

Bitm
ap
floa

t[]

Con
tex

t
List

Int
eg

erA
ttr

ibu
teC

all
ba

ck
lon

g[]

do
ub

le[
]

Safe
Han

dle

Lon
gA

ttr
ibu

teC
all

ba
ck

Defa
ult

Clus
ter

Call
ba

ck
sh

ort

Stri
ng

Typ
e

Obje
ct[

]
0

20,000

40,000

60,000

80,000

co
un

t

Top 25 argument types

Supported type

Unsupported type

Figure 3: The number of occurences for the top 25 most used
argument types in native functions in our dataset. By support-
ing primtive types, java strings, byte arrays and bytebuffers
(13 types out of 7161 types overall), we support 64% of native
functions in our dataset.

library through dlopen and then calls its JNI_OnLoad
method to properly initialize the library. The same method
used to create a minimal DVM (JNI_CreateJavaVM) returns
a pointer to the JNIEnv structure, which is then passed to the
native functions during fuzzing.

Native Function Signature Extraction An app may load
multiple native libraries. POIROT must infer which of the
loaded native libraries implements an observed native func-
tion. Many libraries shipped with APKs are stripped and
do not export the symbols of the library interface. The li-
brary interface is dynamically registered with the Dalvik run-
time using the JNI_Onload function, which is the only func-
tion that must be exposed. POIROT employs the mocking
approach described by Rizzo [43] to intercept calls to the
registerNatives function and populate the array of func-
tion pointers that the target library exposes to the Java code.

Path limit To mitigate path explosion during call sequence
analysis, we cap the number of paths extracted for each native
method. This upper bound prevents the analysis from getting
stuck on a relatively small subset of complex methods. This
limit is configurable by the user. The authors of Phenomenon
report that using a path limit of 100 incurs in a loss of 7.6%
of the total paths [25]. To be conservative, we use a default
value of 1,000. As our evaluation suggests (Section 5.2), this
value is a reasonable choice in the context of our dataset.

Device
W/o PT Opt

(execs/s)
W/ PT Opt
(execs/s)

W/o ART
(execs/s)

Samsung Galaxy A40 80 280 600
Samsung Galaxy S10 180 660 1020
Google Pixel 4 300 850 3000
Android Emulator 420 1670 3800

Table 1: The executions per seconds reported by AFL when
running our driver on our test devices. The driver exits after
forking and is configured with and without the page-table
size optimization (PT Opt). The rightmost column shows the
maximum possible executions per second, running a driver
that does not load the ART.

Runtime Optimizations Our harness is hindered by the
overhead from the fork syscall, heavily utilized by AFL++’s
forkserver. On Android, the large number of mapped libraries
for each app process (243 by the Android Runtime, plus app-
specific ones) results in a large page table (592kB), making
forking expensive [61]. Figure 4 shows our measurements.
The fork time scales up with the page-table size. However, it
turns out that most of those libraries are typically not required
during the execution of a native library as they are only used
for initialization routines by the DVM.

To reduce fork overhead, POIROT replaces the memory
mappings performed by the dynamic loader with a file-based
mmap of the same library at the same address. This approach
provides two key advantages. Firstly, a file-based mmap is lazy,
resulting in pages being instantiated only after being accessed.
Second, the standard dynamic loader uses at least three page-
table entries per library (e.g., one for the read-only segments,
one for the executable ones, and one for the writable ones).
Using a file-based mmap with permissions rwx, it is possible
to use a single page-table entry per library, thus reducing
the overall cost associated with memory mappings. Further
efficiency is achieved by concatenating multiple consecutive
libraries for a unified mmap.

Table 1 shows the executions per second, with and without
our page-table size optimization. On average, page-table opti-
mization results in roughly a three-fold speedup in executions
per second during fuzzing.

5 Evaluation

The evaluation answers the following high-level research
questions about POIROT:

• RQ1: Can POIROT scale to large real-world Android
apps? We compare POIROT with other state-of-the-art
tools on the most popular 100 APKs in our dataset.

• RQ2: Do our analysis passes improve the fuzzing pro-
cess? We perform an ablation study on POIROT on the

0 200 400 600 800

0

5

10

15

20

25

page table size [kB]

fo
rk

tim
e

[m
s]

Fork time based on page table size

Samsung Galaxy S10
Samsung Galaxy A40

Google Pixel 4
Android Emulator (AWS Neoverse-N1)

Figure 4: The time to fork, based on the page table size. The
time to fork was measured in the parent by exiting directly in
the child after the fork. The page table size (vmPTE) was read
from /proc/self/status. The size of the page table is increased
by mapping memory and touching every byte in the mapping.

top 1,000 APKs to determine the usefulness of its analy-
sis passes.

• RQ3: How many native vulnerabilities can POIROT find
in large, real-world apps? We perform a fuzzing cam-
paign on our full dataset (3,967 APKs) and triage the
results.

Academic best practices for the evaluation of fuzzers [46]
strongly recommend statistical tests to determine the signif-
icance of the difference between two models. In our case,
the only related approach to fuzz Android native libraries is
ATLAS (discussed in Section 5.8). However, no source code
is available. As no comparable alternative exists, we therefore
omit the statistical test. To enable future research to reproduce
our results, we release all source code and our dataset openly.

5.1 Dataset
To create a representative dataset of popular Android apps,
we scraped the “top app lists” from the Google Play store,
downloading the 100 most popular apps per category in 16
countries. After eliminating duplicate apps, we downloaded
a total of 20,970 apps. Of these, we excluded those without
native libraries, reducing the total number of APKs in our
dataset to 3,967. The least popular app is com.njiuko.dbb
(with 108 thousand downloads), while the most popular is
com.android.chrome (with 13.5 billion downloads). To
avoid rate limiting, we downloaded the latest versions of these

apps from AndroZoo [6]. In our dataset, each app includes on
average 12 native libraries, with some apps reaching up to 733
(e.g., com.facebook.creatorstudio). The average size of
a native library in our dataset is 2.9 MB, with applications
typically utilizing 18 exposed JNI functions.

5.2 Setup
For running the static analysis passes, we employ a 16-core
AMD EPYC 7302P x86_64 machine with 64 GB of RAM.
For the fuzzing campaigns, we use a 64-core Neoverse-N1
AWS Aarch64 machine (c6g.metal instance) with 128 GB of
RAM where we distribute the fuzzing jobs across 30 virtual-
ized Android emulators. We configured POIROT to use a path
limit of 1,000. In our evaluation, less than 1% of methods hit
this path limit threshold.

5.3 RQ1: Scalability of the Analysis Passes to
Large APKs

We compare the runtime of both our call-sequence pass and
argument-analysis pass against state-of-the-art static analy-
sis tools for Dalvik-native reachability on Android: Flow-
Droid [8], DroidReach [15] and JuCify [44]. For this exper-
iment, we consider the top 100 most popular APKs in our
dataset. We used both a 30-minute timeout and a 24-hour
timeout with a 32-GB limit on the available memory for each
tool. Table 2 shows the results. While we can run JuCify on
the provided benchmark APKs from the authors’ repository,
we unfortunately do not get any output from any of the apps in
our dataset. With FlowDroid and DroidReach, we were able
to analyze, respectively, 41 and 21 of the 100 apps we consid-
ered. DroidReach does not profit from an increased timeout.
From the 26 apps that previously resulted in a timeout four
run out of memory and 22 return empty results. FlowDroid
analyzed 1.5x more apps with a 48x longer timeout, indicating
diminishing returns from further timeout increases. Assuming
49% of apps take at least 24 hours, FlowDroid would require
127.8 core years to analyze the apps in our dataset. While
POIROT’s call-sequence analysis pass struggles with some
apps (analysis completed for 81 of the apps), the argument-
analysis pass scales successfully to all apps (analysis com-
pleted for all apps). POIROT cannot complete the analysis for
19 apps. Eight of them use too much memory and five exceed
the time limit, indicating that POIROT struggled to scale to
the complexity of those apps. Two test cases crash while Soot
tries to build the call graph of the app. For the remaining four
cases POIROT returned no call sequences. This could be due
to an imprecision in our static analysis, potentially one of
those outlined in Section 7. In summary, we reach the same
conclusion of another recent evaluation by Zhang et al. [58]
and by J. Samhi et al. [45]: modern inter-procedural data-
flow based tools are not yet up to the challenge of analyzing
complex apps such as com.facebook.orca.

#Completed #Crashed
#Out of
Memory #Timeout

#Empty
Result

30-Minute Timeout
POIROT Argument-analysis 100 0 0 0 0
POIROT Call-sequence 72 1 4 10 13
FlowDroid 26 2 0 64 8
DroidReach 21 1 0 26 52
JuCify 0 0 0 0 100

24-Hour Timeout
POIROT Argument-analysis 100 0 0 0 0
POIROT Call-sequence 81 2 8 5 4
FlowDroid 41 2 0 49 8
DroidReach 21 12 4 0 63
JuCify 0 0 0 0 100

Table 2: Comparison of scalability of static analysis tools
on the top 100 most popular APKs, with a 30-minute and a
24-hour time limit, and a 32-GB memory limit. Note: the “#
Completed” column does not necessarily indicate a correct
result, but simply that the tool returned a non-empty result.

5.4 RQ2: Evaluation of the analysis passes
For this experiment, we consider the top 1,000 most popular
APKs (roughly the top 25% of our dataset).

Out of all the 841,190 native functions, we excluded all
functions that are not called by the app. leaving us with 18,907
remaining functions (this is not unexpected, as many apps
only use a tiny subset of the exposed native functions). We per-
form four fuzzing runs across our dataset with the following
four configurations:

• A “naive” fuzzing run without performing a static analysis
in advance, to use as baseline.

• A “call-sequence” fuzzing run with only the call-sequence
analysis pass enabled.

• An “argument-analysis” fuzzing run with only the argument
analysis pass enabled.

• A “complete” fuzzing run with both passes enabled.

Following existing harness generation works [12], we allo-
cate 4 minutes of fuzzing time for each fuzz driver. In total,
this amounts to about a month of compute time per run. To
measure the contribution of the analysis passes in terms of
coverage increase during fuzzing, we collect the total cover-
age of a library harness by merging the individual coverage
maps of each fuzz driver targeting that library. To avoid giving
an unfair advantage to the “call-sequence” run, we instrument
the library in such a way that coverage starts getting collected
only on the last method of the call sequence. Furthermore, to
perform a meaningful comparison, we exclude functions that
are non-reachable.

We count the number of libraries that showed coverage
increase after fuzzing each relevant fuzz driver for 4 minutes.
If, after 4 minutes, the harness did not collect any additional
coverage, we discard it. Otherwise, we mark the harness as
effective. The “naive” run generated effective fuzzing har-
nesses for 304 libraries. The “call-sequence” run generated

instead effective fuzzing harnesses for 612 libraries (101%
more than the naive run). Instead, the “argument-analysis”
run generated effective fuzzing harnesses for 331 libraries
(9% more than the naive run). When both analyses are en-
abled, POIROT generated effective fuzzing harnesses for 617
libraries (103% more than the naive run). In this experiment,
the “naive” configuration found 813 unique crashes. The
“call-sequence” one found an additional 441 unique crashes.
The “argument analysis” found 19 additional unique crashes.
Finally, the “complete” one gathered 40 more crashes. We
will now compare the total collected coverage between the
different configurations.

Benefits of the analyses over the “naive” configuration
Figure 5 shows the difference in total coverage (per library) of
different configurations against the “naive” run. To emphasize
the distinction, Figure 5 includes only data points where the
difference is non-zero.

We observe that enabling an analysis pass will, on aver-
age, increase the coverage collected for a given library. In
particular, the call-sequence run displays a 148% average
coverage increase compared to “naive”; the argument analy-
sis run shows a 16% average coverage increase, and finally
the complete run displays a 156% average coverage increase.
We also observe that the argument-analysis pass has a lower
impact than the call-sequence pass and shows a coverage
difference on fewer libraries.

Figure 5 shows how the difference in coverage can be
sometimes negative. In those cases, the “naive” run col-
lects more coverage compared to the other runs. This in-
dicates that a minority of the harnesses exhibit a disad-
vantage when incorporating the analysis passes, potentially
due to the imprecision of our static analyses (Section 7).
Take, for instance, the library libnavigator.so. Our call-
sequence analysis erroneously recommends providing the
output of the function jniUpdateAction to the function
jniLoadNewRectLocations. However, these two functions
are unrelated, leading to less coverage being collected. Fur-
thermore, if the harness crashes while calling the methods
of the call sequence before the target method, the collected
coverage will be zero. This outcome is attributed to the ex-
periments’s design, wherein coverage data gathered prior to
the invocation of the target native method is disregarded. This
mechanism explains cases where the difference in coverage
is a large negative number.

Study of the individual contributions of each pass In
contrast to before, we now compare the coverage difference
of having both passes enabled (the “complete” configuration)
against having a single pass enabled. Figure 6 shows the
result of this experiment. Overall, the coverage collected by
the “complete” run is 3% more than the “call-sequence” and
120% more than “argument-analysis”.

When comparing the “complete“ configuration against the
“argument-analysis” one, we notice that there are libraries
for which the coverage improvement of the “complete” con-
figuration is greater than 60,000. It should be noted that the
maximum feasible value is 65,536, which corresponds to the
size of the AFL coverage map. This indicates that those li-
braries are complex, requiring multiple API calls to access
their full functionality. Without the insights from the call-
sequence analysis, it becomes challenging to explore them
effectively. When comparing instead the “complete” configu-
ration against the “call-sequence” one, the difference is more
subtle. Although the average increase in coverage is marginal
(3%), the discovery of an additional 40 unique crashes in the
“complete” configuration implies the existence of libraries that
cannot be effectively fuzzed without the necessary argument
constraints. An example of a library that demonstrates the
necessity of both analysis passes is libimostream.so used
by app com.imo.android.imoimhd. Some functions of this
library (e.g., getOggFileSampleRate) depend on the func-
tion startReadOggFile being called before (thus requiring
a call sequence). Moreover, the function startReadOggFile
takes a string as an argument used by the library as a file path
(thus requiring an argument constraint). Without both passes,
the fuzzer is unable to effectively explore this library.

5.5 RQ3: Finding Vulnerabilities in Real-
World Apps

To address RQ3, we conduct a long-running campaign (60
days of total compute time) considering the complete dataset
(the top 3,967 most popular APKs with native libraries). In
this campaign, a total of 39,992 fuzz drivers were generated,
of which 19,812 were marked as effective (Section 5.4) and
then fuzzed. Out of those 19,812 harnesses, 6,120 (30.8%)
had associated call sequences.

In general, 69,347 crashes were found. After deduplication,
we are left with 4,282 crashes affecting 3,368 native functions.
We assigned three expert analysts to triage crashes for a period
of one month each, using the following triaging process:

1. Reproduce the Crash: Analysts first attempted to repro-
duce each crash on a physical test device. Our provided
scripts facilitate quick replication of the fuzzing envi-
ronment, the specific crashing input, and the harness for
interacting with the target library, thereby confirming
reproducibility. This step often required decompiling the
native library using Ghidra [5] to analyze and understand
the context of the crash.

2. Debug and Categorize: A separate script established
a debugging environment attached to the problematic
library. Analysts then examined backtraces, faulting in-
structions, and other runtime information to categorize
the crash (e.g., stack overflow, heap overflow, null pointer
dereference, or double free).

0 20 40 60

−6 0,0 00

−4 0 ,0 00

−2 0 ,0 00

0

2 0,0 00

4 0,0 00

6 0,0 00

Library ID

co
ve

ra
ge

di
ff

er
en

ce
Coverage difference (argument-analysis vs. naive)

0 100 200 300 400 500 600

−60,000

−40,000

−20,000

0

20,000

40,000

60,000

Library ID

Coverage difference (call-sequence vs. naive)

0 100 200 300 400 500 600

−60,000

−40,000

−20,000

0

20,000

40,000

60,000

Library ID

Coverage difference (complete vs. naive)

Figure 5: Coverage difference, per library, between the “argument-analysis”, “call-sequence”, and “complete” runs against the
“naive” one. A positive difference (in green) represents more edges explored compared to the “naive” approach. A negative value
(in red) represents libraries where the “naive” approach collected more coverage instead. Points where the difference is 0 are
omitted. Note: plot 2 and 3 are very similar, but not equal.

3. Identify Native Callsite: Using JADX [3], analysts de-
compiled the application to pinpoint the callsite of the
native function causing the crash.

4. Determine Reachability: Analysts reverse-engineered
relevant Java code, analyzing application logic and trac-
ing cross-references, to ascertain if attacker-controlled
data could reach the vulnerable native function.

5. Assess Exploitability: Finally, if all the previous steps
were successful, analysts further reverse-engineered the
app to determine if the crash was genuinely triggerable.
This involved understanding the conditions an attacker
would need to satisfy, such as specific application states
(e.g., required library initialization) and data constraints
(e.g., printable characters only).

Section A.1 shows a practical example of the triaging process.
The triaging process was significantly complicated by the
closed-source nature of the libraries and applications under
analysis, requiring substantial reverse engineering efforts for
both native code and Dalvik bytecode. With each crash de-
manding 2 to 6 hours of expert analysis, it is infeasible to
triage the entirety of the 4,282 unique crashes. Consequently,
we adopted a prioritization strategy, instructing analysts to
prioritize crashes that generated the highest edge coverage.
This heuristic prioritizes crashes that drive interaction in the
target library.

In total, our analysts were able to triage 200 crashes. 52
of those were discarded as they were relevant to functions
that did not accept attacker-controlled input. Of the remain-
ing 148 crashes, 25 crashes turned out to be true positives
(unique vulnerable functions). The remaining 123 crashes
were determined to be false positive crashes.

• 80 false positive crashes were due to our argument anal-
ysis pass missing constraints. For example, fuzzing an

argument to a function that the app always calls with a
constant value. The main reason behind those is twofold:
first, the constant value might originate from a different
function (the argument analysis pass is strictly intra-
procedural). Secondly, the value might not be in our set
of supported argument types listed in Section 3.2.

• 43 crashes were due to calling a function with missing
state, denoting a false negative result of the call sequence
analysis pass. In every case we analyzed, this is due to
a missing initialization function that POIROT failed to
identify. This failure occurred for one of these two pos-
sible reasons: the function was too complex to analyze
(hitting the path limit threshold) or there were impreci-
sions in the ICFG (i.e., reflections, callbacks).

The 25 true positive crashes were relative to 25 differ-
ent native functions affecting 16 unique native libraries. We
manually analyzed all the applications that used those 25 vul-
nerable functions and identified a total of 34 vulnerable apps.
We have responsibly disclosed all discovered vulnerabilities
to the respective vendors.

It is important to acknowledge a potential bias in our re-
sults stemming from the methodology used to select which
crashes to triage. Specifically, we focused on the 200 crashes
that exhibited the highest coverage. Despite this selection pro-
cess, we did not notice any significant relationship between
the level of edge coverage collected by the harness and the
probability of a crash being a true positive. This observa-
tion suggests that the subset of crashes we examined can be
considered a representative sample of the whole collection.

In total, 25 out of the 200 crashes (12.5%) are true positives.
We note that the 12.5% ratio of true positives may initially
appear modest.

However, this performance is in line with other state-of-the-
art library fuzzing efforts. For instance, UTopia [30] reported

0 100 200 300 400 500 600

−60,000

−40,000

−20,000

0

20,000

40,000

60,000

Library ID

co
ve

ra
ge

di
ff

er
en

ce
Coverage difference (complete vs argument-analysis)

0 20 40 60 80

−60,000

−40,000

−20,000

0

20,000

40,000

60,000

Library ID

co
ve

ra
ge

di
ff

er
en

ce

Coverage difference (complete vs call-sequence)

Figure 6: Coverage difference, per library, between the complete run and the call-sequence and argument-analysis runs. Libraries
where the difference is 0 are omitted.

a 9% true positive rate. We suspect that while UTopia has
the advantage of having source code and unit tests to aid its
harness synthesis process, the relatively lower bug detection
rate could be due to their focus on well-known, open-source li-
braries. These libraries are more widely used and better tested
than the proprietary and potentially outdated ones included in
Android apps.

In our triage experiment we included all target functions to
present comprehensive, reproducible results. Prefiltering the
target set (e.g., ATLAS [54] only considers media parsing li-
braries) could however significantly increase the true positive
rate of crashes. In Appendix Section B, we show how two
simple prefiltering strategies would have doubled the ratio of
true positives in our triage experiment.

5.6 Case Study tpCamera (CVE-2023-30273)

To demonstrate the real-world bug-finding capabilities of our
approach, we present a case study on a use-after-free vulnera-
bility in the MP4Encoder native library used by the tpCamera
app. This vulnerability was discovered during our large scale
fuzzing campaign described in Section 5.5. The fuzz driver
that discovered this vulnerability uses a specific call sequence
to trigger use-after-free. Additionally, it also uses array-length
constraints for two arguments.

The tpCamera app is used to manage the tp-link cameras
and live stream the video feed. The vulnerability allows an
attacker in the same network as the phone or who has com-
promised a tp-link camera to execute code on the victim’s
phone once the user presses the record button in the app. The
MP4Encoder library is used by the app to merge h264 or jpeg
files into an MP4 file and is used for the recording feature of
the app.

The call sequence that discovered this vulnerability is the
following:

1. iniPacker: Sets up the necessary state (a global on the heap)
and opens an mp4 file for writing.

2. packVideo: Called with an invalid jpeg as input. As a result,
the mp4 file is closed and the global is freed.

3. packVideo: Called with an invalid jpeg as input. The jpeg must
be the same size as the iniPacker_global struct to trigger
the use-after-free. The input is malloced into the freed global
and the file pointer passed to fclose is the first qword of the
input.

See Listing 1 for the details of the vulnerability in
packVideo. The vulnerability gives the attacker control over
the pointer passed to fclose. An attacker is then able to
call any function with controlled arguments. We developed
a proof-of-concept exploit to confirm that, given a heap leak
and a libc leak, an attacker gains arbitrary code execution.
We also verified that the vulnerability can be triggered in the
app by a MITM attacker. In fact, after pressing the record-
ing button (which calls iniPacker), the camera continuously
polls the camera over untrusted HTTP to download the video
feed, and repeatedly calls the packVideo function without
checking the return value. As a result, we were able to trigger
the use-after-free remotely.

The vulnerability was reported to the developers on Febru-
ary 10th, 2023. CVE-2023-30273 was assigned to this vul-
nerability on April 27th, and a fix was shipped on July 19th
2023.

jint packVideo(JNIEnv *env, ..., jbyteArray input,
jint input_len, jlong timestamp) {

char* input_bytes = env->GetByteArrayElements(input);
if (iniPacker_global == 0){ return -1; }
FILE* stream = *iniPacker_global //corrupted with UAF
... // check input bytes, involves input_len
if(video_corrupted){// if check on input bytes fails
fclose(stream); //vulnerable fclose
free(iniPacker_global) //not set to 0 after free
return -1;

}
...

}

Listing 1: The parts of the code in the packVideo func-
tion relevant to the vulnerability. The iniPacker_global
variable is allocated in the iniPacker function. The
GetByteArrayElements function allocates the extracted
bytes on the heap. If the length of the input byte array is in
the same chunk range as the size of the iniPacker_global
struct, the input overwrites the freed global struct (in the sec-
ond call to packVideo).

5.7 Cost of adding support to more types
As denoted in Section 3.3, POIROT supports only a limited set
of Java types as fuzz parameters. However, adding support to
a new Java type requires just engineering effort. To quantify
this effort, we task an independent Android app developer to
extend POIROT with support for the int[] type. The devel-
oper had some fuzzing experience writing harnesses but was
not familiar with our codebase. In total, the task took about 15
hours, including the implementation and testing. The changes
in the codebase amount to 81 additional lines of code.

This shows that adding new types to POIROT is straightfor-
ward, comes at a reasonable cost, and does not require any
design changes.

5.8 Comparison against ATLAS
ATLAS [54] (which was developed concurrently) automates
fuzzing harness generation for Android native libraries using
a variety of cross-language analysis steps. Specifically, it uses
symbolic execution to model the API interaction between the
Java side and the native side to better model the fuzz driver.
ATLAS also uses static analysis and taint analysis to derive
call sequences.

Multiple aspects of the ATLAS design introduce limita-
tions. First, symbolic execution and taint analysis are very
expensive and notoriously hard to scale to even medium-sized
binaries [19]. Secondly, ATLAS requires porting DVM code
to the JVM to be able to fuzz the targets outside Android. One
disadvantage of this is the exclusion of targets that interact
with Android-specific mechanisms (e.g., Binder). The most
limiting factor however is that this process requires a human
in the loop to address dependency and harness generation
issues, which somewhat contradicts the claim for automation.

App name Library BB (POIROT) BB (ATLAS)

SamsungGallery2018 libagifencoder.quram.so 837 2303
Gallery_T_CN libMiuiGalleryNSGIF.so 529 387
OplusEngineerCamera lib_rectify.so 1228 794

Table 3: Basic blocks explored over 24 hours of fuzzing.

In fact, the authors explain that the manual effort required to
manually fix each harness is so expensive they limited their
dataset to 17 apps. Furthermore, the dataset is not generic, as
all libraries targeted are related to media codec parsing.

Due to the insufficient dataset and the fact that ATLAS
is not open-source, we cannot directly compare it against
POIROT. Nonetheless, we perform a small indirect coverage
comparison on a subset of their apps. ATLAS reports the
number of basic blocks covered after 24 hours of fuzzing for
8 of the 17 apps in their dataset. All of those apps are propri-
etary, not publicly available but rather shipped by vendors as
part of their firmware. We searched available datasets with
vendor firmware dumps and recovered 3 of the 8 apps. We
compare the basic block obtained by POIROT after fuzzing
for 24 hours. Results are shown in Table 3. We observe how
POIROT outperforms ATLAS except for the first app ("Sam-
sungGallery2018"). This app exhibits the pattern ATLAS
was designed for (JNI interaction based on a native pointer
"mHandle" stored in a class field).

In conclusion, we are unable to consider ATLAS a viable
alternative to POIROT due to its reliance on expensive anal-
ysis passes, requirement of a human in the loop, a fuzzing
environment outside of Android, low basic-block coverage,
and most importantly the lack of source code.

We open-source POIROT and all its artifacts.

6 Related Work

6.1 Automatic Harness Synthesis For Li-
braries

Recent research indicates a growing interest in automatic
harness synthesis. However, existing research focuses on an
arbitrary library consumer. The main goal is the discovery
of bugs in the library, rather than in the application using
the library. This allows approaches like the one presented
by Hopper [21], which iteratively refines call sequences by
using coverage as a feedback mechanism. The authors identify
correct API sequences that build state by detecting increases
in edge coverage. In our case instead, we narrow down the
API usage to strictly mimic what the unique consumer app
is doing to identify vulnerabilities in its specific usage of the
API.

Fudge [12] generates fuzz drivers for open-source libraries
by extracting snippets from a single consumer, but requires in-
tervention by a human analyst. FuzzGen [29] avoids this
by creating an Abstract API Dependence Graph (A2DG),

that improves the automatic analysis. UTopia [30] analyzes
human-authored unit tests for harness synthesis, while Graph-
Fuzz [27] introduces mutation strategies through API graphs
of functions with data dependencies.

APICraft [57], DAISY [59], and Winnie [31] use header
files and execution traces to refine harnesses for the Apple
OSX SDK and Windows apps, respectively. This approach,
however, relies on a human analyst operating the app to gen-
erate the execution traces.

6.2 Android/JNI vulnerability detection

Many Android app analysis systems overlook native li-
braries [4]. Ndroid [55] explores Java-native interfaces for
information leaks, using QEMU. However, it struggles with
complex user interactions (e.g., login screens). JN-SAF [53]
is a data-flow analysis tool for Java and native code to detect
information leaks. As other works already failed running JN-
SAF [7,44], we tried running it and ultimately omitted it from
our evaluation after a quick check.

JuCify [44] approximates native code to a Jimple [50] in-
termediate representation augmenting existing Soot data flow
analyzers. DroidReach [15] studies Android native function
reachability uses a combination of Angr [51] and Ghidra [5].

There are only three prior works on JNI fuzzing. The first
by Zhao et al. [60] is limited to Windows XP JNI programs
and lacks a conclusive evaluation. JNIFuzzer [43] is a proof
of concept implementation for fuzzing Android libraries that
does not consider implications of the Java side. We discuss
JNIFuzzer in Appendix Section A.2. ATLAS [54] is the most
relevant work in Android native library fuzzing and we discuss
it in detail in Section 5.8.

6.3 Android Fuzzing

Some previous works [10,34,38,56] study how to fuzz Intent
objects to be sent looking for crashes in a target app. Fuzzing
has also been applied to target Trusted Execution Environ-
ments [18], Android’s native system services [33] and Binder
interactions [33]. Moreover, fuzzing has proved useful for
automatically interacting with apps and triggering execution
of certain APIs [9] or hidden malicious behaviour [41, 52].
However, vulnerabilities in Android native libraries remain
unexplored, lacking a proposed methodology to address them.

Several related works have the potential to improve the
fuzzing process for Android native libraries. Avatar2 [40]
is a dynamic analysis orchestrator framework that col-
lects and unifies information from many different systems.
KARONTE [42] explores the security impacts of data flowing
through different binaries in embedded firmware. QBDI [26]
is a dynamic instrumentation framework that supports cov-
erage information for Android native libraries, and reports a
lower overhead than Frida.

7 Discussion

7.1 Generalizability to other Systems

The challenges we tackle in this work are not unique to An-
droid. In fact, generic Java programs that bundle native li-
braries are affected by the same challenges. Other languages
also allow for interoperability with native code. For example,
popular languages such as Rust, Python, and Ruby all have
support for the Foreign Function Interface (FFI) that enables
interoperability with C code. Ruby and Rust, like Java’s JNI,
have a specific location where C methods can be identified; for
Ruby, a C method is registered with attach_function. For
Rust, a C method signature is declared inside extern "C".
Although Python’s foreign function library ctypes does not
have a specific location where C methods are identified, native
libraries are registered with the CDLL function and C methods
are called on the return value of CDLL. Finally, several stud-
ies already exposed the challenges of cross-language fuzzing.
Namely, POLYFuzz [36] is a fuzzer for multi-language sys-
tems composed of C, Python, and Java, although the prototype
focuses on the coverage collection and fuzzing technique, and
does not automatically synthesize harnesses.

7.2 Limitations

Imprecision of static analysis We prioritize scalability in
our static analysis, albeit at the cost of some precision. We fa-
vor the simpler Class Hierarchy Analysis (CHA) for resolving
polymorphic calls, as opposed to SPARK [35], which employs
points-to analysis for this purpose. Our static analysis does
not employ data-flow. This can result in fuzzing native func-
tions that never accept attacker-controlled data, leading to
spurious crashes. Our input-output matching only considers
data types of parameters and does not use data-flow, poten-
tially generating non-existent data dependencies. Finally, our
approach is not immune to the typical challenges encountered
in Java static analysis, such as Java reflections [37,48], impre-
cise callback analysis [16, 20], and obfuscated Java code [14].
Other forms of obfuscation (e.g., relocating the entire app
logic to native libraries) are not handled either.

We believe that adding inter-procedural data-flow analysis
to our approach is possible, but would require a set of opti-
mizations tailored to our use-case, which we thus leave for
future work. An additional way to improve would be perform-
ing flow analysis on the native libraries themselves, which
could expose more semantic constraints between parameters
passed to them.

DVM Threads Due to inherent limitations of the fork
syscall, only one thread will be present in the child process.
Hence, if the app spawns a thread in the JNI_OnLoad initial-
ization, incorrect behavior may be observed during fuzzing.

DVM State A native function may expect a certain state
to be built from the Java code. For example, an app may
initialize a static variable of a given class inside its onCreate
method. A native library may then use env->FindClass and
env->GetFieldID to retrieve the value of the static variable
and check for its state. POIROT does not currently address
this.

Android Framework Interactions Our bare-bones DVM
setup described in Section 3.3 does not include Android com-
ponents such as GUI (e.g., Drawables), hardware peripherals
(e.g., camera, GPS), or common system services (e.g., Gallery)
that a native library might try to interact with, leading to po-
tential limitations in testing the full range of attack vectors.

Arbitrary Java Arguments Certain native functions have
arguments of type Object (i.e., an unspecified type). Further
analysis in the Java code or the native context would be re-
quired to provide additional insight about the Object and
enable fuzzing of relevant methods.

8 Conclusions

Traditionally, harness synthesis for Android apps has required
a human analyst to reverse engineer both the application and
the often closed-source native libraries. The analyst then had
to carefully encode the API call sequences and constraints
in manually written fuzz drivers. Existing automatic harness
synthesis approaches are focused on open-source libraries or
require a human in the loop. POIROT introduces an efficient
automatic harness synthesizer targeting proprietary Android
native libraries, mimicking the behavior of a specific con-
sumer app. We solve key challenges in closed-source library
fuzzing like JNI interaction, API call sequences, and argument
constraints, by exploiting the type-rich Java information.

POIROT discovers bugs in large, real-world COTS APKs.
We analyzed a total of 3,967 APKs and found 4,282 crashes,
identifying 34 vulnerable apps. Our study demonstrates the
effectiveness of incorporating static analysis passes in the
fuzzing process, as it leads to an increase in coverage and the
discovery of otherwise undetected bugs. All vulnerabilities
have been responsibly disclosed to the relevant vendors.

9 Ethics Considerations

Our Android native vulnerability finding research carefully
considers the ethical implications of vulnerability discovery
and disclosure. We follow a responsible disclosure process
by immediately reporting all discovered vulnerabilities to the
vendors (which assigned CVEs when relevant). This approach
ensures that vulnerabilities are addressed and patched before
public disclosure, minimizing potential harm to Android users
worldwide. The only vulnerability we specify the details of

in Section 5.6 has been reported and patched by the vendor.
We manually verified that the patch is effective. The research
methodology was designed with multiple stakeholder perspec-
tives in mind, weighing both the benefits and potential risks.
While our vulnerability finding techniques could theoretically
be used by malicious actors, we determined that the defensive
benefits significantly outweigh the risks, as our work enables
Android platform moderators to proactively identify and fix
security issues before they can be exploited. Additionally,
all our testing was conducted in isolated lab environments to
prevent any accidental impact on production systems or end
users.

10 Open science

We release POIROT as open source. The code, dataset and arti-
facts can be found at https://doi.org/10.5281/zenodo.
15586318.

Acknowledgements

We thank the anonymous reviewers for their detailed feed-
back. This work was supported, in part, by the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation program (grant agreement No.
850868) and SNSF PCEGP2 18697 and the project “SEcurity
and RIghts In the CyberSpace - SERICS” (PE00000014 -
CUP H73C2200089001) under the National Recovery and
Resilience Plan (NRRP) funded by the European Union -
NextGenerationEU.

References

[1] Fresco webp. https://github.
com/facebook/fresco/blob/
b7778fce28158b91c5eba304056e0d96f33a828f/
static-webp/src/main/jni/static-webp/webp.
cpp. Accessed: 03-02-23.

[2] Frida. https://github.com/frida/frida. Ac-
cessed: 04-02-23.

[3] jadx - dex to java decompiler. https://github.com/
skylot/jadx. Accessed: 13-06-2023.

[4] Yasemin Acar, Michael Backes, Sven Bugiel, Sascha
Fahl, Patrick McDaniel, and Matthew Smith. Sok:
Lessons learned from android security research for ap-
pified software platforms. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 433–451. IEEE, 2016.

[5] National Security Agency. Ghidra software reverse engi-
neering suite. https://ghidra-sre.org/. Accessed:
30-01-23.

https://doi.org/10.5281/zenodo.15586318
https://doi.org/10.5281/zenodo.15586318
https://github.com/facebook/fresco/blob/b7778fce28158b91c5eba304056e0d96f33a828f/static-webp/src/main/jni/static-webp/webp.cpp
https://github.com/facebook/fresco/blob/b7778fce28158b91c5eba304056e0d96f33a828f/static-webp/src/main/jni/static-webp/webp.cpp
https://github.com/facebook/fresco/blob/b7778fce28158b91c5eba304056e0d96f33a828f/static-webp/src/main/jni/static-webp/webp.cpp
https://github.com/facebook/fresco/blob/b7778fce28158b91c5eba304056e0d96f33a828f/static-webp/src/main/jni/static-webp/webp.cpp
https://github.com/facebook/fresco/blob/b7778fce28158b91c5eba304056e0d96f33a828f/static-webp/src/main/jni/static-webp/webp.cpp
https://github.com/frida/frida
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://ghidra-sre.org/

[6] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein,
and Yves Le Traon. Androzoo: Collecting millions
of android apps for the research community. In 2016
IEEE/ACM 13th Working Conference on Mining Soft-
ware Repositories (MSR), pages 468–471. IEEE, 2016.

[7] Sumaya Almanee, Arda Ünal, Mathias Payer, and
Joshua Garcia. Too quiet in the library: An empiri-
cal study of security updates in android apps’ native
code. In 43rd IEEE/ACM International Conference on
Software Engineering: Companion Proceedings, ICSE
Companion, 2021.

[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz,
Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel. Flow-
droid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. Acm
Sigplan Notices, 49(6):259–269, 2014.

[9] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and
David Lie. Pscout: Analyzing the android permission
specification. In Proceedings of the 2012 ACM Confer-
ence on Computer and Communications Security, CCS
’12, page 217–228, New York, NY, USA, 2012. Associ-
ation for Computing Machinery.

[10] Michael Auer, Andreas Stahlbauer, and Gordon Fraser.
Android fuzzing: Balancing user-inputs and intents. In
2023 IEEE Conference on Software Testing, Verification
and Validation (ICST), pages 37–48, 2023.

[11] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra
Gorla, Andreas Zeller, Steven Arzt, Siegfried Rasthofer,
and Eric Bodden. Mining apps for abnormal usage of
sensitive data. In 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, volume 1,
pages 426–436, 2015.

[12] Domagoj Babić, Stefan Bucur, Yaohui Chen, Franjo
Ivančić, Tim King, Markus Kusano, Caroline Lemieux,
László Szekeres, and Wei Wang. FUDGE: fuzz driver
generation at scale. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering, pages 975–985. ACM.

[13] Michael Backes, Sven Bugiel, Erik Derr, Patrick Mc-
Daniel, Damien Octeau, and Sebastian Weisgerber. On
demystifying the android application framework:{Re-
Visiting} android permission specification analysis. In
25th USENIX security symposium (USENIX security
16), pages 1101–1118, 2016.

[14] Michael Batchelder and Laurie Hendren. Obfuscating
java: The most pain for the least gain. In International
Conference on Compiler Construction, pages 96–110.
Springer, 2007.

[15] Luca Borzacchiello, Emilio Coppa, Davide Maiorca,
Andrea Columbu, Camil Demetrescu, and Giorgio Gi-
acinto. Reach me if you can: On native vulnerability
reachability in android apps. In Computer Security–
ESORICS 2022: 27th European Symposium on Research
in Computer Security, Copenhagen, Denmark, Septem-
ber 26–30, 2022, Proceedings, Part III, pages 701–722.
Springer, 2022.

[16] Priyanka Bose, Dipanjan Das, Saastha Vasan, Sebas-
tiano Mariani, Ilya Grishchenko, Andrea Continella, An-
tonio Bianchi, Christopher Kruegel, and Giovanni Vi-
gna. Columbus: Android app testing through systematic
callback exploration. arXiv preprint arXiv:2302.09116,
2023.

[17] Bobby R Bruce, Tianyi Zhang, Jaspreet Arora, Guo-
qing Harry Xu, and Miryung Kim. Jshrink: In-depth
investigation into debloating modern java applications.
In Proceedings of the 28th ACM joint meeting on euro-
pean software engineering conference and symposium
on the foundations of software engineering, pages 135–
146, 2020.

[18] Marcel Busch, Aravind Machiry, Chad Spensky, Gio-
vanni Vigna, Christopher Kruegel, and Mathias Payer.
Teezz: Fuzzing trusted applications on cots android de-
vices. 2023 IEEE Symposium on Security and Privacy
(SP), pages 1204–1219, 2023.

[19] Cristian Cadar and Koushik Sen. Symbolic execution for
software testing: three decades later. Communications
of the ACM, 56(2):82–90, 2013.

[20] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi,
Manuel Egele, Christopher Kruegel, Giovanni Vigna,
and Yan Chen. Edgeminer: Automatically detecting im-
plicit control flow transitions through the android frame-
work. In NDSS, 2015.

[21] Peng Chen, Yuxuan Xie, Yunlong Lyu, Yuxiao Wang,
and Hao Chen. Hopper: Interpretative fuzzing for li-
braries. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 1600–1614, 2023.

[22] Jeffrey Dean, David Grove, and Craig Chambers. Opti-
mization of object-oriented programs using static class
hierarchy analysis. In ECOOP’95—Object-Oriented
Programming, 9th European Conference, Åarhus, Den-
mark, August 7–11, 1995 9, pages 77–101. Springer,
1995.

[23] Caleb Fenton. Creating a java vm from android native
code. https://calebfenton.github.io/2017/
04/05/creating_java_vm_from_android_native_
code/. Accessed: 24-01-23.

https://calebfenton.github.io/2017/04/05/creating_java_vm_from_android_native_code/
https://calebfenton.github.io/2017/04/05/creating_java_vm_from_android_native_code/
https://calebfenton.github.io/2017/04/05/creating_java_vm_from_android_native_code/

[24] Joshua Garcia, Mahmoud Hammad, Negar Ghorbani,
and Sam Malek. Automatic generation of inter-
component communication exploits for android applica-
tions. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 661–671,
2017.

[25] Joshua Garcia and Sam Malek. Path-sensitive analysis
of message-controlled communication for android apps.
(UCI-ISR-16-4), September 2016.

[26] Google. Quarksalab qbdi. https://qbdi.quarkslab.
com/. Accessed: 27-07-23.

[27] Harrison Green and Thanassis Avgerinos. GraphFuzz:
library API fuzzing with lifetime-aware dataflow graphs.
In Proceedings of the 44th International Conference on
Software Engineering, pages 1070–1081. ACM.

[28] Eric Le Guevel. Android greybox fuzzing with
afl++ frida mode. https://blog.quarkslab.com/
android-greybox-fuzzing-with-afl-frida-mode.
html. Accessed: 20-07-2023.

[29] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan, and
Mathias Payer. {FuzzGen}: Automatic fuzzer genera-
tion. In 29th USENIX Security Symposium (USENIX
Security 20), pages 2271–2287, 2020.

[30] Bokdeuk Jeong, Joonun Jang, Hayoon Yi, Jiin Moon,
Junsik Kim, Intae Jeon, Taesoo Kim, WooChul Shim,
and Yong Ho Hwang. Utopia: Automatic generation of
fuzz driver using unit tests. In 2023 IEEE Symposium
on Security and Privacy (SP), pages 2676–2692. IEEE,
2023.

[31] Jinho Jung, Stephen Tong, Hong Hu, Jungwon Lim,
Yonghwi Jin, and Taesoo Kim. WINNIE : Fuzzing
windows applications with harness synthesis and fast
cloning. In Proceedings 2021 Network and Distributed
System Security Symposium. Internet Society.

[32] Mateusz Jurczyk. Google project zero: Mms
exploit part 1, introduction to the samsung
qmage codec and remote attack surface. https:
//googleprojectzero.blogspot.com/2020/07/
mms-exploit-part-1-introduction-to-qmage.
html. Accessed: 30-01-23.

[33] Wang Kai, Zhang Yuqing, Liu Qixu, and Fan Dan. A
fuzzing test for dynamic vulnerability detection on an-
droid binder mechanism. In 2015 IEEE Conference on
Communications and Network Security (CNS), pages
709–710, 2015.

[34] Anatoli Kalysch, Mark Deutel, and Tilo Müller.
Template-based android inter process communication

fuzzing. In Proceedings of the 15th International Con-
ference on Availability, Reliability and Security, ARES
’20, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[35] Ondřej Lhoták and Laurie Hendren. Scaling java points-
to analysis using s park. In Compiler Construction: 12th
International Conference, CC 2003 Held as Part of the
Joint European Conferences on Theory and Practice
of Software, ETAPS 2003 Warsaw, Poland, April 7–11,
2003 Proceedings 12, pages 153–169. Springer, 2003.

[36] Wen Li, Jinyang Ruan, Guangbei Yi, Long Cheng, Xi-
apu Luo, and Haipeng Cai. Polyfuzz: Holistic greybox
fuzzing of multi-language systems. In 32nd USENIX
Security Symposium (USENIX Security 23), 2023.

[37] Yue Li, Tian Tan, and Jingling Xue. Understanding and
analyzing java reflection. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), 28(2):1–
50, 2019.

[38] Amiya K. Maji, Fahad A. Arshad, Saurabh Bagchi, and
Jan S. Rellermeyer. An empirical study of the robust-
ness of inter-component communication in android. In
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2012), pages 1–12, 2012.

[39] Samuel Mergendahl, Nathan Burow, and Hamed
Okhravi. Cross-language attacks. In NDSS, 2022.

[40] Marius Muench, Dario Nisi, Aurélien Francillon, and
Davide Balzarotti. Avatar 2: A multi-target orches-
tration platform. In Proc. Workshop Binary Anal.
Res.(Colocated NDSS Symp.), volume 18, pages 1–11,
2018.

[41] Siegfried Rasthofer, Steven Arzt, Stefan Triller, and
Michael Pradel. Making malory behave maliciously:
Targeted fuzzing of android execution environments. In
Proceedings of the 39th International Conference on
Software Engineering, ICSE ’17, page 300–311. IEEE
Press, 2017.

[42] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spen-
sky, Andrea Continella, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Karonte: Detecting in-
secure multi-binary interactions in embedded firmware.
In 2020 IEEE Symposium on Security and Privacy (SP),
pages 1544–1561. IEEE, 2020.

[43] Claudio Rizzo. Static Flow Analysis for Hybrid and
Native Android Applications. PhD thesis, Ph. D. Disser-
tation. Royal Holloway–University of London, 2020.

[44] Jordan Samhi, Jun Gao, Nadia Daoudi, Pierre Graux,
Henri Hoyez, Xiaoyu Sun, Kevin Allix, Tegawendé F
Bissyandé, and Jacques Klein. Jucify: a step towards

https://qbdi.quarkslab.com/
https://qbdi.quarkslab.com/
https://blog.quarkslab.com/android-greybox-fuzzing-with-afl-frida-mode.html
https://blog.quarkslab.com/android-greybox-fuzzing-with-afl-frida-mode.html
https://blog.quarkslab.com/android-greybox-fuzzing-with-afl-frida-mode.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-1-introduction-to-qmage.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-1-introduction-to-qmage.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-1-introduction-to-qmage.html
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-1-introduction-to-qmage.html

android code unification for enhanced static analysis.
In Proceedings of the 44th International Conference on
Software Engineering, pages 1232–1244, 2022.

[45] Jordan Samhi, René Just, Tegawendé F. Bissyandé,
Michael D. Ernst, and Jacques Klein. Call graph sound-
ness in android static analysis. In Proceedings of the
33rd ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, ISSTA 2024, page 945–957,
New York, NY, USA, 2024. Association for Computing
Machinery.

[46] Moritz Schloegel, Nils Bars, Nico Schiller, Lukas Bern-
hard, Tobias Scharnowski, Addison Crump, Arash Ale
Ebrahim, Nicolai Bissantz, Marius Muench, and
Thorsten Holz. Sok: Prudent evaluation practices for
fuzzing. arXiv preprint arXiv:2405.10220, 2024.

[47] Prashast Srivastava, Flavio Toffalini, Kostyantyn
Vorobyov, François Gauthier, Antonio Bianchi, and
Mathias Payer. Crystallizer: A hybrid path analysis
framework to aid in uncovering deserialization vulnera-
bilities. In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages
1586–1597, 2023.

[48] Xiaoyu Sun, Li Li, Tegawendé F Bissyandé, Jacques
Klein, Damien Octeau, and John Grundy. Taming reflec-
tion: An essential step toward whole-program analysis
of android apps. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 30(3):1–36, 2021.

[49] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vijay Sundaresan. Soot:
A java bytecode optimization framework. In CASCON
First Decade High Impact Papers, pages 214–224. 2010.

[50] Raja Vallee-Rai and Laurie J Hendren. Jimple: Simpli-
fying java bytecode for analyses and transformations.
1998.

[51] Fish Wang and Yan Shoshitaishvili. Angr-the next gen-
eration of binary analysis. In 2017 IEEE Cybersecurity
Development (SecDev), pages 8–9. IEEE, 2017.

[52] Xiaolei Wang, Yuexiang Yang, and Sencun Zhu. Au-
tomated hybrid analysis of android malware through
augmenting fuzzing with forced execution. IEEE Trans-
actions on Mobile Computing, 18(12):2768–2782, 2019.

[53] Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen,
and Xiaosong Zhang. Jn-saf: Precise and efficient
ndk/jni-aware inter-language static analysis framework
for security vetting of android applications with native
code. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
1137–1150, 2018.

[54] Hao Xiong, Qinming Dai, Rui Chang, Mingran Qiu,
Renxiang Wang, Wenbo Shen, and Yajin Zhou. Atlas:
Automating cross-language fuzzing on android closed-
source libraries. In Proceedings of the 33rd ACM SIG-
SOFT International Symposium on Software Testing and
Analysis, pages 350–362, 2024.

[55] Lei Xue, Chenxiong Qian, Hao Zhou, Xiapu Luo, Yajin
Zhou, Yuru Shao, and Alvin T.S. Chan. NDroid: To-
ward tracking information flows across multiple android
contexts. 14(3):814–828.

[56] Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang.
Droidfuzzer: Fuzzing the android apps with intent-filter
tag. In Proceedings of International Conference on
Advances in Mobile Computing & Multimedia, pages
68–74, 2013.

[57] Cen Zhang, Xingwei Lin, Yuekang Li, Yinxing Xue,
Jundong Xie, Hongxu Chen, Xinlei Ying, Jiashui Wang,
and Yang Liu. Apicraft: Fuzz driver generation for
closed-source sdk libraries. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2811–2828,
2021.

[58] Junbin Zhang, Yingying Wang, Lina Qiu, and Julia Ru-
bin. Analyzing android taint analysis tools: Flowdroid,
amandroid, and droidsafe. IEEE Transactions on Soft-
ware Engineering, 48(10):4014–4040, 2021.

[59] Mingrui Zhang, Chijin Zhou, Jianzhong Liu, Mingzhe
Wang, Jie Liang, Juan Zhu, and Yu Jiang. Daisy: Ef-
fective fuzz driver synthesis with object usage sequence
analysis. In 2023 IEEE/ACM 45th International Confer-
ence on Software Engineering: Software Engineering in
Practice (ICSE-SEIP), pages 87–98. IEEE, 2023.

[60] Jinjing Zhao, Yan Wen, Xiang Li, Ling Pang, Xiaohui
Kuang, and Dongxia Wang. A heuristic fuzz test gener-
ator for java native interface. In Proceedings of the 2nd
ACM SIGSOFT International Workshop on Software
Qualities and Their Dependencies, pages 1–7, 2019.

[61] Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca. On-
demand-fork: a microsecond fork for memory-intensive
and latency-sensitive applications. In Proceedings of the
Sixteenth European Conference on Computer Systems,
pages 540–555, 2021.

A Appendix

A.1 Triage Example
To illustrate our triage process, we detail a real-world crash
discovered in the tpCamera application (Section 5.6), specif-
ically within its libTPMp4Encoder.so library. This example
demonstrates the triage process:

Figure 7: Screenshot of the JADX decompiler showing the
vulnerable MP4Encoder_packVideo callsite

1. Reproduce the Crash: Initially, the analyst
reproduced the crash by executing the pro-
vided script to send the identified crashing in-
put to the vulnerable libTPMp4Encoder.so li-
brary: python3 fuzzing/triage.py -target
com.tplink.skylight.apk -target_function
MP4Encoder_packVideo -device <device_id> -c
-r This script executed the crashing input against the
target library on the test device, successfully reproducing
the crash and yielding the following backtrace:
#0 0x712da17e4c abort @ libc.so
#1 0x712da0c914 scudo::die @ libc.so
#2 0x712da0cf8c scudo::~ScopedErrorReport @ libc.so
#3 0x712da0d1c0 scudo::reportInvalidChunkState @ libc.so
#4 0x712da0e5cc scudo::Allocator::deallocate @ libc.so
#5 0x6e802a305c mp4_write_one_jpeg @ libTPMp4Encoder.so
#6 0x6e802a6608 MP4Encoder_packVideo @ libTPMp4Encoder.so
#7 0x61b2c8ee2c fuzz_one_input at harness_debug.cpp:76

The call to scudo::die immediately suggested a memory
corruption issue.

2. Debug and Categorize: Subsequently, the analyst
attached GDB to the harness to inspect the crash
in detail. The backtrace (Frame #1) confirmed
the involvement of the Scudo memory alloca-
tor. Root cause analysis necessitated decompiling
libTPMp4Encoder.so. Decompilation revealed that
the Scudo exception was triggered by a free operation
(scudo::Allocator::deallocate at Frame #4) on a
global variable within mp4_write_one_jpeg (Frame
#5). Using GDB to trace this call, the analyst determined
that the pointer being deallocated had already been
freed. Thus, the crash was categorized as a double-free,
stemming from a use-after-free vulnerability involving
the identified global variable.

3. Identify the Target Native Callsite: Using JADX [3], the
analyst decompiled the tpCamera application’s Dalvik
bytecode. JADX’s search functionality was then em-
ployed to locate the Java callsite invoking the vulnerable
native function, MP4Encoder_packVideo. The relevant
decompiled code snippet is presented in Figure 7.

4. Determine Reachability: Leveraging JADX’s cross-
reference feature, the analyst traced the origin of the
bArr parameter supplied to the vulnerable function (see

Metric JNIFuzzer POIROT

APKs Targeted 340 c

APKs Succesfully Fuzzed 22 22
Functions Fuzzed 40 94a

Crashes Found 0 457
Deduplicated Crashes 0 50
Crashes (Prefiltered) 0 4
True Positives (Triaged) 0 1
False Positives (Triaged) 0 3

Reasons for TPs N/A 1 Stack overflowb

Reasons for FPs N/A
1 Unsat. Constraints

2 Unreachable
a “Fuzzable” functions where POIROT detected increase in coverage.
b Stack buffer overflow from controlled data in SharedPreferences;

confirmed fixed in the newest app version.
c POIROT only considered the APKs JNIFuzzer was able to fuzz.

Table 4: Comparative Fuzzing Performance of JNIFuzzer and
POIROT on the Common Subset of 340 ARM64 APKs from
JNIFuzzer’s Dataset.

Figure 7). This analysis revealed that bArr originates
from a queue populated with JPEG images received from
the network. Specifically, an IoT camera streams these
images to the application over HTTP without authentica-
tion to provide a live feed. This confirmed that the vulner-
able MP4Encoder_packVideo function was reachable
via unauthenticated network input.

5. Determine Vulnerability (Assess Exploitability): The fi-
nal step involved assessing exploitability. First, the ana-
lyst verified that the harness’s call sequence accurately
mirrored the application’s logic. The harness correctly
initialized the library via initVideo and then invoked
packVideo twice, mimicking the application, which also
calls initVideo followed by packVideo in a loop dur-
ing stream recording (Figure 7). Second, argument con-
straints were examined. The harness correctly encoded
the array-length constraint for the second argument. The
third argument, used only for logging, did not influence
the crash. Crucially, the application performed no saniti-
zation checks on the attacker-controlled bArr parameter
itself.

Based on these findings, the analyst confirmed the crash as
a true positive vulnerability, specifically a network-reachable
memory corruption, and subsequently reported it to the ven-
dor.

A.2 Comparison against JNIFuzzer

JNIFuzzer’s analysis is restricted to function signatures, heav-
ily limiting the analysis scope. The generated fuzz drivers
only call a single native function. Furthermore, the current

JNIFuzzer implementation can fuzz only armv7a (32bit) na-
tive libraries. JNIFuzzer does not employ coverage informa-
tion, limiting itself to black-box fuzzing. Finally, JNIFuzzer
supports fewer Java types (i.e., only numeric primitives and
partial support for strings).

For a direct comparison, we evaluated POIROT on the same
2017 dataset used by JNIFuzzer (4,171 APKs – we recovered
the list of targeted APKs from the JNIFuzzer evaluation and
open-source prototype). Due to its age, only 340 APKs con-
tained ARM64 native libraries suitable for comparison. On
this subset of 340 APKs JNIFuzzer successfully fuzzed 22
APKs, covering 40 functions, but found no crashes and pro-
vides no coverage information. POIROT, in contrast, identified
94 fuzzable functions (with increasing code coverage), and
discovered 50 crashes. After prefiltering POIROT’s 50 crashes,
4 unique ones remained. Manual triage revealed one true
positive–—a stack buffer overflow from controlled Shared-
Preferences data (confirmed fixed in the newest app version)–
—and three false positives (one unsatisfiable constraint, two
unreachable code paths).

A.2.1 Limitations of mocking JNI

JNIFuzzer employs a mock JNIEnv structure to imple-
ment JNI interface methods as specified in jni.h. Yet, as
Rizzo [43] notes, fully replicating the JNI interface is infea-
sible. Listing 2, from Facebook’s fresco [1] library, shows
a concrete example of the limitations of the mocking ap-
proach. This function parses the input bytes and returns a
WebPImage object, created from the native context by invok-
ing env->NewObject, which in turn calls the constructor of
the WebPImage class. Mocking such complex Java/native in-
teractions would require a comprehensive reimplementation
of the Java class model itself. Instead, POIROT supports JNI
interactions by using a genuine JNIEnv linked to a bare-bones
DVM, outlined in Section 3.3.

To show how important the need to support such inter-
actions is, we employ Ghidra [5] to study the prevalence of
hard-to-mock methods (e.g., FindClass) in native libraries. We
decompile each exported native function and collect which
JNI callbacks are used. Table 5 shows the result of this analy-
sis. While the most frequent JNI callbacks are string opera-
tions, other popular ones rely on an app’s specific imported
or defined classes (e.g., GetFieldID) which highlights the
importance of having a real DVM handling those.

B Prefiltering strategies

We explore the possibility of using prefiltering strategies to
reduce the number of spurious crashes, in line with prior
work [54]. We analyze two different approaches: a signature-
based method, and a heuristical functionality filtering based
on library symbol names.

jobject CreateFromDirectByteBuffer(JNIEnv *env, ...) {
... // Create the WebPImage with the native context.
jobject ret = env->NewObject(

sClazzWebPImage,
sWebPImageConstructor,
(jlong) spNativeContext.get());

return ret;
}

Listing 2: Native method that creates a WebImpage object.

JNIEnv* callback Instances (Freq.)

env->NewByteArray 1,642 (1.4%)
env->SetByteArrayRegion 1,758 (1.5%)
env->NewGlobalRef 1,995 (1.8%)
env->ReleaseByteArrayElements 3,816 (3.4%)
env->GetByteArrayElements 3,820 (3.4%)
env->GetArrayLength 3,958 (3.5%)
env->GetLongField 4,151 (3.7%)
env->ExceptionClear 4,271 (3.8%)
env->ThrowNew 4,351 (3.9%)
env->GetObjectClass 4,501 (4.0%)
env->GetMethodID 4,588 (4.1%)
env->DeleteLocalRef 5,654 (5.0%)
env->NewStringUTF 5,991 (5.3%)
env->GetFieldID 6,612 (5.8%)
env->FindClass 6,964 (6.1%)
env->ReleaseStringUTFChars 9,197 (8.1%)
env->GetStringUTFChars 10,081 (8.9%)

Total 112,331

Table 5: Most common JNI callbacks found in native methods
to switch execution to the Java side (excluding callbacks with
less than 1% frequency)

In the first one we identify native functions that expect a
raw pointer as one of the arguments. This pattern very often
results in false positives as the fuzzer might pass random data
instead of a valid pointer. This first approach would prevent
68 false positives (and 1 true positive), increasing the true
positive rate to 18.32%.

The second approach is based on the observation that some
native functions provide auxiliary functionality and are un-
likely to process unconstrained attacker controlled input. We
apply a lexical filter targeting function names indicative of
common, generally robust, programming idioms or specific
functional domains. For example, functions clearly denoting
logging functionality (i.e., .*_Log_.*) are unlikely to be ex-
ploitable. This second filter would exclude 51 false positives
and increase the true positive rate to 16.78%.

The two approaches combined would exclude 103 false
positives (and 1 true positive), increasing the true positive rate
to 25%. While we did not include prefiltering in our triag-
ing experiment, we believe that for practical applications of
POIROT, prefiltering effective in reducing the triaging effort.

	Introduction
	Challenges
	Design
	Call-sequence Analysis
	Argument Analysis
	Harness

	Implementation
	Evaluation
	Dataset
	Setup
	RQ1: Scalability of the Analysis Passes to Large APKs
	RQ2: Evaluation of the analysis passes
	RQ3: Finding Vulnerabilities in Real-World Apps
	Case Study tpCamera (CVE-2023-30273)
	Cost of adding support to more types
	Comparison against ATLAS

	Related Work
	Automatic Harness Synthesis For Libraries
	Android/JNI vulnerability detection
	Android Fuzzing

	Discussion
	Generalizability to other Systems
	Limitations

	Conclusions
	Ethics Considerations
	Open science
	Appendix
	Triage Example
	Comparison against JNIFuzzer
	Limitations of mocking JNI

	Prefiltering strategies

