
DUMPLING: Fine-grained Differential
JavaScript Engine Fuzzing

Liam Wachter∗†‡, Julian Gremminger†‡, Christian Wressnegger†, Mathias Payer‡ and Flavio Toffalini‡§
∗Asymmetric Research, †Karlsruhe Institute of Technology (KIT), ‡EPFL, §Ruhr-Universität Bochum

liam@seine.email, mail@ju256.de, christian.wressnegger@kit.edu, mathias.payer@nebelwelt.net, flavio.toffalini@rub.de

Abstract—Web browsers are ubiquitous and execute untrusted
JavaScript (JS) code. JS engines optimize frequently executed
code through just-in-time (JIT) compilation. Subtly conflicting
assumptions between optimizations frequently result in JS engine
vulnerabilities. Attackers can take advantage of such diverging
assumptions and use the flexibility of JS to craft exploits that
produce a miscalculation, remove bounds checks in JIT compiled
code, and ultimately gain arbitrary code execution. Classical
fuzzing approaches for JS engines only detect bugs if the engine
crashes or a runtime assertion fails. Differential fuzzing can
compare interpreted code against optimized JIT compiled code
to detect differences in execution. Recent approaches probe the
execution states of JS programs through ad-hoc JS functions that
read the value of variables at runtime. However, these approaches
have limited capabilities to detect diverging executions and inhibit
optimizations during JIT compilation, thus leaving JS engines
under-tested.

We propose DUMPLING, a differential fuzzer that compares
the full state of optimized and unoptimized execution for ar-
bitrary JS programs. Instead of instrumenting the JS input,
DUMPLING instruments the JS engine itself, enabling deep
and precise introspection. These extracted fine-grained execution
states, coined as (frame) dumps, are extracted at a high frequency
even in the middle of JIT compiled functions. DUMPLING finds
eight new bugs in the thoroughly tested V8 engine, where pre-
vious differential fuzzing approaches struggled to discover new
bugs. We receive $11,000 from Google’s Vulnerability Rewards
Program for reporting the vulnerabilities found by DUMPLING.

I. INTRODUCTION

Web browsers are the portal to the World Wide Web. Users
directly run JavaScript (JS) code on their devices, which is
delivered from websites, but also embedded advertisements
and third-party front-end frameworks. Due to the ubiquitous-
ness and attack surface, JS engines are the focus of security
researchers and malicious attackers, who find bugs that can be
used to gain arbitrary code execution. Therefore, it is important
to improve vulnerability discovery and broaden the class of
automatically detectable vulnerabilities.

Modern web applications heavily rely on the performant
execution of JS code. The JS engine has evolved into one
of the most crucial components of a web browser. To meet

performance expectations, JS engines use optimized just-in-
time (JIT) compilation [1]. Modern JS engines include multiple
execution tiers implementing the same semantics: the inter-
preter and one or more JIT compilers. Execution tiers represent
different trade-offs between execution time and compilation
time and are selected based on runtime-profiled usage at func-
tion granularity. Different from C/system code, a JS engine
may switch between different optimizations at arbitrary points
during execution, even during the execution of a function. The
interpreter and the compiler’s emitted code must have the same
semantics even after compiler optimizations. A mismatch in
semantics can be as subtle as a JIT compiler wrongly assuming
a float value to be 0.0 when it could also be the distinct
float value −0.0. This real-world example of a bug in the
V8 JS engine allowed arbitrary code execution in the Chrome
renderer [2].

The above bug belongs to a logic bug class (Typer bug)
unique to JS engines [3], [4]. Starting from a proof-of-
concept that merely leads to the JIT compiler making a wrong
assumption (e.g., typing a −0.0 value as 0.0), multiple steps
are necessary to make the bug observable without introspection
(e.g., debugging) into the JS engine. These steps involve,
first, making the compiler act on the wrong assumption by
producing a wrong value (miscalculation). Second, preserving
this wrong value, such that it is propagated during subsequent
optimization and execution. Third, manipulating and passing
the value to a sink that finally makes the differential observ-
able. The bug may be observable as a crash due to memory
corruption, a violation of a manually inserted assertion in
the JS engine, or by a wrong output print. Like Typer bugs
other phases of JIT compilation regularly feature their own
classes exploitable vulnerabilities that share the property of
miscalculation before memory corruption [5], [6].

Fuzz testing (fuzzing) is a powerful technique to detect
errors in programs [7]. Fuzzing relies on bug oracles for
detecting bugs, such as detecting crashes and compiling with
address sanitizers [8]. Address sanitizers are limited in their
effectiveness for JS engines, as they heavily leverage JIT
compiled code and handwritten assembly, which cannot be
instrumented. While assertions are an effective bug oracle,
they need to be manually inserted by developers and can only
check locally available information. To go beyond memory
corruption bugs and also detect logic bugs, differential fuzzing
is a promising strategy. Differential fuzzing executes a large
number of inputs against two implementations of the same

Network and Distributed System Security (NDSS) Symposium 2025
24–28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.241411
www.ndss-symposium.org

specification and reports a bug if their outputs differ [9], [10],
[11]. If the implementations are not in agreement, the tuple
of differing output prints is called a differential. Differential
fuzzing across JS engines needs to manually account for
implementation specific behavior that the ECMAScript speci-
fication [12] leaves open [13], [14], [15]. Instead, differential
fuzzing can also be done between different execution tiers
of the JS engine, such as the interpreter and optimizing JIT
compilers [16], [17], [18]. State-of-the-art differential fuzzers
for JS engines share the design choice of probing the execution
state at JS level with techniques similar to print statements
of individual variables. This design choice positions them
as generic approaches since they can be easily deployed on
different JS engines. However, relying on probes inside the JS
code constrains the observation to only a small subset of the
execution state, while such bugs can appear in any part of the
execution state [19]. Furthermore, injecting JS probes alters
the JS code and may inhibit JIT compiler optimizations, and
therefore leave the JS engine under-tested.

We propose DUMPLING, a differential fuzzer that extracts
and compares the execution state of the JS engine between op-
timized JIT compiled code and unoptimized code without any
modification of the JS code. The key innovation of DUMPLING
is to enable a fuzzer to observe the full execution state of the
JS engine, instead of only comparing single variables, while
not interfering with JIT compiler optimizations. To achieve
this goal, we propose a new introspection mechanism for
modern JS engines that allows for such state extraction at a
high frequency, even in the middle of JIT compiled functions.
DUMPLING’s representation of individual objects is more in-
depth and fine-grained than previous approaches [18], [17],
[20]. This new level of sensitivity enables the fuzzer to detect
bugs before they become observable as wrong output prints
or memory corruptions. Another key challenge is to avoid
false positives. During our evaluation, we observe that existing
differential fuzzing approaches suffer from a high false posi-
tive rate [18], [17]. Without a fuzzing approach avoiding false
positives, true positives are hidden between many false alarms,
which hinders efficient bug fixing in practice. DUMPLING
is designed and carefully tuned to avoid false positives, as
demonstrated in our evaluation.

DUMPLING’s design revolves around the general principles
of JS JIT compilers described by Gal et al. [1]. Gal et
al.s’ work forms the cornerstone of contemporary JS engines.
In our work, we choose the V8 engine as the most used
implementation of Gal’s principles, holding a market share of
75% for web browsers [21]. V8 is built for Google’s Chrome
and Chromium browsers, but it is also used in Microsoft
Edge and Opera. Furthermore, V8 is running in other contexts
as well, for example, server-side JS environments, desktop
applications, mobile apps, database management systems, and
PDF readers. We believe that the ubiquity, criticality, and
ongoing discovery of new vulnerabilities warrants research in
domain-specific bug oracles for JS engines, at the example of
V8. Section VI discusses the porting effort of DUMPLING to
other JS engines.

Ignition Sparkplug Maglev TurboFan

Unoptimized Optimized

Optimization:
Deptimization:

Fig. 1: V8 compiler’s tiers, based on Maglev’s design [22].

In our evaluation, we compare the overhead, sensitivity,
and specificity of DUMPLING to state-of-the-art JS engine
differential fuzzing approaches. We show that DUMPLING’s
bug oracle is significantly more sensitive than the state-of-
the-art while maintaining a similar performance in terms of
coverage and execution speed. This sensitivity is quantified
as the entropy of information given to the bug oracle of
which DUMPLING improves on the state-of-the-art by around
30%. Furthermore, DUMPLING’s bug finding capabilities are
demonstrated by identifying ten bugs in V8, eight of which
are new.

The contributions of this paper are as follows:
1) We design a bug oracle that probes the execution state

of a JS engine during execution of arbitrary programs.
The generated dumps provide fine-grained insight of the
execution state, do not modify execution semantics, and
have a concise format (allowing for efficient transmis-
sion).

2) We propose DUMPLING, a differential fuzzer that em-
ploys our bug oracle to find vulnerabilities in the
well-tested V8 JS engine. Our evaluation shows that
DUMPLING finds more bugs than the state-of-the-art,
while we do not observe any false positives from
DUMPLING.

We publicly release the prototype of DUMPLING and the
necessary materials to replicate our experiments at https:
//github.com/two-heart/dumpling-artifact-evaluation.

In the following, we introduce core JS engine internals, that
are fundamental for understanding the design of DUMPLING.
We choose to use V8 terminology throughout the paper to
make the implementation easier to follow. Section VI maps
this terminology to the equivalent concepts in other JS engines.
V8 consists of four execution tiers, the bytecode interpreter
Ignition, the non-optimizing baseline compiler Sparkplug, the
mid-tier compiler Maglev, and the most optimizing compiler
TurboFan. The V8 execution tiers and their interactions are
depicted in Figure 1. DUMPLING’s design revolves around
the concept of execution state and the interaction between the
execution tiers.

II. BACKGROUND AND MOTIVATION

In the following, we introduce core JS engine internals, that
are fundamental for understanding the design of DUMPLING.
We choose to use V8 terminology throughout the paper to
make the implementation easier to follow. Section VI maps
this terminology to the equivalent concepts in other JS engines.

https://github.com/two-heart/dumpling-artifact-evaluation
https://github.com/two-heart/dumpling-artifact-evaluation

Fig. 2: Example execution state of a JS function: Virtual stack
frame used in the bytecode virtual machine. The accumulator
is pinned to a hardware register. The notation follows the
format used in Ignition [23].

V8 consists of four execution tiers, the bytecode interpreter
Ignition, the non-optimizing baseline compiler Sparkplug, the
mid-tier compiler Maglev, and the most optimizing compiler
TurboFan. The V8 execution tiers and their interactions are
depicted in Figure 1. DUMPLING’s design revolves around
the concept of execution state and the interaction between the
execution tiers.

A. Unoptimized Execution

Ignition translates JS into bytecode and interprets it in-
struction by instruction in a register-accumulator virtual ma-
chine [23]. For instance, a simple addition of the accumulator
with a register Add r0, (1), can result in one of many dif-
ferent implementations depending on the types of the operands
and special cases in the ECMAScript specification [12]. In the
example instruction, (1) is not an operand to the addition in
the mathematical sense, but an entry in the feedback vector [1].
Early tiers collect type feedback from instructions and store it
in such feedback vectors, to later base speculative optimiza-
tions on. Technically feedback is already used in Ignition to a
limited extent, to more quickly find the right implementations
for the types (fast paths), but interpreted code still has an
inherent overhead over machine code. Nevertheless, JS always
starts execution in Ignition, which can start execution without
waiting for compilation to finish. Type feedback must be
collected for sensible optimized JIT compilation to occur.

Sparkplug is a JIT compiler designed for quick compi-
lation [24]. Sparkplug walks the bytecode once, lowering
every bytecode instruction verbatim to machine code, without
speculating on operands. As such the bytecode structure is
preserved. Therefore, Sparkplug can be thought of as accel-
erated interpretation. This allows DUMPLING to set up hooks
at any bytecode instruction in code that is JIT compiled by
Sparkplug for our introspection.

B. Execution State

The register-accumulator virtual machine of Ignition and
Sparkplug directly acts on the execution state. The execution
state is tracked per function in a (virtual) stack frame. Such a
stack frame along with example values is shown in Figure 2.
The accumulator, that is also part of the execution state,
is usually pinned to a hardware register for efficiency [23],
[25]. A stack of stack frames forms the execution state of
a JS program. This execution state contains all information
necessary for unoptimized tiers to continue correct execution

at any bytecode instruction. Note that the stack does not just
contain local JS variables, but also any used global variables.

C. Optimized Execution

V8 contains two optimizing JIT compilers, Maglev and
TurboFan. Maglev, a relatively recent addition to V8, serves
as a mid-tier compiler [22]. It offers a middle ground between
compilation time and code optimization. Only after a function
is heavily used it will be JIT compiled with TurboFan, which
performs more complex optimizations such as range analysis.
Maglev and TurboFan have independent implementations of
optimization passes, on their own intermediate representations.
However, they are conceptually similar in that they both spec-
ulate on collected runtime feedback to perform optimizations.
In the previous addition example, one such speculation could
be that this instruction will continue to add unsigned integer
values less than one machine word. Finally, efficient machine
code is emitted that implements the assumed special case.

D. Deoptimization

Speculative JIT compilation requires the guarding of spe-
cialized code by runtime checks at so-called deoptimization
points. If an assumption is violated that further code relies
on, the execution needs to continue seamlessly in a non-
optimizing tier [26]. Therefore, every deoptimization point
points to a bytecode location where execution continues if
its guarding check is violated. As defined in Section II-B,
unoptimized execution requires the virtual stack frame (and
those of inlined functions) to be reconstructed. This part of
deoptimization is called rematerialization and restores the
stack frame to the extent that it is changed by the JIT code at
this point. After this, execution will continue in Ignition or if
there is Sparkplug code, in Sparkplug. TurboFan and Maglev
share an implementation of the deoptimization mechanism
starting from rematerialization. For the sake of simplicity,
when discussing deoptimization points, we implicitly mean
eager deoptimization, which is distinct from lazy deoptimiza-
tion [27].

Some code patterns will only be generated by optimizations,
when a function is compiled once, then deoptimized, called
with different feedback, and finally recompiled. For detecting
JIT vulnerabilities with a fuzzer it is important to generate
inputs that have such behavior with diverse feedback. Previous
work wraps all inputs in a template that forces JIT compilation
with debug syntax in the single constrained way [17]. Instead,
we rely on Fuzzilli, an existing approach to generate code
triggering JIT optimization with diverse feedback [3].

III. DESIGN

DUMPLING is a differential fuzzer that deeply introspects
the JS engine to detect divergences between optimized and
unoptimized code. All modern JS engines root their concepts
in Gal et al.’s work [1]. Among them, V8 stands out as
the most successful instance with a 75% share for web
browsers [21]. We discuss the adoption of DUMPLING in other
JS engines in Section VI.

Fuzzilli

+ JIT sensitive
di�erential testing

Di�erential Oracle

V8

+ Dumpling
Mode

JS program;

V8 enable optimizations

optimized dumps; dump o�sets;
hightest execution tier; coverage

JS program; V8 disable
optimizations; dump o�sets

unoptimized dumps; coverage

unoptimized
dumps

optimized
dumps

Dumpling ❶

➋

❸

➍

➎

Fig. 3: Design and protocol overview of DUMPLING. Contri-
butions in bold.

DUMPLING’s design addresses three key challenges. First,
we aim to extract the full execution state at a high frequency
and represent it in a detailed and comparable way without
changing the execution semantics. To achieve this, we add
instrumentation to the JS engine itself (Section III-A). Second,
DUMPLING needs to compare the dumps from optimized and
unoptimized execution. To this end, we design a differential
oracle based on a novel algorithm that efficiently matches the
states extracted from different JS tiers and reports any incon-
sistency observed (Section III-B). Finally, non-deterministic
behaviors in the JS engines may lead to false positive alarms.
To address this issue, we propose a practical technique that
we detail in the implementation (Section IV-C).

DUMPLING’s goal is to detect differential bugs in optimized
JS executions. Therefore, the architecture is designed to detect
the activation of the JIT compilers and enable the differential
oracle only when needed. Moreover, we aim to extract and
transmit the execution state from the engine to the differential
oracle with minimal time and space overhead. Figure 3 shows
DUMPLING’s components and their interaction at a high level.
In 1 , the fuzzer produces a JS program and inputs it to the JS
engine configured to use JIT optimizations. In the first run, we
enable all tiers of the engine’s compiler pipeline, cf. Figure 1.
More precisely, V8 is extended with the so-called DUMPLING
Mode, which dumps the execution state both during optimized
JIT code and unoptimized execution in a canonical comparable
format. In 2 , the dumps are returned to the fuzzer, along
with the highest tier that was used, the positions where the
dumps were captured, and the exercised coverage. In cases
where optimizing tiers are used, 3 starts a second execution
of the same input program with the optimizing tiers disabled.
The second execution produces an unoptimized execution state
that serves for comparison with the optimized one. Compared
to prior work [18], our technique (JIT sensitive testing) steers
executions to target JIT bugs. DUMPLING Mode facilitates the
dumping of the execution state at the positions supplied in 3
and returns them in 4 . Finally, the differential oracle receives
the dumps from the first and second run in 5 , and compares
them to detect divergences.

While we implement our prototype based on Fuzzilli, a

widely used state-of-the-art JS engine fuzzer [3], our approach
is compatible with any JS input program from any fuzzer or
another source. In Section VI, we describe a standalone Python
implementation that allowed us to uncover a new JS bug in
the latest version of V8 by simply re-executing the official V8
unit test suite.

A. State Extraction: DUMPLING Mode

DUMPLING Mode allows the fuzzer to obtain a consistent
representation of the JS execution that will be then used by
our oracle to identify inconsistencies between optimized and
unoptimized JS executions (Section III-B). More specifically,
DUMPLING Mode instruments V8 to dump the execution state
during the execution of JIT compiled functions and at the
corresponding positions in the unoptimized tiers. DUMPLING
Mode produces three types of dumps: (i) frame dumps (cf.
FRAME type in Listing 3) for representing internal function
states, (ii) function entry (FUNC_ENTER), and (iii) function
exit (FUNC_EXIT). The combination of these dumps allows
the differential oracle to detect differentials (Section III-B).

1) State Extraction in Optimized Tiers: Obtaining the ex-
ecution states from highly optimized JIT compiled code is
nontrivial. At a high level, we address three technical chal-
lenges in the design of state extraction from optimized tiers.
First, obtaining the execution state that is tracked a priori in
machine code, such that it is comparable with the state in
unoptimized tiers. Second, finding suitable locations at which
to extract the execution state, providing high-frequency low
overhead introspection into JIT compiled code. Third, we aim
to address the previous two challenges without affecting JIT
compiler optimizations.

To address the first challenge, we rely on the following ob-
servation: Speculative JIT compilers perform a deoptimization
back to unoptimized code if the check at a deoptimization
point is violated, as described in [1], [27], [28]. Therefore,
JS engines have a mechanism to restore the bytecode virtual
machine state when transitioning from optimized JIT compiled
code to a bytecode location in an unoptimized tier. This
mechanism is called rematerialization (Section II-D). The
rematerialization restores the JS state for the unoptimized
tiers to continue execution on this same state. The same is
true at every return from a JS function to unoptimized code.
We leverage rematerialization to obtain the frame state at
every deoptimization point and such returns. Concretely, we
perform the equivalent of the first part of deoptimization,
i.e., rematerializing the frame state that the unoptimized tier
would have if deoptimized. However, instead of executing the
unoptimized code, we continue with the JIT compiled code.

For the second challenge, we leverage the following insight:
Deoptimization points are scattered in the JIT compiled code
and the return captures the state at the end of a function.
Moreover, deoptimization points have the property of being
inserted after complex operations that the compiler cannot
guarantee to be side effect free on the deoptimization con-
dition [27]. As such, we consider deoptimization points as
natural probing positions after interesting operations in the

1 -------TurboFan frame dump-------
2 pc: 7
3 acc: 13.37
4 a0: <Object>{
5 __proto__: <Class C7>{<String[1]:

f>[enumerable]<JSArray>[]},↪→

6 <String[1]: a>[configurable][enumerable]42(enum
cache: 2),↪→

7 <String[1]:
f>[configurable][enumerable]13.37(enum
cache: 0)

↪→

↪→

8 }
9 r0: -INFINITY

10 context: <ScriptContext[4]>
11 receiver: <JSGlobalProxy>
12 closure: <JSFunction f0>
13 Function ID: 27

Listing 1: A verbose example of a frame dump.

JS engine. Additionally, for completeness, we dump after
deoptimization was performed during normal execution.

Finally, we guarantee not to influence the compiler op-
timizations by positioning our non-invasive hooking at the
end of the compiler pipeline, i.e., after all optimizations have
completed.

A beneficial byproduct of our approach is that we inten-
sively test the rematerialization code, which during normal
fuzzing is less frequently used. Rematerialization featured
impactful and hard to spot vulnerabilities in the past [29].

2) State Extraction in Unoptimized Tiers: Optimized states
are extracted at every deoptimization point. Deoptimization
points point to target bytecode locations in non-optimizing
execution tiers. The target bytecode locations are used in the
unoptimized run as dump locations (2 , 3). Consequently,
to obtain the dumps from unoptimized execution, DUMPLING
hooks the dump locations. Once a hook is called, the frame
state that unoptimized execution directly operates on is ob-
tained and dumped.

3) State Serialization: Once rematerialized, the dumps need
to be transferred to the differential oracle for comparison for
matching and comparison of the frame states. Listing 1 shows
an example frame dump from TurboFan execution, which
contains the main frame information described in Section II-B.
The design goals of our serialization are three-fold (i) the
dumps must adhere to a canonical format that is invariant
across execution tiers; (ii) the dumps must be fine-grained to
detect subtle differences in the execution state, such as −0 vs.
0; (iii) the dumps must be concise to minimize the overhead
of transmitting the state to the differential oracle.

To address these challenges, we define a custom serializa-
tion format for all possible types. The serialization format
ensures that the dumps only contain invariant information. In
contrast to other solutions, e.g., V8’s %DebugPrint, we strip
all memory addresses and tier specific data structures. We also
avoid using JSON.stringify, used in prior work [20], as it
does not provide the necessary level of detail. To limit the size
of an individual frame dump, we control the traversing of JS
objects by two parameters: depth and number of properties. By

1 function opt(a, b, c) {
2 /* regular deoptimization */
3 let x = a << b;
4 for (let i = 0; i < N; i++) {
5 /* deoptimization inside the loop body */
6 if (complexCond(i))
7 x += c.length;
8 /* deoptimization outside the loop */
9 x **= c[0];

10 }
11 }

Listing 2: Visualization of deoptimizations from optimized
code to earlier points in unoptimized code. Arrows indicate
control-flow transfers from optimized to unoptimized if a
deoptimization is triggered.

modeling a JS object as a graph structure, the first parameter
indicates how deep the serialization moves into the graph,
while the second one indicates the number of child nodes to
be visited. Setting the ideal dumping parameters is a trade-
off between performance and sensitivity: a shallow dump
may miss crucial state inconsistencies but improve executions
per second. In Section V, we evaluate the impact of this
hyperparameter and observe that it has only a minor impact
on performance. An effective mechanism for reducing the size
of dumps is to only include fields in the dump that changed
compared to the previous frame dump. The strings in Listing 1
are expanded for legibility, in the actual prototype we choose
shorter representations that carry the same information. A third
minor optimization is to explicitly include certain properties
only if they differ from the default value, like the prototype
of an object.

B. Differential Oracle

The goal of the bug oracle is to detect any divergence in
execution states between optimized and unoptimized execu-
tion. After the dumps from the unoptimized execution are
received (4), they are passed together with the dumps from
the optimized execution to the bug oracle (5). Matching
optimized and unoptimized frame states may appear simple
at first glance. However, reviewing the inherent properties
of deoptimization points reveals that a simple “one-to-one”
mapping does not exists. We first describe this challenge, and
then present our matching algorithm that is both robust and
sensitive.

To understand the problem of frame matching, consider
Listing 2 that visualizes three cases of deoptimization points.
For readability, and without loss of generality, we use the
corresponding positions in source code instead of bytecode
and machine code. More specifically, the code contains three
deoptimization points: (a) line 3 shows a regular deopti-
mization that points to the same line, (b) line 7 points to
line 4 inside the loop body, and (c) line 9 points to line 4,
the declaration before the loop body. While the compiler
tries hard to avoid cases (b) and (c) for efficiency, they
can still occur, and are here illustrated in a relatively small

code example. Consider the deoptimization (b) at line 7: if
complexCond(i) is true, we pass by the deoptimization
point. Therefore, optimized execution will dump a frame
state that is valid for the bytecode offset in unoptimized
execution pointed to in line 4 (Section III-A1). Conversely,
since line 4 is pointed to by the deoptimization in line 7,
the unoptimized execution dumps a frame state every time
line 4 is traversed (Section III-A2). During the unoptimized
execution, we observe N dumps from this bytecode location,
but only |{i | i ∈ complexCond(i) ∧ {0, . . . , N − 1}}| dumps
in optimized execution. Therefore, we do not know which of
the frames produced at line 4 corresponds to the respective
optimized frame. Static analysis with the given is theoreti-
cally impossible, as in this example complexCond can be
any Turing-complete calculation. Furthermore, there exists no
exact mapping from machine code instruction to bytecode
offset due to compiler optimizations, making dynamic tracing
impossible. Conversely, deoptimization point (c) shows a case
where there is one dump in unoptimized execution, but N
dumps from optimized execution. In even more complex cases,
a function may get deoptimized and recompiled multiple times
in the same invocation. Therefore, we believe that any heuristic
attempting an “exact” mapping will miss bugs or be false
positive prone.

We describe why a generally accurate matching between
frames is not necessary for the detection of divergence in
execution. In fact a relatively simple algorithm is sufficient
to solve the problem. Our algorithm relies on two invariants.
First, every frame state in the optimized execution must appear
in the unoptimized execution, for execution to be correct.
Second, by the pigeonhole principle [30], if a program state,
including the program counter, repeats, the program is in an
infinite loop. Programs with infinite loops will hit the timeout
of the fuzzer, and therefore never reach the bug oracle. Based
on these observations, we design an oracle that works in two
steps, its pseudocode is shown in Listing 3. First, the group
function groups frame dumps by function invocation by walk-
ing the call stack demarcated by the aforementioned function
enter and exit dumps. Inlining is not a problem because V8
maintains the state of the inlined function separately to per-
form correct deoptimizations. Since groups represent function
invocations, every correct JS program execution has to contain
the same number of groups in optimized and unoptimized runs.
If this invariant is violated, a differential bug is found and
reported by our oracle (line 15). Second, the match function
checks for every invocation of a JIT compiled function if
each of its frame dumps appears in the unoptimized frame
dumps of the same function invocation. Note, this matching
algorithm can be applied to any speculative JIT compiler that
deoptimizes to recent bytecode offsets as described in Gal et
al.’s work [1].

IV. IMPLEMENTATION

The following illustrates the modification required to im-
plement DUMPLING. More precisely, we discuss the V8 mod-
ifications to extract the execution state in Section IV-A, while

1 def group(dumps):
2 stack = [], chunks = []
3 for dump in dumps:
4 if dump is FUNC_ENTER:
5 stack.push([])
6 elif dump is FUNC_EXIT:
7 chunks.push(stack.pop())
8 elif dump is FRAME:
9 stack[-1].push(dump)

10 return chunks
11

12 def match(opt_dumps, unopt_dumps):
13 opt_groups = group(opt_dumps)
14 unopt_groups = group(unopt_dumps)
15 if len(opt_groups) != len(unopt_groups):
16 return False
17 groups = zip(opt_groups, unopt_groups)
18 for (opt_group, unopt_group) in groups:
19 for opt_frame in opt_group:
20 if opt_frame not in unopt_group:
21 return False
22 return True

Listing 3: Pseudocode depicting the implementation of the
matching algorithm.

Check deopt condition #1
je <Deopt Exit #1>
call <Dump Hook>
...
Check deopt condition #2
je <Deopt Exit #2>
call <Dump Hook>
...
<Deopt Exit #1>
<Deopt Exit #2>
...
<Dump Hook>:

- Save Registers and Stack
- Rematerialize State
- Serialize State and Dump State
- Restore Registers and Stack

Listing 4: Pseudo-assembly code with JIT hooks that
DUMPLING inserts at every deoptimization point.

the modifications for Fuzzilli are elaborated in Section IV-B.
Finally, we describe our approach to reduce false positives in
Section IV-C.

A. V8 Modification

To implement DUMPLING Mode, we add 4,580 LoC to V8
based on commit 6e70dc9 (2024-03-21). An inherent design
goal of DUMPLING is to transparently extract execution states
without any modification to JS or interference with the JIT
compiler optimizations. Therefore, we insert our hooks in a
way that is not observable by any pass in the compilation
pipeline. We implement the hooking by emitting a single call
instruction at every deoptimization point during the lowering
phases to machine code of Maglev and TurboFan. Since
the respective lowering phases run as the last phase during
compilation, it is guaranteed that DUMPLING’s hooks do not

interfere with any compiler optimization. Once a deoptimiza-
tion point is passed, the inserted hook is called, performing
the reconstruction of the corresponding virtual machine stack
frame, object rematerialization and serialization of the con-
structed frame. Calling the hook modifies CPU registers and
the hardware stack state that further JIT compiled code relies
upon. Consequently, we create a back-up of this information
before executing our hook and restore it before returning to
JIT compiled code. Listing 4 illustrates our instrumentation
with hooks of JIT compiled code produced by TurboFan or
Maglev. Deoptimization points in V8 always follow the same
structure. First, the compiler inserts a check that has to pass
in order for the following code to function correctly. This
check determines during runtime, if the JIT compiled code
can continue to execute or if it has to be deoptimized. In case
the check passes and execution continues in the JIT compiled
code, the hook is called and performs the previously mentioned
operations to serialize the current state. V8 supports both
lazy and eager deoptimizations (Section II-D). Our prototype
focuses exclusively on eager deoptimizations for two reasons.
First, supporting lazy deoptimization involves only engineer-
ing effort. Second, including lazy deoptimizations would result
in higher overhead and reduced throughput. Therefore, we
consider hooking only eager deoptimizations to be the most
practical solution for achieving an efficient prototype with a
meaningful security impact.

To additionally capture the less likely case of a deoptimiza-
tion condition being met, DUMPLING also dumps the state be-
fore execution continues in an unoptimized tier. Dumping the
continuation state in unoptimized execution after the engine
performs a deoptimization allows DUMPLING to specifically
catch errors during the deoptimization process. Additionally,
once a compiled function finishes and returns to unoptimized
execution, the state is dumped as well. Incorporating those
frames ensures that every function invocation of compiled
code has at least one dump associated with it, even if no
deoptimization point was generated for the corresponding
function.

To allow state extraction for unoptimized code, Ignition is
instrumented by inserting a hook at the beginning of every
bytecode handler. This approach inserts a hook into every
bytecode handler thus automatically tracing every bytecode
instruction. We perform a lightweight check to determine if
the current bytecode location is a dump location. With the
Ignition frame already being in place, no rematerialization has
to be performed and only the serialization has to be done in
the hook.

This same approach can be applied to Sparkplug as well.
During the single pass that Sparkplug does over the bytecode,
it directly maps each bytecode instruction to a piece of
machine code. DUMPLING inserts hooks at the beginning of
each resulting machine code piece. Effectively, this provides
the same capabilities, with regards to dumping, as the hooks in
the bytecode handlers, allowing state extraction in Sparkplug.

B. Fuzzilli Modification

To leverage the extracted states as the information for
our differential oracle during fuzzing, we extend Fuzzilli.
DUMPLING is based on Fuzzilli commit 5696921 (2023-11-
19). Fuzzilli is written in Swift. We add or modify 1,773 LoC
in Fuzzilli, implementing the JIT sensitive differential testing
and differential oracle components of DUMPLING. Concretely,
we extend Fuzzilli with the capability of differential executions
(Section III). JIT-Picker [18] already provides a good founda-
tion to implement differential executions on top of Fuzzilli
from which we take inspiration. Furthermore, we implement
deserialization of dumps, and the differential oracle described
in Section III-B. To aid our evaluation, we extend Fuzzilli to
measure additional runtime statistics.

C. Avoiding False Positives

For differential fuzzing, assuming a correct execution, we
require that repeating the execution of the same JS code tra-
verses the same states. A violation of this invariant would lead
to false positives being reported by a differential oracle, with-
out further mechanisms for false positive avoidance. However,
JS permits valid operations that introduce non-deterministic
behavior. Examples of this include Math.random() and
Date.now() but also performance and memory measure-
ment functionality that is exposed to JS. State-of-the-art dif-
ferential fuzzers [18], [17] proposed different techniques to
avoid false positives. Unfortunately, we observe the available
artifacts still suffer from this problem (Section V-A). In
practice, it is easy to provide a JS program to any of the state-
of-the-art differential fuzzers that will trigger a false positive.
Therefore, we systematically study the implementation of V8
and design DUMPLING to use V8 deterministically. During the
implementation of DUMPLING, we also asked multiple experts
in JS programming and JS engine exploitation to provide false
positives, but none were found. Furthermore, we encounter no
false positives in our evaluation runs (Section V). We therefore
believe that our study provides practical insights on how to
avoid false positives also for other researchers.

We divide our approach to avoid false positives into
multiple techniques. First, we perform a best effort ap-
proach to find and mock non-deterministic behavior inside
the JS engine by patching known non-deterministic func-
tionality inside V8 to return deterministic values. While V8
provides a predictable runtime flag that is used by
some prior work [18], we observe this technique is insuf-
ficient to avoid all non-deterministic behaviors. In addition,
false positives can arise from native syntax and stack-depth
measurement. These can be partially mitigated by the -
allow-natives-for-differential-fuzzing flag
and the correctness-fuzzer-suppressions flag.
For those behaviors that are in scope for the options but not
currently covered, we developed and submitted our patch to
the V8 team. Similar to JIT-Picker [18], we re-execute both
runs to verify that they produce the same output dumps [16].
Additionally to re-executing, we prepend JS code with wraps

0 10 20 30 40 50 60 70
Runtime (hours)

0

2

4

6

8

10

12

14

16

Co
ve

ra
ge

 (%
)

Dumpling
FuzzJIT
Fuzzilli
JIT-Picker

Fig. 4: Stable edge coverage [3] graph showing the 95%
confidence interval in a ten fold cross evaluation.

to some JS functionality that otherwise has intended non-
deterministic behavior. This includes a rather small set
of functions, namely Realm, FinalizationRegistry,
Worker, Atomics.waitAsync, typed array maximum
size, NaN patterns inside DataView, stack traces, and
Math.pow with an argument with exponent −0.5. We base
this functionality on the preexisting mocking of jsfuzzer [16].
Installing the mocks only in case a differential is provisionally
detected the introduction of false positives while imposing
only minimal overhead. Only if a differential is detected
again on re-execution, the sample is saved as a differential.
Otherwise, the sample is discarded and removed from the
corpus to avoid the generation of further samples that exhibit
non-deterministic behaviors.

V. EVALUATION

We evaluate the effectiveness of DUMPLING and compare it
against the state-of-the-art by answering the following research
questions:

1) Can DUMPLING discover yet unknown bugs in the
newest version of the thoroughly tested V8 engine?
(Section V-A)

2) How sensitive is the differential oracle of DUMPLING?
(Section V-B)

3) What overhead does our bug oracle introduce? (Sec-
tion V-C)

4) How do hyperparameters influence DUMPLING? (Sec-
tion V-D)

5) What is the cost to maintain DUMPLING? (Section V-E)
Baselines and Parameters: We compare DUMPLING

against Fuzzilli as the state-of-the-art in non-differential JS
engine fuzzing [31]. Furthermore, DUMPLING is compared
against JIT-Picker [18] and FuzzJIT [17] as the state-of-the-art
in differential fuzzing of JS engines. Both are based on Fuzzilli
and are therefore comparable with respect to the effectiveness
of the proposed differential oracle. We run FuzzJIT (a3d3f6d)

and Fuzzilli (722e036) as-is on their newest commit at the
time of writing. FuzzJIT is based on an older version of
Fuzzilli. Their custom code generation makes it infeasible for
us to rebase it to the newest version of Fuzzilli, and preserve
the properties of their grammar modifications. For JIT-Picker,
we use the version of their Pull Request (#378, 7a56b45) to
Fuzzilli, which contains bug fixes compared to the research
artifact. We safely rebase JIT-Picker to the current version of
Fuzzilli, which DUMPLING and the Fuzzilli baseline both use.
JIT-Picker includes a feature for disabling random compiler
optimizations [18]. However, we observe that this feature
changes the settings for each fuzzing campaign. Therefore, we
disable it to always obtain the same JIT-Picker configuration.
DUMPLING and FuzzJIT are run in their default configuration,
i.e., no flags are set except for exporting statistics. For JIT-
Picker, we had to set two parameters that indicate the fre-
quency at which the probes are injected. Since these settings
are not provided in the paper or the artifact, we contacted the
authors who recommend 0.01 for the “inline hash rate” and a
value in the range [0.01, 0.1] for the “out-of-line hash rate”.
We choose 0.075 for the latter.

Experimental Setup: The evaluation is conducted on an
AMD EPYC 7302P 16-Core Processor. We allocate 15 cores
to the respective fuzzer. The machine has 64 GB RAM and
is running Ubuntu 22.04. If not mentioned otherwise, we
conduct a ten-fold cross-evaluation with three-day runs. We
do not use a seed corpus, but let the fuzzer generate the initial
corpus. We adopt this configuration by following JIT-Picker
recommendations, which are more extensive than FuzzJIT
(i.e., 24-hour × ten-folds). Our setup shows a 95% confidence
interval, thus giving sufficiently stable results to draw robust
conclusions.

A. Bug Finding Capability

We investigate the bug-finding capabilities of DUMPLING
under multiple aspects. First, we analyze the bugs detected
from the aforementioned ten-fold evaluation campaign and
sporadically during development. Then, we study the false
positive reports observed by JIT-Picker and FuzzJIT and inves-
tigate their causes. Finally, we illustrate two interesting bugs
as case studies of the errors discovered by DUMPLING, one of
which is illustrated in Section A-A. From the reports found in
our evaluation, Google’s Vulnerability Rewards Program [32]
recognizes a bounty of $11,000 due to their security relevance.

DUMPLING finds ten bugs in the well-tested V8 engine.
The continuous testing of V8 currently includes large-scale
fuzzing with multiple specialized JS engine fuzzers, unit
tests, regression tests, telemetry from users, and incentives
in the form of bug bounties for outside parties to report
bugs [33], [32]. We report all discovered bugs to Google in a
coordinated way. Of the ten bugs found in total, four are found
during the evaluation runs, while the remaining six are found
during development. We count bugs initially found during
development, that are rediscovered during the evaluation runs,
as found during the evaluation runs. Table I shows the bugs
found by DUMPLING and differentiates them by their triggered

TABLE I: Bugs discovered by DUMPLING. All issues CR are accessible at crbug.com/<number>. The column “By”
indicates the fuzzer finding the bug: D - DUMPLING, J - JIT-Picker. The status “available” indicates a bug that is acknowledge
by V8’s developers but has not yet fixed.

Bug Id Kind Status Changes When By Description

CR41488094 Diff fixed +28/-23 eval D, J Enumerating properties eagerly, has incorrect side effect
CR335310000 Diff fixed +15/-0 eval D Property not marked as enumerable by Maglev and TurboFan
CR332745405 Diff fixed +5/-0 eval D DefineOwnProperty called the setter of an existing accessor property
CR329330868 assert dup N/A eval D, J array.shift does not update pointers in spill slots
CR41484971 Diff fixed +52/-40 dev D Store inline cache handlers are incorrectly used for defining properties
V8:14605 Diff fixed +1/-1 dev D The JumpLoop bytecode does not clobber the accumulator in all cases
V8:14556 Diff available N/A dev D The arguments array is handled differently in optimizing compilers
CR345960102 Diff fixed +6/-4 dev D TurboFan incorrectly optimizes 64 bit BigInt shifts
CR346086168 Diff fixed +109/-107 dev D Overflow in BigInt64 shift optimization
CR40945996 assert dup N/A dev D The profiler in Maglev interferes with deoptimization

bug oracle. We found CR345960102 and CR346086168 while
triaging one differential that pointed to two distinct bugs in the
TurboFan optimization of BigInt. More interesting, the bug
CR346086168 represents a subtle semantic error derived by an
incorrect implementation of the shift operation for BigInt
types. This error can affect cryptographic algorithms thus
showcasing the capability of DUMPLING to explore attack
surfaces beyond classic memory corruptions. We leave a
detailed report of this bug in Section A-A.

While we use our differential oracle, existing bug oracles
remain active. This allows DUMPLING to detect two debug
assertion failures, both are marked as duplicates. Duplicate
entries cannot be avoided, because unfixed potential security-
relevant bugs are only published 14 weeks after the fix in
the Chromium bug tracker. Therefore, it is common that bugs
found by a preexisting bug oracle in Fuzzilli are discovered by
Google internal fuzzing first. Nevertheless, finding traditional
bugs with DUMPLING demonstrates that our approach broad-
ens the classes of discoverable bugs compared to Fuzzilli.

Eight of our discovered bugs are differentials. The reward
received from Google’s Vulnerability Reward Program demon-
strates DUMPLING’s ability to find security vulnerabilities.

With a total of eight reported bugs that are not marked
as duplicates, we conclude that DUMPLING uncovers yet
unknown bugs in the newest version of V8 and that
the attack surface explored by DUMPLING falls beyond
memory corruption errors.

To evaluate the false positive rate of DUMPLING compared
to the state-of-the-art, we manually analyze every differen-
tial found by the fuzzers. FuzzJIT reports 54 differentials
during the ten three-day runs. After analyzing the reports,
we conclude that all differentials found by FuzzJIT are false
positives. The cause of the false positives is attributed to
FuzzJIT not doing two isolated runs of the engine, but calling a
function twice, i.e., optimized and unoptimized. This strategy
might leave artifacts behind, for example in global state. As
such, the differential is observed because of an artifact in the
first function invocation. Manual triage of the differentials
indicates that 41 differentials come from a combination of
first modifying the prototype of an object and then accessing

it again with Reflect.apply. This state is global, i.e.,
persistent across function invocations. Six differentials are
caused by Math.random. Another four are caused by setting
and later using a key on a global object such as JSON or Math.
The remaining three measure stack depth.

JIT-Picker reports 6,823 differentials during the evaluation
runs. JIT-Picker reports findings either as flaky or determin-
istic, depending on if the same differential appears again
when re-executing the same JS input. 626 of the differentials
are reported as deterministic. However, we observe that JIT-
Picker’s mechanism is insufficient to prevent false positives.
6,683 (522 of the ones reported as deterministic) of the differ-
entials are caused by JS testRunner related functionality.
Another large class 132 (99) are due to measuring performance
properties inside the JS input. Another three (zero) are due
to the intended non-deterministic behavior of JS Realms.
The ten true positive differentials found by JIT-Picker are
all duplicates of the same deterministic report, and have
CR41488094 as a root cause.

DUMPLING reports 16 differentials during the evaluation
runs. 12 of them are caused by CR41484971, two by
CR332745405, and one by CR335310000. For one differ-
ential, we are unsure if it is caused by CR332745405 or
CR335310000 or a combination of both.

Given the large number of false positives observed in the
related works compared to DUMPLING, we conclude that
our technique to reduce false positives produces tangible
benefits in practical scenarios.

a) Case Study: CR335310000: Listing 5 shows an in-
teresting V8 issue that was found by DUMPLING. The given
proof-of-concept is minimized for readability. In line 10, after
a few loop iterations, the object construction of B is JIT
compiled. It is expected for this object construction to execute
the base constructor A first and only then define the class
field x, thus overwriting the property definition in A. Since
the ECMAScript specification states that public class fields
need to contain the enumerable attribute [12], this should
lead to an object creation with one enumerable property x.
Ignition handles this case properly and produces the correct
object. However, in the case of JIT compilation, V8 produces

1 function A() {
2 Object.defineProperty(this, "x", {

writable: true, configurable: true, value:
undefined });

↪→

↪→

3 }
4

5 class B extends A {
6 x = {};
7 }
8

9 for (let i = 0; i < 100; i++) {
10 new B();
11 }

Listing 5: Minimized PoC for the bug CR335310000.

Fu
zz

JIT
JIT

-P
ick

er

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Number of probe positions per JS Function

Du
m

pl
in

g

Fig. 5: Number of probe positions per JS Function. Observed
during the first 10,000 differential oracle invocations of fuzz
cases.

an incorrect object failing to install the enumerable attribute
on the property. Our case study shares important similarities
with existing exploitable bugs [34]. More specifically, if the
missing attribute had been configurable instead of enumerable,
our bug would have been exploitable with known exploitation
techniques. This showcases that DUMPLING observes the same
type of semantic errors common to critical security issues.

DUMPLING detects this differential even though the in-
validly constructed object is not assigned to any JS variable
and only lives in the full execution state. This bug showcases
the advantage of inspecting objects in depth during differential
fuzzing. The only way for JIT-Picker or FuzzJIT to detect
this bug is to generate additional JS code that makes the
differential visible directly in JS, e.g., by assigning the created
object to a variable and using isPropertyEnumerable
with the correct parameters. On the contrary, DUMPLING’s
design allows for earlier detection without any additional JS
code support.

B. Bug Oracle Sensitivity

In the absence of ground truth for buggy behavior in the
V8 engine, we conduct three proxy experiments to measure
the sensitivity of the differential oracles. First, we evaluate the
overlap of bugs that are found by the considered state-of-the-
art fuzzers compared to DUMPLING during the evaluation runs.
Second, we assume that a differential oracle that adds more
probing positions that are more often hit is more sensitive.

Fu
zz

JIT
JIT

-P
ick

er

0 1 5 10 50 100 500 1000 5000 10000
Number of probe executions per JS Function (log-scale)

Du
m

pl
in

g

Fig. 6: Number of probe executions per JS Function. Observed
during the first 10,000 differential oracle invocations of fuzz
cases.

Therefore, we statically and dynamically measure the amount
of probing positions in DUMPLING and the state-of-the-art
fuzzers. Third, we quantify the amount of information that
reaches the bug oracle for each fuzzer, assuming that more
detailed observations of the program state contribute to higher
sensitivity.

This experiment considers bugs found during the evaluation
runs, listed in Table I. DUMPLING finds a superset of bugs, i.e.,
every bug found by other fuzzers in the evaluation was also
found by DUMPLING. One of the differentials is also found by
JIT-Picker. FuzzJIT and vanilla Fuzzilli did not uncover new
bugs during our evaluation runs. Finding more bugs, while
reaching slightly less coverage than Fuzzilli and JIT-Picker,
cf. Figure 4, suggests our differential oracle is more sensitive.

From a design perspective, FuzzJIT, JIT-Picker, and
DUMPLING probe the JS execution state during a script’s
execution [17], [18]. However, they differ in the following
properties with respect to the bug oracle’s input.

a) The frequency at which probes are inserted in JIT
compiled code:

• DUMPLING: At every dump position: Deoptimization
points and returns to unoptimized code.

• JIT-Picker: A variable is queried with a probability
of 0.01 during normal usage and additionally with a
probability of 0.075 in the visible scope.

• FuzzJIT: One probe or zero probes per JS program.
b) The subset of the JS execution state that is queried

per probe:
• DUMPLING: The execution state of the bytecode VM.
• JIT-Picker: A single JS variable per probe.
• FuzzJIT: A single return value.

c) The detail at which a probed state is compared:
• DUMPLING: Fine grained representation of the state as

described in Section III-A.
• JIT-Picker: Primitive values are compared, but any ob-

ject is equal to any other object/array.
• FuzzJIT: The returned values are compared in detail.

By inspecting the source code of FuzzJIT, we observe an
inconsistency between the claims in publication [17] and the

current prototype. More specifically, the FuzzJIT prototype
does not return all visible variables from the current function
for comparison in the bug oracle. Instead, it behaves like
vanilla Fuzzilli that it returns a single value and sometimes
no value at all, limiting the sensitivity of the FuzzJIT bug
oracle.

We empirically investigate the frequency of inserted probes.
Sensitive differential oracles should extract state from multiple
points in the execution. Figure 5 shows the number of probe
positions per JS function. DUMPLING has a higher number of
probe positions than JIT-Picker and FuzzJIT, with an average
and median of three. Figure 6 shows the number of probe
executions per JS function. We observe that DUMPLING has
a higher number of probe executions than JIT-Picker and
FuzzJIT, with a median of 37 dumps and average of 50 dumps
per function. This demonstrates a high dumping frequency,
indicating a tight-knit probing of the execution state. Fur-
thermore, the experiment provides insight into the efficiency
and relatively low overhead of our bug oracle. DUMPLING
extracts, transmit and process executions with over 10,000
frame dumps.

As outlined, each of the fuzzers might miss differentials,
because the state is only partially queried at varying intervals.
Therefore, our third experiment quantifies the amount of
information given to the bug oracle, measured as entropy.
Higher entropy suggests a higher sensitivity of the bug oracle.
We modify FuzzJIT, JIT-Picker, and DUMPLING to hash and
save the inputs to the differential oracle by using sha256 as a
hash function. For FuzzJIT, we transform their deepEquals
function to a deepToString function, that contains the
same information as the original function, but is hashable.
JIT-Picker, instead, accumulates an internal hash over one JS
execution that is reported back to the fuzzer. We hash it again
with sha256, such that values are mapped collision-free to
same output space. For DUMPLING, we use the dump file
from the first run, as it reflects what will be compared by our
matching algorithm. The first 10,000 usages of the FuzzJIT
bug oracle have an entropy of 6.08, JIT-Picker reaches 8.42,
and DUMPLING 11.03. Figure 7 visualizes this distribution
over time. It can be observed from the horizontal lines that
FuzzJIT and JIT-Picker keep comparing the same values in the
differential oracle, while DUMPLING observes more uniformly
distributed values. We are unsure of the exact reason for
Dumpling having brief phases of observing a smaller number
of states. We deem it is caused by Fuzzilli finding new
coverage while mutating a function that is not JIT compiled.

With DUMPLING finding a superset of bugs and extracting
more detailed state at a higher frequency, we conclude that
DUMPLING has a more sensitive bug oracle than the state-
of-the-art.

C. Bug Oracle Overhead

Naturally, a bug oracle that interrupts JIT execution, inspects
objects in depth, and serializes them, transmits them to the
fuzzer, where they are deserialized and matched, will have a

0 2000 4000 6000 8000 10000
Bug Oracle Invocation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ob
se

rv
ed

 S
ta

te
 H

as
h

1e77 Dumpling Entropy: 11.03

(a) States observed for DUMPLING.

0 2000 4000 6000 8000 10000
Bug Oracle Invocation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ob
se

rv
ed

 S
ta

te
 H

as
h

1e77 JIT-Picker Entropy: 8.42

(b) States observed for JIT-Picker.

0 2000 4000 6000 8000 10000
Bug Oracle Invocation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ob
se

rv
ed

 S
ta

te
 H

as
h

1e77 FuzzJIT Entropy: 6.08

(c) States observed for FuzzJIT.

Fig. 7: The states observed from the first 10,000 differential
oracle inputs generated during fuzzing for DUMPLING, JIT-
Picker, and FuzzJIT. The states are hashed with sha256 to
better compare their values and apply colors in modulo 10 to
distinguish neighbouring values.

measurable overhead. Therefore, we compare the tested code
as measured by edge coverage, as reported by clang. Figure 4
shows the coverage obtained during the ten-fold cross valida-
tion of all compared fuzzers with a 95% confidence interval.
As expected, Fuzzilli, which does not suffer from the overhead
of differential oracles, explores the most code. However, it is
closely followed by JIT-Picker and then DUMPLING, in the
order of complexity of the bug oracle. After the ten three-
day runs DUMPLING has on average 0.75 percentage points
less coverage than Fuzzilli and 0.48 percentage points less

coverage than JIT-Picker. FuzzJIT reaches significantly less
coverage than the competitors, with 2.49 percentage points
less than DUMPLING.

We investigate the causes of the coverage reduction in
DUMPLING. By construction, DUMPLING does not modify
the original Fuzzilli mutators or the V8 code optimizations.
Therefore, we hypothesize that the reduction in coverage over
time is due to the oracle overhead. To prove our hypothesis, we
measure the total execution after 72 hours of fuzzing, where
we also count the reference run as an execution. In particular,
Fuzzilli reaches 64M executions, JIT-Picker 99M, FuzzJIT
61M, and DUMPLING 52M. JIT-Picker outperforms Fuzzilli
because it does not need to generate a new input for the
reference execution, and unoptimized executions are faster on
average for Fuzzilli-generated inputs, where the threshold for
JIT compilation is lowered to benefit testing. Since we observe
a reduction in total executions, while Fuzzilli’s mutators and
the V8 code remains unchanged, we conclude that the drop in
coverage is caused by DUMPLING’s overhead. It is noteworthy
that, in industrial settings, the JS engines undergo month-long
campaigns that easily reach a coverage plateau. Therefore,
given the improved sensitivity of DUMPLING — measured in
new bugs found (Table I) and states observed (Figure 7) — we
consider the observed overhead to be a justified trade-off.

In order to reduce the overhead of DUMPLING, we employ
a particular performance optimization that only serializes state
in a frame that is distinct from the previous frame. This leads
to a significant reduction of the sizes of dumps that have to
be transferred from V8 to the fuzzer and, as a result, to a
significant performance increase. During a three hour five-fold
cross validation run with this optimization being enabled and
without, we measure a 49% increase in executions per second
and a 83% and 77% reduction in dump size respectively for
optimized and unoptimized executions.

With DUMPLING being competitive in terms of coverage
and being in the same order of magnitude of execution
speed compared to the state-of-the-art, we conclude that
the overhead of the bug oracle is acceptable.

D. Hyperparameters

DUMPLING has two hyperparameters. The first parameter
is the depth that is used while traversing an object for
serialization. The second parameter is the number of properties
or elements that are serialized per object. All other experiments
are conducted with a depth of 3 and 5 properties, which results
from the observation of existing differential bug reports. We
evaluate the impact that those hyperparameters have on the
effectiveness of DUMPLING by conducting an experiment with
combinations of [3, 5, 10] and [5, 10, 50] for the depth and the
property count, respectively. For the first 100,000 executions
that reach the bug oracle, sensitivity, executions per second
and the sizes of dumps in optimized (opt) and unoptimized
(unopt) executions is measured. Table II shows the results of
this experiment where executions per second and dump sizes
are given as mean with standard deviation over five-fold cross

TABLE II: Influence of object traversal depth and number
of properties considered during serialization on Entropy (H),
execution speed, and size of dumps per program in the first
(Opt) and second (Unopt) run.

Depth Props H Execs/s Dump Size (B)

Unopt Opt

3 5 11.322 10.3 ± 9.5 36K ± 15K 17K ± 7K
3 10 11.320 10.6 ± 10.0 37K ± 17K 16K ± 6K
3 50 11.322 10.4 ± 10.5 48K ± 20K 22K ± 9K
5 5 11.318 10.9 ± 10.5 32K ± 13K 17K ± 8K
5 10 11.321 11.0 ± 11.0 41K ± 17K 19K ± 10K
5 50 11.321 10.2 ± 10.3 47K ± 23K 20K ± 8K

10 5 11.322 10.8 ± 10.4 34K ± 14K 17K ± 10K
10 10 11.318 12.4 ± 11.8 33K ± 14K 15K ± 6K
10 50 11.320 11.4 ± 10.5 40K ± 13K 18K ± 6K

TABLE III: Time effort for one person to rebase DUMPLING
to new versions of V8.

∆ Time (days) 83 21 31 21
∆ V8 LoC 75K 43K 43K 14K
∆ #V8 Commits 1,190 372 521 229

Approx. Rebase Time (min) 30 10 < 1 <1

validation. Except for insignificant variation that we attribute
to statistical noise, the impact of the hyperparameter choice is
neutral in regards to bug oracle sensitivity and overhead. By
analyzing the JS input generated, we explain these measure-
ments with the fact that Fuzzilli does not generate JS with such
deep nested object structures that would make it beneficial to
choose a depth larger than three. Similarly, Fuzzilli does not
usually generate JS with very large arrays or objects with many
properties.

Depth and property count have only minor impact the
sensitivity of the bug oracle (approximated as entropy) and
the overhead.

E. Maintaining DUMPLING

During the course of our development, we rebased
DUMPLING multiple times to the newest available V8 version.
The design of DUMPLING specifically aims to decouple the in-
troduced changes from the existing fast moving V8 codebase.
Table III shows statistics on the four rebases we performed.
Specifically, the table shows the code motion of V8, measured
in LoC and V8 commits added, and the estimated time it took
to port DUMPLING to the newest version at that time. By hav-
ing employed a loose coupling of components, we managed
to trivially rebase our prototype multiple times even when the
code motion of V8 is more massive. Section VI discusses
future plans to upstream DUMPLING to the V8 codebase,
making it a part of the continuous fuzzing infrastructure.

Consequently, we conclude that the cost to maintain
DUMPLING is low.

VI. DISCUSSION

We now discuss the limitations of DUMPLING and future
directions for testing JS engines.

Porting DUMPLING to other JS Engines: With
DUMPLING, we demonstrate the need for an in-depth intro-
spection to detect more subtle bugs in JS engines. DUMPLING
follows key design principles that are common to all modern
JS engines [1]. Future work may implement DUMPLING for
more JS engines, namely SpiderMonkey and JavaScriptCore.
Both engines follow a multi-tiered execution model, with
a register-based bytecode VM and speculative JIT compil-
ers [35], [36], [37]. Similar to V8 where execution state is
stored in Ignition virtual stack frames, JavaScriptCore fea-
tures so-called CallFrames that are restored during deop-
timization [35]. Likewise, in SpiderMonkey, these execution
states are called Activations [38]. The deoptimization
and rematerialization mechanism in V8, SpiderMonkey, and
JavaScriptCore are conceptually similar with regards to all
aspects relevant to implementing DUMPLING [27], [28], [35].
Adopting DUMPLING for other JIT compilers outside of JS
engines is also an interesting direction for future work to
explore.

Hardware Architecture: Hooking into the last phase of
the optimizing JIT compilers requires writing native code. We
implement DUMPLING for the x86-64 architecture. However,
most JS engine bug classes are not architecture-dependent,
with a few exceptions of instruction selection and hardware
register allocation bugs [39], [40]. We deem that opting for
implementing DUMPLING for popular architectures is a rea-
sonable trade-off to detect the majority of bugs in JS engines.

Upstreaming DUMPLING Mode: While our data on the
cost of maintaining DUMPLING is promising, a more sustain-
able approach would be to upstream DUMPLING Mode to the
V8 codebase. We envision DUMPLING Mode as an extension
of the existing Fuzzilli Mode. Besides enabling continuous
fuzzing with DUMPLING, our contributions specifically in the
areas of comparable fine-grained serialization of JS objects,
exposing JIT tier usage, and avoiding false positives could be
beneficial to existing and future fuzzers.

Using DUMPLING with other JS Fuzzers: DUMPLING is
designed to be fuzzer agnostic. While we evaluate DUMPLING
with Fuzzilli, we find one bug during development by just
replaying V8’s own test suite in a python script and a stand-
alone variant of the matching algorithm. The so-found bug
V8:14605 is not an impactful bug, but it demonstrated that
DUMPLING found a forgotten edge case in the interpreter
without fuzzing techniques. As such DUMPLING can be used
as a stand-alone bug oracle that can be successfully used
early in the development cycle. Furthermore, DUMPLING can
be used in conjunction with any JS fuzzer. In the future,
DUMPLING could be integrated with other fuzzers as a general
bug oracle to augment their bug finding capabilities.

Incorporating Compiler Speculations: Currently,
DUMPLING mainly includes the execution state of the
bytecode VM (more precisely, possible representation of
which if the JIT compiler would deoptimize). As such we

catch bugs before they become visible to existing bug oracles.
To catch bugs even before they result in miscalculations in
the execution state, we include optimization information that
must stay consistent between execution tiers. An example
of this are the enum-cache sizes that we include in our
dumps (Listing 1) [41]. To further improve the sensitivity
of DUMPLING as a JS JIT bug oracle, the DUMPLING
instrumentation could be extended to verify compiler
speculations. A check may be added that the assumed types
and range analysis hold during execution. The key challenge
here is to perform a relation between the intermediate
representation of the JIT compiler and the execution states
observed by DUMPLING. We leave this challenge for future
work, as it is not specific to differential fuzzing.

VII. RELATED WORK

A. JavaScript Engine Fuzzing

Fuzzing is a proven technique for finding bugs and vul-
nerabilities in software. The key insight behind successful
fuzzers like AFL and AFL++ is combining coverage-guided
mutation on the bytes of the input, with high throughput, to
automatically test programs [42], [7]. While applicable to a
wide range of programs, JS is a complex and highly structured
kind of input. Therefore, byte-level mutations lead to syntac-
tically invalid JS programs in an overwhelming majority of
cases. Syntactically incorrect JS code is rejected by the parser,
leading to low coverage of the JS engine’s code.

An improvement to byte-level mutation is making AFL
aware of tokens such as keywords, operators, and literals. This
approach has been successful in finding variants of previously
reported bugs [43]. A fuzzer can be made more structure-
aware by mutating on the abstract syntax tree, often combined
with a tree-based grammar of the JS language [44], [45], [46],
[47], [48], [15], [49]. Alternatively, existing JS programs can
be mutated by designing JS-specific mutations on the source
code level [4], [16]. To reduce the complexity of defining JS-
specific mutations and to aid program analysis, mutation on a
custom intermediate language has proved successful [3]. Other
works use deep learning for the generation and mutation of
interesting JS [50], [51].

Besides syntactic correctness, the semantic correctness of JS
engines improves fuzzing. If syntactically correct JS throws a
runtime error early in its execution, the rest of the program
is not executed. Therefore, there is research that specifically
focuses on semantic correctness, which is improved by track-
ing types statically [52], [31] or with dynamic analysis [53],
[31], [54]. We build on the extensive research in the field
of input generation, specifically on Fuzzilli, that itself adopts
ideas from the before-mentioned papers during its continuing
development. Our focus is not improving input generation,
or fuzzer performance optimization, but proposing a new
bug oracle. By extension we do not expect to improve code
coverage.

B. JavaScript Engine Differential Fuzzing

To find issues in an engine’s implementation, differential
fuzzing can be done across JS engines [15]. Additionally,
COMFORT and JEST parse the ECMAScript specification to
improve their grammar and additionally test for specification
violations [13], [14].

A promising application of differential fuzzing for JS en-
gines is finding differentials between execution tiers. These
differences inside the same engine are more indicative of vul-
nerabilities, as they can be directly used as unexpected input
for other executions tiers [20]. Google [16] and Mozilla [49]
employ differential fuzzing with their regular fuzzers, validat-
ing that the stdout is the same with and without optimizations
enabled. Our approach is geared to probe the state space more
thoroughly efficiently. Furthermore, we specifically target JIT
code execution.

Diffuzzilli [20] purposefully inserts JSON.stringify
statements in Fuzzilli generated code to probe a random subset
of variables in scope. Unfortunately, their approach is not open
source, such that we cannot compare with it in our evaluation.
Similarly, JIT-Picker inserts custom fhash probes in the JS
input [18]. They apply a relatively small patch to the JS
engine to accumulate an internal hash over the fhash results
that they report back to their modified Fuzzilli. DUMPLING
differs from both approaches, in that it captures more state at
a higher frequency. Our state probing (dumping) is completely
transparent in that it does not inhibit JIT optimizations, as
it does not require adding sinks to the JS code. Further-
more, DUMPLING has more fine-grained dumping, that is able
to detect even subtle differences. For example, DUMPLING
can discern variances in float values, such as −∞, which
JSON.stringify represents as NaN, and it can deeply
inspect objects, unlike the fhash implementation that treats
all JS objects the same by just adding 64 to the hash.

FuzzJIT performs this differential testing inside one JS
run [17]. Concretely, FuzzJIT wraps generated code in an
input template. This input template always follows the same
fixed structure, the generated code is wrapped into a predefined
function. This function is executed in the interpreter and its
return value is saved. Then this function is force-compiled
with TurboFan, executed, and the return value is compared
with the previously returned value using a specially crafted
deep-equals operation inside JS. In contrast, we do not opt
for a rigid force-compilation to collect diverse feedback.
Furthermore, comparing interpreter and JIT code in one JS
execution requires the function executions to be independent
of each other. This limits the input space they can explore.
Moreover, we observe a high false positive rate from their
prototype due to modifying global state. We therefore do two
runs, allowing us to provide arbitrary JS as input, and perform
more frequent probing in it.

VIII. CONCLUSION

In this work, we presented DUMPLING, a novel approach
for differential fuzzing that inspects the execution state instead
of only observing output prints. We evaluated DUMPLING

on the V8 JS engine and found ten bugs. Compared with
existing state-of-the-art JS fuzzers, our evaluation shows that
DUMPLING is more sensitive, exhibits a lower false positive
rate, and has comparable performance. While DUMPLING
deeply introspects the V8 engine, we decoupled our instrumen-
tation, making it easy to maintain. The results of our research
demonstrate the need for specialized bug oracles to detect
more subtle bugs. We envision the bug oracle of DUMPLING
to be used in conjunction with other fuzzers to augment
their bug finding capabilities at an acceptable overhead. To
foster further research in this area, we release DUMPLING as
open source at https://github.com/two-heart/dumpling-artifact-
evaluation. We invite researchers and practitioners to use and
evolve DUMPLING to improve the security of JS engines.

ACKNOWLEDGMENT

We thank the anonymous paper and artifact reviewers for
their feedback. This work was supported, in part, by the Eu-
ropean Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant agree-
ment No. 850868), SNSF PCEGP2 186974, a gift from Intel
corporation, by the Helmholtz Association (HGF) within topic
“46.23 Engineering Secure Systems”, and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy - EXC 2092 CASA -
390781972.

REFERENCES

[1] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. Haghighat,
B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff et al., “Trace-based
just-in-time type specialization for dynamic languages,” in Proc. of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2009.

[2] S. Röttger. (2018) Chrome: V8: incorrect type information on
Math.expm1. https://crbug.com/project-zero/1710.

[3] S. Groß, “Fuzzil: Coverage guided fuzzing for JavaScript engines,” 2018.
[4] R. Freingruber, “Variation analysis of exploitable browser vulnerabili-

ties,” 2020.
[5] S. Glazunov. (2023) Security: Out-of-bounds access in ReduceJS-

LoadPropertyWithEnumeratedKey. https://issues.chromium.org/issues/
40068915.

[6] M. Y. Mo. (2023) Getting RCE in chrome with incomplete object
initialization in the maglev compiler. GitHub Security Lab Blog.
[Online]. Available: https://github.blog/2023-10-17-getting-rce-in-
chrome-with-incomplete-object-initialization-in-the-maglev-compiler/

[7] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining
incremental steps of fuzzing research,” in Proc. of the USENIX Workshop
on Offensive Technologies, 2020.

[8] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker,” in Proc. of the USENIX Annual
Technical Conference, 2012.

[9] W. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, 1998.

[10] J. Jung, A. Sheth, B. Greenstein, D. Wetherall, G. Maganis, and
T. Kohno, “Privacy oracle: a system for finding application leaks with
black box differential testing,” in Proc. of the ACM SIGSAC Conference
on Computer and Communications Security, 2008.

[11] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proc. of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2011.

[12] (2024) Ecmascript 2024 language specification. https://tc39.es/ecma262.
[13] G. Ye, Z. Tang, S. H. Tan, S. Huang, D. Fang, X. Sun, L. Bian, H. Wang,

and Z. Wang, “Automated conformance testing for JavaScript engines
via deep compiler fuzzing,” in Proc. of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2021.

https://github.com/two-heart/dumpling-artifact-evaluation
https://github.com/two-heart/dumpling-artifact-evaluation
https://crbug.com/project-zero/1710
https://issues.chromium.org/issues/40068915
https://issues.chromium.org/issues/40068915
https://github.blog/2023-10-17-getting-rce-in-chrome-with-incomplete-object-initialization-in-the-maglev-compiler/
https://github.blog/2023-10-17-getting-rce-in-chrome-with-incomplete-object-initialization-in-the-maglev-compiler/
https://tc39.es/ecma262

[14] J. Park, S. An, D. Youn, G. Kim, and S. Ryu, “Jest: N+1-version
differential testing of both JavaScript engines and specification,” in Proc.
of the IEEE/ACM International Conference on Software Engineering,
2021.

[15] J. Patra and M. Pradel, “Learning to fuzz: application-independent
fuzz testing with probabilistic, generative models of input data,” TU
Darmstadt, Department of Computer Science, Tech. Rep. TUD-CS-
2016-14664, 2016.

[16] O. Chang. (2020) Js-fuzzer. Google Source Repository. [On-
line]. Available: https://chromium.googlesource.com/v8/v8/+/master/
tools/clusterfuzz/js fuzzer

[17] J. Wang, Z. Zhang, S. Liu, X. Du, and J. Chen, “FuzzJIT: oracle-
enhanced fuzzing for JavaScript engine jit compiler,” in Proc. of the
USENIX Security Symposium, 2023.

[18] L. Bernhard, T. Scharnowski, M. Schloegel, T. Blazytko, and T. Holz,
“JIT-Picking: Differential fuzzing of JavaScript engines,” in Proc. of the
ACM SIGSAC Conference on Computer and Communications Security,
2022.

[19] S. Groß. (2021) Attacking JavaScript engines: A case study of
JavaScriptCore and CVE-2016-4622. Phrack Magazine. [Online].
Available: http://www.phrack.org/issues/70/9.html

[20] J. Jimenez and V. Rao, “Safari, hold still for nan minutes!” in Objective
by the Sea Conference, 2023.

[21] statscounter GlobalStats. (2023) Browser market share worldwide. https:
//gs.statcounter.com/browser-market-share/all/worldwide/2023.

[22] J. Gruber, L. Swirski, and T. Verwaest. (2022) Maglev. V8 Design
Document. [Online]. Available: https://docs.google.com/document/d/
13CwgSL4yawxuYg3iNlM-4ZPCB8RgJya6b8H E2F-Aek/

[23] O. Flückiger. (2016) Ignition: V8 interpreter. V8 Design
Document. [Online]. Available: https://docs.google.com/document/d/
11T2CRex9hXxoJwbYqVQ32yIPMh0uouUZLdyrtmMoL44

[24] L. Swirski and T. Verwaest. (2021) Sparkplug. V8 Design
Document. [Online]. Available: https://docs.google.com/document/d/
13c-xXmFOMcpUQNqo66XWQt3u46TsBjXrHrh4c045l-A

[25] A. Ertl, “Stack caching for interpreters,” in Proc. of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
1995.

[26] U. Hölzle, C. Chambers, and D. Ungar, “Debugging optimized code with
dynamic deoptimization,” in Proc. of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 1992.

[27] J. Franco. (2017) Lazy deoptimization without code patching.
V8 Design Document. [Online]. Available: https://docs.google.com/
document/d/1ELgd71B6iBaU6UmZ lvwxf OrYYnv0e4nuzZpK05-pg

[28] S.-Y. Guo. (2014) Debugging in the time of jits. https://rfrn.org/∼shu/
2014/05/14/debugging-in-the-time-of-jits.html.

[29] J. Fetiveau. (2020) Modern attacks on the chrome browser: optimizations
and deoptimizations. https://doar-e.github.io/blog/2020/11/17/modern-
attacks-on-the-chrome-browser-optimizations-and-deoptimizations/.

[30] W. Trybulec, “Pigeon hole principle,” Journal of Formalized Mathemat-
ics, vol. 2, no. 199, 1990.

[31] S. Groß, S. Koch, L. Bernhard, T. Holz, and M. Johns, “Fuzzilli: Fuzzing
for JavaScript JIT compiler vulnerabilities,” in Proc. of the Network and
Distributed System Security Symposium, 2023.

[32] Google. (2024) Chrome vulnerability reward program rules.
https://bughunters.google.com/about/rules/5745167867576320/chrome-
vulnerability-reward-program-rules.

[33] M. Bynens, M. Hablich, S. Sauleau, and S.-y. Guo. (2024)
Implementing and shipping JavaScript/WebAssembly language features.
V8 Documentation. [Online]. Available: https://v8.dev/docs/feature-
launch-process

[34] G. Google Security Research. (2023) Chrome read-only property
overwrite. [Online]. Available: https://packetstormsecurity.com/files/
174669/Chrome-Read-Only-Property-Overwrite.html

[35] F. Pizlo. (2020) Speculation in JavaScriptCore. https://webkit.org/blog/
10308/speculation-in-javascriptcore.

[36] T. Zagallo. (2019) A new bytecode format for JavaScriptCore. https:
//webkit.org/blog/9329/a-new-bytecode-format-for-javascriptcore.

[37] D. Minor. (2019) Spidermonkey byte-sized architectures.
https://spidermonkey.dev/assets/pdf/SpiderMonkey%20Byte-sized%
20Architectures.pdf.

[38] L. Smyth, A. Bargull, G. Squelart, J. Walden, and T. Campbell. (2022)
Spidermonkey activations. https://hg.mozilla.org/mozilla-central/file/
1fb01ce743b3c8bac67a091af0bac9a121661a43/js/src/vm/Activation.h.

[39] N. Baumstark, B. Keith, and H. Lotfi. (2021) Un-
derstanding the root cause of CVE-2021-21220.
https://www.zerodayinitiative.com/blog/2021/12/8/understanding-
the-root-cause-of-cve-2021-21220-a-chrome-bug-from- pwn2own-2021.

[40] N. Baumstark, S. Groß, and B. Keith. (2021) Writeup for firefox rce.
https://bug1493900.bmoattachments.org/attachment.cgi?id=9011702.

[41] C. Bruni. (2017) Fast for-in in v8. V8 Developer Blog.
[42] M. Zalewski. american fuzzy lop. https://lcamtuf.coredump.cx/afl/.
[43] C. Salls, C. Jindal, J. Corina, C. Kruegel, and G. Vigna, “Token-level

fuzzing,” in Proc. of the USENIX Security Symposium, 2021.
[44] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,” in

Proc. of the USENIX Security Symposium, 2012.
[45] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware

greybox fuzzing,” in Proc. of the IEEE/ACM International Conference
on Software Engineering, 2019.

[46] S. Veggalam, S. Rawat, I. Haller, and H. Bos, “Ifuzzer: An evolutionary
interpreter fuzzer using genetic programming,” in Proc. of the European
Symposium on Research in Computer Security, 2016.

[47] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and
D. Teuchert, “Nautilus: Fishing for deep bugs with grammars,” in Proc.
of the Network and Distributed System Security Symposium, 2019.

[48] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: data-driven seed
generation for fuzzing,” in Proc. of the IEEE Symposium on Security
and Privacy, 2017.

[49] J. Ruderman. (2007) Introducing jsfunfuzz. https://www.squarefree.com/
2007/08/02/introducing-jsfunfuzz.

[50] S. Reddy, C. Lemieux, R. Padhye, and K. Sen, “Quickly generating
diverse valid test inputs with reinforcement learning,” in Proc. of the
IEEE/ACM International Conference on Software Engineering, 2020.

[51] S. Lee, H. Han, S. K. Cha, and S. Son, “Montage: A neural network lan-
guage model-guided JavaScript engine fuzzer,” in Proc. of the USENIX
Security Symposium, 2020.

[52] H. Han, D. Oh, and S. K. Cha, “CodeAlchemist: Semantics-aware code
generation to find vulnerabilities in JavaScript engines,” in Proc. of the
Network and Distributed System Security Symposium, 2019.

[53] X. He, X. Xie, Y. Li, J. Sun, F. Li, W. Zou, Y. Liu, L. Yu, J. Zhou, W. Shi
et al., “SoFi: reflection-augmented fuzzing for JavaScript engines,” in
Proc. of the ACM SIGSAC Conference on Computer and Communica-
tions Security, 2021.

[54] S. Park, W. Xu, I. Yun, D. Jang, and T. Kim, “Fuzzing JavaScript engines
with aspect-preserving mutation,” in Proc. of the IEEE Symposium on
Security and Privacy, 2020.

APPENDIX A
MANUSCRIPT APPENDIX

A. Case Study: 345960102

1 y = BigInt("0xffffffffffffffff");
2 function b() {
3 let x = BigInt.asIntN(64, -1n);
4 let broken = x >> (y);
5 return BigInt.asIntN(64, broken);
6 }
7

8 b();
9 b();

10 %OptimizeFunctionOnNextCall(b);
11 b();

Listing 6: Minimized proof-of-concept triggering
CR345960102 found by DUMPLING.

Listing 6 shows the minimized PoC of an issue in V8’s
optimizing compiler TurboFan that was found by DUMPLING.
This issue manifests as a differential between optimized and
unoptimized execution in the state of the function b at line 4.
More specifically, the bug root cause is the incorrectly imple-
mented the BigInt shift operation. TurboFan converts the

https://chromium.googlesource.com/v8/v8/+/master/tools/clusterfuzz/js_fuzzer
https://chromium.googlesource.com/v8/v8/+/master/tools/clusterfuzz/js_fuzzer
http://www.phrack.org/issues/70/9.html
https://gs.statcounter.com/browser-market-share/all/worldwide/2023
https://gs.statcounter.com/browser-market-share/all/worldwide/2023
https://docs.google.com/document/d/13CwgSL4yawxuYg3iNlM-4ZPCB8RgJya6b8H_E2F-Aek/
https://docs.google.com/document/d/13CwgSL4yawxuYg3iNlM-4ZPCB8RgJya6b8H_E2F-Aek/
https://docs.google.com/document/d/11T2CRex9hXxoJwbYqVQ32yIPMh0uouUZLdyrtmMoL44
https://docs.google.com/document/d/11T2CRex9hXxoJwbYqVQ32yIPMh0uouUZLdyrtmMoL44
https://docs.google.com/document/d/13c-xXmFOMcpUQNqo66XWQt3u46TsBjXrHrh4c045l-A
https://docs.google.com/document/d/13c-xXmFOMcpUQNqo66XWQt3u46TsBjXrHrh4c045l-A
https://docs.google.com/document/d/1ELgd71B6iBaU6UmZ_lvwxf_OrYYnv0e4nuzZpK05-pg
https://docs.google.com/document/d/1ELgd71B6iBaU6UmZ_lvwxf_OrYYnv0e4nuzZpK05-pg
https://rfrn.org/~shu/2014/05/14/debugging-in-the-time-of-jits.html
https://rfrn.org/~shu/2014/05/14/debugging-in-the-time-of-jits.html
https://doar-e.github.io/blog/2020/11/17/modern-attacks-on-the-chrome-browser-optimizations-and-deoptimizations/
https://doar-e.github.io/blog/2020/11/17/modern-attacks-on-the-chrome-browser-optimizations-and-deoptimizations/
https://bughunters.google.com/about/rules/5745167867576320/chrome-vulnerability-reward-program-rules
https://bughunters.google.com/about/rules/5745167867576320/chrome-vulnerability-reward-program-rules
https://v8.dev/docs/feature-launch-process
https://v8.dev/docs/feature-launch-process
https://packetstormsecurity.com/files/174669/Chrome-Read-Only-Property-Overwrite.html
https://packetstormsecurity.com/files/174669/Chrome-Read-Only-Property-Overwrite.html
https://webkit.org/blog/10308/speculation-in-javascriptcore
https://webkit.org/blog/10308/speculation-in-javascriptcore
https://webkit.org/blog/9329/a-new-bytecode-format-for-javascriptcore
https://webkit.org/blog/9329/a-new-bytecode-format-for-javascriptcore
https://spidermonkey.dev/assets/pdf/SpiderMonkey%20Byte-sized%20Architectures.pdf
https://spidermonkey.dev/assets/pdf/SpiderMonkey%20Byte-sized%20Architectures.pdf
https://hg.mozilla.org/mozilla-central/file/1fb01ce743b3c8bac67a091af0bac9a121661a43/js/src/vm/Activation.h
https://hg.mozilla.org/mozilla-central/file/1fb01ce743b3c8bac67a091af0bac9a121661a43/js/src/vm/Activation.h
https://bug1493900.bmoattachments.org/attachment.cgi?id=9011702
https://lcamtuf.coredump.cx/afl/
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz

variable y into 0n instead of -1n. This bug may lead to
security flaws in client-side cryptographic operations in the
browser.

In line 4, once the function is JIT compiled, TurboFan
optimizes the right shift between x and y by converting
the right shift to a left shift and negating the shift amount.
Additionally, during the conversion, the BigInt value x is
truncated to an int64_t. The ECMAScript specification
states that negative BigInt values have to be treated as
a two’s complement binary string with bits set infinitely to
the left [12]. However, TurboFan’s shift optimization does
not respect the specification during the conversion to an
int64_t, thus leading x to be treated as a positive number.
As a result, TurboFan incorrectly optimizes the shift operation
to 0n instead of -1n.

We study if this bug can be detected by FuzzJIT, JIT-Picker,
or Fuzzilli. FuzzJIT suffers from a limited observable JS state
given by its design (Section V-B). JIT-Picker may detect this
violation in principle. However, we consider this scenario
unlikely since JIT-Picker’s probes may break this optimization.
Moreover, JIT-Picker places its probes probabilistically, thus
not guaranteeing detection. Fuzzilli, instead, can observe this
error only if a runtime assertion fails. After manually assessing
the V8 code, we conclude that the closest assertions are
difficult to trigger. Specifically, this bug has been in V8 since
November 2022,1 and no one reported or patched it even
after extensive fuzzing campaigns from Google. Therefore, we
conclude that the detection of this bug via traditional fuzzing
techniques is difficult. Conversely, DUMPLING observes this
subtle state inconsistency after a relatively short campaign.
This case study demonstrates the need for fine-grained probing
techniques. Our report of this issue has been awarded $11,000
by Google’s Vulnerability Rewards Program [32].

APPENDIX B
ARTIFACT APPENDIX

In this Appendix, we provide the requirements, instructions,
and further details necessary to reproduce the experiments
from our paper (DOI: 10.14722/ndss.2025.241411).

A. Description and requirements

The artifact contains the material to reproduce the results in
Section V.A, V.B, V.C, and V.D. This material is released under
the Apache2 License. The project is built on V8 (6e70d) and
Fuzzilli (56969).

1) Accessing the artifact: We release the artifact on a public
GitHub repository. Additionally, the code is available on
Zenodo with the DOI:10.5281/zenodo.14249678.

2) Hardware dependencies: The artifact requires an Intel
or AMD machine with at least 64GB of RAM and a
100GB disk. We tested on a 16 physical core machine.

3) Software dependencies: The artifact was tested on
Ubuntu 22.04 and require the ability to run Docker

1https://chromium.googlesource.com/v8/v8.git/+/
2690e2e3a39f6c1325dae0743682c714cbbc98db

containers and Docker compose. An active internet
connection is also necessary for downloading third party
packets, e.g., V8 and Fuzzilli. Additionally, curl,
git, docker, and pip should also be installed. As
some experiments run for extending period of time, we
recommend running inside a tmux or screen session.

B. Artifact installation

The initial step is to clone the repository and install Docker
compose.

1 # Clone the repository
2 sudo apt install -qq -y python3-pip git

curl screen↪→

3 git clone \
4 https://github.com/two-heart/\
5 dumpling-artifact-evaluation.git
6 cd dumpling-artifact-evaluation
7

8 # Install docker compose
9 if docker compose ; then

10 echo "docker compose already installed"
11 else
12 curl -sSL https://get.docker.com/ |

sudo sh↪→

13 sudo groupadd docker || true
14 sudo usermod -aG docker $USER
15 sudo systemctl start docker
16 newgrp docker
17 docker run hello-world
18 fi

Each experiment is encapsulated in one or multiple Docker
container, which are automatically compiled for each repro-
duced experiment. The docker-compose.yml is available
at the root of the artifact repository. We do not provide support
for running the experiments locally.

C. Experiment workflow

Our artifact aims at reproducing the results from three
experiments presented in the paper. The first aims at evaluating
the sensitivity of DUMPLING compared to the state-of-the-
art. The second experiment evaluates the runtime overhead
of DUMPLING bug oracle over a 24 hours fuzzing campaign.
We choose to scale down the fuzzing campaign to simplify
the experiment, we provide additional information to set up
custom campaigns. Lastly, the third experiment evaluate the
two hyperparameters configurable in DUMPLING, depth and
number of properties, and their impact on the fuzzer in terms
of execution per second and size of program dumps.

We propose to run these experiments sequentially as they
are presented in the paper. The artifact provides scripts to run
the experiments and collect the results. The scripts will also
generate a table and figures similar to the ones presented in
the paper.

More complete and detailed instructions, as well as a
minimal example, are available in the README file of the
repository.

https://dx.doi.org/10.14722/ndss.2025.241411
https://github.com/two-heart/dumpling-artifact-evaluation/blob/main/LICENSE
https://github.com/v8/v8/commit/6e70dc9e73af2a930074f4f000864fbc65515b74
https://github.com/googleprojectzero/fuzzilli/commit/5696921ce2b021f5dacd56ba29f2a022c85b5891
https://github.com/two-heart/dumpling-artifact-evaluation
https://github.com/two-heart/dumpling-artifact-evaluation
https://zenodo.org/records/14249678
https://doi.org/10.5281/zenodo.14249678
https://chromium.googlesource.com/v8/v8.git/+/2690e2e3a39f6c1325dae0743682c714cbbc98db
https://chromium.googlesource.com/v8/v8.git/+/2690e2e3a39f6c1325dae0743682c714cbbc98db
https://github.com/two-heart/thesis-dumpling/blob/main/README.md

D. Major claims

For all three experiments, the numbers can slightly differ
from the ones in the paper due to the different hardware
configurations and statistical noise due to a reduced number
of repetitions, but we expect the global trend across the
benchmark to remain consistent.

• (C1) Sensitivity: DUMPLING has more sensitivity com-
pared to the state-of-the-art. In particular, DUMPLING
exhibits a more uniform distribution of states across the
fuzzing campaign, as highlighted by Figure 7 in the paper.
These results and figures can be reproduced through our
experiment E1.

• (C2) Bug oracle overhead: DUMPLING’s bug oracle in-
curs a reasonable performance overhead. Our experiment
E2 highlights this trend after a three hours run repeated
10 times. The results might vary from the one presented
in the paper. In the paper, the overhead numbers, in terms
of total number of executions and reduced coverage, are
available in Section V.C. Additionally, this experiment
reproduces Figure 4 showing the coverage trends.

• (C3) Hyperparameters: To better assess the effect of
the two hyperparameters on DUMPLING, we conduct
an exploration of the parameter space. The results are
presented in Table II and can be reproduced through the
experiment E3.

Additionally, the repository contains the bugs found through
our campaign in ./poc folder as evidence for the experiment
described in Section V.A.

E. Evaluation

In this section, we provide the detailed steps to run the
experiments and process the results to get the table and figures
presented in the paper. Overall, this process requires around
two to three days of computation time on a powerful 16-core
server. These instructions are also available in the README
file of the artifact repository.

Experiment 1 (E1) - Claim (C1): Sensitivity:
[2 humans minutes + 2 compute-hours] The experiment

evaluates the sensitivity of DUMPLING. The experiment con-
sists running DUMPLING and measuring the number of states
observed in the 10,000 first differential oracle invocations.
Additionally, the experiment plots the distribution of the
hashes of the observed states.

[Preparation] No specific preparation is required.
[Execution] Run the commands:

1 cd dumpling-artifact-evaluation
2 docker compose up -d

dumpling-eval-sensitivity↪→

3 ls ./sensitivity/data

[Results] Upon completion, the script will generate
three figures similar to Figure 7 in the paper. The
file ./sensitivity/data/sensitivity.pdf con-
tains the results.

Experiment 2 (E2) - Claim (C2): Bug oracle overhead: [2
humans minutes + 24 compute-hours] The experiment eval-
uates the overhead of DUMPLING and the reached coverage.
The experiment consists running DUMPLING and measuring
the reached coverage and and the number of execution per-
formed.

[Preparation] No specific preparation is required.
In case of limited resources or to reproduce more
closely the results from the paper, the variables
EXP_RUN_HOURS and EXP_NUM_RUNS can be modified in
the docker-compose.yml file to reduce the duration of a
run and the number of replication, respectively. Additionally,
NUM_JOBS can limit the number of logical cores allocated.

[Execution] Run the commands:

1 cd dumpling-artifact-evaluation
2 docker compose up -d

dumpling-eval-bug-finding-and-overhead↪→

3 ls ./bug_finding_and_overhead/data/

[Results] Upon completion, the script will print numbers
similar to the one available in Section V.C of the paper and
generate a figure similar to Figure 4. The file coverage.pdf
contains the image.

Experiment 3 (E3) - Claim (C3): Hyperparameters: [2
humans minutes + 6 compute-hours] This experiment explores
the hyperparameters space of DUMPLING.

[Preparation] No specific preparation is required.
[Execution] In a shell, run the following command:

1 cd dumpling-artifact-evaluation
2 docker compose up -d

dumpling-eval-hyperparameters↪→

3 ls ./hyperparameters/data

[Results] Upon completion, the script will generate
a table similar to Table II, which are stored in
./data/hyperparam_eval.tex.

https://github.com/two-heart/thesis-dumpling/blob/main/README.md

	Introduction
	Background and Motivation
	Unoptimized Execution
	Execution State
	Optimized Execution
	Deoptimization

	Design
	State Extraction: Dumpling Mode
	State Extraction in Optimized Tiers
	State Extraction in Unoptimized Tiers
	State Serialization

	Differential Oracle

	Implementation
	V8 Modification
	Fuzzilli Modification
	Avoiding False Positives

	Evaluation
	Bug Finding Capability
	Bug Oracle Sensitivity
	Bug Oracle Overhead
	Hyperparameters
	Maintaining Dumpling

	Discussion
	Related Work
	JavaScript Engine Fuzzing
	JavaScript Engine Differential Fuzzing

	Conclusion
	References
	Appendix A: Manuscript Appendix
	Case Study: 345960102

	Appendix B: Artifact Appendix
	Description and requirements
	Artifact installation
	Experiment workflow
	Major claims
	Evaluation

