
 type++:
Prohibiting Type Confusion

With Inline Type Information
Nicolas Badoux, Flavio Toffalini, Yuseok Jeon & Mathias Payer

Motivation: Derived Type Confusion in C++

Inheritance allows to use a Child object as a Parent (upcast)

What about the inverse?

2

Safe?

class Parent

class Child : public Parent class Sibling : public Parent

Parent

Child

Allocated
memory

Motivation: Derived Type Confusion in C++

Inheritance allows to use a Child object as a Parent (upcast)

What about the inverse?

3

Possible with cast operators BUT not guaranteed correct.

May lead to memory corruption

Still common today, e.g.,

Safe?

class Parent

class Child : public Parent class Sibling : public Parent

Parent

Child

Allocated
memory

si
ze

o
f(
S
i
b
l
i
n
g)

Implications:

● Polymorphic types already have Runtime Type Information (RTTI) ✅

● Changes in object layout

● All the other classes/structs require initialization

Goal: Enforce runtime checks for all casts

How: Adding inline type information to all objects involved in derived cast

type++: A C++ Dialect Free of Derived Type Confusion

4

-

“foo” Augmented “foo”

RTTI

-

Setup RTTI through constructor calls

● Transparently defines a default constructor for all the classes

new ✅
malloc & co

● Explicit call to the default constructor

● Careful handling of calloc/realloc

Allow-list for custom memory allocators (e.g., pool allocator, ASan)

Automatic Type Information Initialization

5

Object Layout: Required Adaptations

6

Since type++ imposes inlined RTTI for all derived cast classes

Change in layout is incompatible with the C++ ABI

Automatic wrappers/macros
● External libraries
● Headers shared with C/C++ Limited code adaptations:

● <0.04% of LoC in SPEC CPU

Warnings for incompatible code

C++ vs type++: Example of Incompatible Idioms

Comparison between sizeof:

Implicit placement_new:

7

sizeof(X) == 16

class X { /* other fields */ };

class Y {

 char __blob_[sizeof(X)];

};

...

X x;

Y* y = reinterpret_cast<Y*>(&x);

Evaluation: Porting Effort

We observed 179 warnings across 16 programs in SPEC CPU2006 & CPU2017

We modified 314 LoC (out of 2M LoC, < 0.04%)

Case study: Blender

Undefined behavior due to tagged pointers (an old-school hack)

8

#define unalignRayFace(o) ((Node *)(((intptr_t)o)|1))

#define isRayFace(o) ((((intptr_t)o)&3) == 1)

🚨 ☠ We cannot find RTTI at the unaligned address!

Evaluation: Security & Performance

type++ protects 16x more casts than the HexType sanitizer

9

HexType LLVM-CFI type++

average max average max average max

SPEC CPU2006 8.27% 29.21% 0.49% 3.43% 1.19% 4.11%

SPEC CPU2017 - - 0.33% 3.22% 0.82% 4.58%

HexType LLVM-CFI type++

derived unrelated derived unrelated derived unrelated

SPEC CPU2006 5.6B 0 2.1B 0 31B 1.5B

SPEC CPU2017 - - 1.7B 0 52B 5.5B

Average overhead: 0.94%, in line with the LLVM-CFI mitigation

● 3,339 warnings for 230 LoC changes

● One minor adaptation to protoc

JetStream2: 1.42% overhead

89.7% of derived casts protected, double those of LLVM-CFI

Case study: Chromium

We support 92% of Chromium’s required classes

● Class support breakdown:

10

1,102
polymorphic

1,928
ported to type++

171
unsupp.

type++: Prohibiting Type Confusion With Inline Type Information

⚙ Runtime type information for all classes involved in derived casts

🩹 ABI change resulting in 314 patched LoC (out of 2MLoC)

🛡 All derived casts are verified at runtime

🚀 Less than 1% overhead for 90B casts protected (23x > SotA)

⚔ 14 new type confusions identified

📝 type paper: hexhive.epfl.ch/

📦Artifact: github.com/HexHive/typepp

11

https://hexhive.epfl.ch/publications/files/25NDSS.pdf
http://github.com/HexHive/typepp

Security Impact

122 type confusions identified

● 14 new bugs

All have been fixed in more recent software versions

● Use of dynamic_cast

● Use of a proper type hierarchy

12

-typedef struct InstanceRayObject {

- RayObject rayobj;

+typedef struct InstanceRayObject : RayObject {

 RayObject *target;

