
Sourcerer:
channeling the void

Nicolas Badoux, Flavio Toffalini, and Mathias Payer

Motivation: Unrelated Type Confusion in C++

C++ allows for use of a “generic” type: void

Cast to void* is always allowed

2

Foo

A
llo

ca
te

d

m
em

o
ry

class Foo class Barvoid
Bar

M
em

o
ry

n
ecessary

What can you do with the resulting pointer?

- Cannot dereference it
- Have to cast it back to the original type

Casting to another type breaks memory safety.

Safe?

Sourcerer Solution

What: Sourcerer is a sanitizer to validate casts (i.e., detect invalid ones)

How: Add type information to all object destinations of a cast

What’s new? Sourcerer covers 100% of the casts by design

Technical details:

Inline information (RTTI) reduces the performance cost

Sourcer extends RTTI to all classes, objects, unions, and w/ templates

Sourcerer Design

We propose a new routine (RTTIInit) that initializes only

the type

RTTIInit overcomes technical limitations that affect

other C++ dialects (e.g., type++)

RTTIInit supports unions

- Calls to RTTIInit at each union member assignment

- A constructor would have overwritten data

4

vptr A

int x

vptr B

int y

Fields initialized
by RTTIInit()

Object A:

class A {

 int x;

 B b;

};

class B {

 int y;

};

B
b

Sourcerer Implementation

Ported the compiler of type++ to LLVM 19

Sourcerer allows for dialect simplification compared to original type++

RTTIInit implemented as dumbed down version of constructors

- Only retain the logic related to the RTTI

5

Almost an order-of-magnitude less overhead

Overhead caused by:
- Type checks: in particular failing ones (when benchmarking)
- RTTIInit: negligible
- ABI change → cache effectiveness: dominant source (~80%)

Evaluation: Performance

6

SPEC CPU Sourcerer EffectiveSan

Runtime Avg. 5.14% 49%

Max. 16.99% ~440%

Memory Max. 104.89% -

Worst performance overhead of Sourcerer on SPEC CPU benchmarks

- 16.99% compared to the baseline
- Up to 100% memory overhead

Caused by the doubling in size of pointt

- Used in tight loop of flexarray::add
- Breaks cache optimization thought by the developer

Remediation through either:

- Replacing the unrelated cast causing the instrumentation
- Removing verification for this object type

Sourcerer Performance: Caste Study Astar

7

Evaluation: Porting Effort & Security

5x more object types verified on the SPEC CPU benchmarks

Only 20% more porting effort for a total of 450 LoC changed (out of 2MLoC)

Sourcerer identified 30 new type confusion bugs (and all known ones)

- Developer relying on undefined behavior for objects with a similar layout

8

Evaluation: Fuzzing for Type Confusions

Similar coverage to sanitizers for other vulnerabilities

Three unrelated type confusion bugs in OpenCV (1.3 MLoC)

9

Fuzzing Limitations

Our efforts were impeded by:

- Lots of unrelated type confusion accepted by the developper

- “It works”
- Still based on undefined behavior

- Sourcerer is designed to be a sanitizer, not a mitigation, as it cannot

always recover after a type confusion (details in the paper)

10

Sourcerer: channeling the void

11

🦕 Legacy code still relies heavily on void* casts

💯 Complete sanitizer, including unions & unrelated casts

🆕 RTTIInit: efficient initializer for inline type information

💪 Low-overhead sanitizer: 5.14% on average

🔍 Possibility to reduce overhead with localized changes

🥇 First fuzzing campaign targeting type confusion bugs

📦 Artifact: github.com/HexHive/Sourcerer

http://github.com/HexHive/Sourcerer

