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Abstract—Baseband processors (BPs) in cellular devices im-
plement complex radio protocols, and memory corruption
vulnerabilities in these implementations can lead to critical
security breaches, including remote code execution. Traditional
approaches to detecting such vulnerabilities rely on reverse
engineering or emulation. However, these methods face signif-
icant scalability challenges due to proprietary firmware and
architectural complexities. Over-the-air (OTA) testing offers
broader applicability but poses challenges in managing UE
state, detecting crashes, and ensuring protocol coverage.

We present OTABase, an OTA testing framework that
enables efficient detection of memory crashes in LTE base-
bands by leveraging protocol specifications. OTABase combines
three key techniques: a network-side state control mechanism
for efficient management of UE states and connections, a
specification-guided test case generation targeting memory
crashes in NAS and RRC protocols, and a two-phase crash
detection oracle utilizing protocol-based liveness checks and
manufacturer debug features. Evaluating OTABase on six
commercial BPs from three major manufacturers, unearthed
seven previously unpatched memory crashes. Among these,
three were assigned CVEs, including one out-of-bounds write
vulnerability that allows remote code execution. Additionally,
we extend OTABase to 5G basebands for PoC, demonstrating
its generalizability and practical utility.

1. Introduction

Cellular communication is deeply embedded in mo-
bile devices and critical infrastructure, making its security
paramount. At the core of this attack surface lies the BP,
which manages radio signals and data packets for cellular
services (e.g., SMS, voice calls, and internet). To operate
securely, the BP depends on cellular control protocols for
tasks like authentication, connection management, and secu-
rity protections. Thus, vulnerabilities in these protocols can
directly compromise end-user security.

To identify these flaws, researchers have proposed vari-
ous approaches, including black-box testing [1], [2], [3], [4],
[5], static analysis [6], [7], emulation [8], [9], natural lan-
guage processing [10], [11], comparative analysis [12], [13]
and formal analysis [14], [15]. Most of these approaches

focus on two main categories of vulnerabilities. First, design
flaws embedded in the standard itself—-such as exposure
of sensitive data (i.e. identity, location) in plaintext [2],
[16], [17], lack of spoofing defenses [2], [18], and weak
authentication mechanisms enabling IP traffic manipula-
tion [19], [20]. Second, implementation flaws, where the
protocol behavior deviates from the specification. These
can be further categorized into two types: logic bugs that
violate the security policies outlined in the specification
(e.g. incorrect validation of authentication messages), and
memory bugs that result from unsafe memory operations.

Among the potential vulnerabilities in BPs, memory
corruption bugs are particularly severe as they can lead to
remote code execution (RCE) on smartphones. Since BPs
are black-box, proprietary systems with limited debugging
capabilities, detecting memory crashes serves as a practical
approach to identify potential memory corruption vulnera-
bilities. This is especially relevant due to three key char-
acteristics of current BP and mobile device architectures.
First, BPs are typically developed using memory-unsafe
languages (C/C++). Second, the shared memory design
and inter-process communication mechanisms within mobile
devices [21] allow vulnerabilities in the BPs to propagate
across system boundaries. Third, the lack of robust memory
protection mechanisms like ASLR [22], [21] simplifies ex-
ploitation. These combined factors enable attackers to esca-
late privileges within the mobile OS, as demonstrated repeat-
edly by baseband exploitation research [23], [24], [25], [26],
[22]. For instance, Cama [27] successfully demonstrated a
full-chain exploitation, achieving arbitrary file write within
the Android file system.

Given these threats, detecting memory crashes to iden-
tify potential memory corruption vulnerabilities in BPs is
crucial. While traditional approaches rely on static anal-
ysis [27], [28], [22], [6] or emulation-based fuzzing [8],
[9], they face scalability limitations. These methods require
reverse engineering – obtaining firmware is often difficult,
analysis demands substantial expertise, and the process must
be repeated when implementations undergo major changes.
These limitations have constrained research to older devices,
with Samsung studies mostly stopping at S10 series, limited
MediaTek coverage, and Qualcomm analysis being chal-
lenging due to Hexagon architecture.



While OTA testing offers a more universal approach that
can work across different baseband implementations without
firmware access, practical challenges remain. OTA testing
is inherently slow, further constrained by limited testing
windows due to autonomous state transitions and connection
timeouts – for example, Park et al. [4] reported 70% of test-
ing time as idle due to such constraints. Also, lack of instru-
mentation due to BP’s black-box nature make conventional
code coverage-based fuzzing inapplicable, which is further
complicated by the large protocol surface – RRC and NAS
contain dozens of message types with thousands of their
fields. A recent attempt at specification-based fuzzing [29]
still faces limitations in protocol coverage and only supports
open-source UEs [30], [31], while their detailed methodol-
ogy remains undisclosed and not open-sourced. Moreover,
BP’s limited debugging capabilities and less observable user
interface feedback make detecting memory bugs challenging
in OTA testing [32].

In this paper, we present OTABase, an over-the-air testing
framework for detecting memory crashes in LTE cellular
basebands. Our approach focuses on the NAS and RRC
protocols, which are essential for cellular control operations,
and combines three key techniques to overcome the afore-
mentioned challenges. First, to overcome the challenges of
coordinating UE state and timeouts (C1), we implement
a network-side state control mechanism guided by proto-
col specifications, enabling precise UE state management
and stable testing conditions. This reduces downtime by
avoiding autonomous transitions and long back-off periods.
Second, to handle the large protocol surface (C2), we in-
troduce a specification-guided test case generation method
which creates standard-conformant NAS and RRC messages
and systematically mutates security-sensitive fields to target
memory crashes. This allows broad testing coverage without
requiring implementation details or instrumentation. Third,
to overcome limited crash observability (C3), we develop
a two-phase crash detection oracle combining protocol-
level liveness checks, ADB crash logs with manufacturer-
provided debug features. This ensures reliable detection by
identifying candidate crashes through connection monitoring
with ADB logs and then confirming them using the manu-
facturer’s kernel panic logs.

We evaluated OTABase against six COTS basebands, both
new and old models from each three major manufacturers
(Qualcomm, Samsung, and MediaTek), discovering seven
previously unpatched memory crashes. Among them, three
were marked as duplicates upon reporting, and three were
assigned CVEs. Notably, one CVE involves an out-of-
bounds write that enables RCE. We also validated OTABase
by detecting a known crash in an old device, confirming its
ability to find both new and known vulnerabilities. All find-
ings were responsibly disclosed to the respective vendors.

In summary, our contributions are three-fold:
• We introduce OTABase, an over-the-air testing framework

designed for efficient detection of memory crashes in COTS
LTE basebands. We release OTABase as open-source for
future research at https://github.com/OTABase/OTABase.

• We develop efficient test generation, state control techniques
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Figure 1: LTE network architecture

by leveraging protocol specification to overcome traditional
OTA testing limitations. Also, we present a two-phase crash
detection mechanism to provide reliable crash detection.

• We demonstrate OTABase’s effectiveness by discovering
seven previously unpatched memory crashes in BPs from
major manufacturers, three of which were assigned CVEs.

2. Background

2.1. LTE network architecture

LTE network comprises three components: User equip-
ment, Evolved Node B, and Evolved Packet Core (Fig. 1).
User Equipment (UE) refers to the mobile device, such as
a smartphone. UEs typically contain two main processors:
an application processor (AP) running the operating system,
and the baseband processor (BP), which handles cellular
communications. The BP implements key protocols like
RRC and NAS, which are essential for both communication
and security. To access cellular services, the UE communi-
cates with network entities over the wireless interface using
the cellular protocol stack (§2.2).
Evolved Node B (eNB) acts as a base station, providing
wireless connectivity to UEs. It handles both downlink (eNB
to UE) and uplink (UE to eNB) transmissions using the
Radio Resource Control (RRC) protocol, which manages
radio connections. Additionally, it functions as a bridge,
relaying control data between UEs and EPC.
Evolved Packet Core (EPC) functions as the backend of
LTE network. Key components within the EPC include the
Mobility Management Entity (MME), responsible for user
authentication and session management via the Non-Access
Stratum (NAS) protocol with UEs. Additionally, it manages
user identifiers like the International Mobile Subscriber
Identity (IMSI) and the International Mobile Equipment
Identity (IMEI), along with their security keys (§2.3).

2.2. Protocol stack

As depicted in Fig. 1, the LTE protocol stack follows a
layered structure. Layer 3 consists of two aforementioned
key protocols: NAS and RRC. These protocols are defined
in the 3GPP standards [33], [34] and are designed to mini-
mize the size to reduce overhead. Layer 2 ensures reliable
delivery through the Packet Data Convergence Protocol
(PDCP) for encryption/integrity protection and the Radio
Link Control (RLC) layer for segmentation and packet
ordering. Important packets like RRC and NAS messages
use Acknowledged Mode (AM), where the BP sends ac-
knowledgement (ACK) for successfully received packets or
request retransmission (NACK), ensuring reliable delivery.
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For effective testing, it is essential to understand the
structure of NAS and RRC protocols, as the BP implements
functions specifically designed to handle them.
NAS messages follow a byte-aligned Type-Length-Value
(TLV) structure. Each message consists of Information Ele-
ments (IEs), where each comprises 1–2 byte Type uniquely
identifying the IE, along with its Length and Value, which
define its contents. In particular, the first three bytes of
a message uniquely define the message type, determining
which IEs can be included, their order, and whether each
IE is mandatory or optional. Mandatory IEs often omit
their Type and Length fields, and include Length if the value
has variable boundaries. In contrast, optional IEs explicitly
include both Tag and Value, and often include Length.
RRC messages are defined in ASN.1 using Unaligned
Packed Encoding Rules (UPER), resulting in compact bit-
level representations [35]. The first five bits indicate the
message type, followed by presence flags and values for in-
dividual fields, which may be mandatory or optional. These
fields are either primitive types (BOOLEAN, INTEGER, ENUMERATED,
BIT STRING, OCTET STRING) carrying values, or structured types
(SEQUENCE, SEQUENCE OF, CHOICE) that again contain other fields.
Fields can be primitives (e.g.BOOLEAN, INTEGER) that directly
carry values or structured types (e.g.SEQUENCE, CHOICE), which
recursively contain other fields. Structured types are often
defined as reusable IEs with dedicated names, forming
tree-like message structures across RRC messages (Fig. 2).
While NAS uses IEs to carry values, this role is served by
fields in RRC; we refer to both uniformly as “fields” unless
otherwise noted.

Unlike NAS, RRC packets lack unique identifiers for
message types and fields, and their lengths are often omitted.
As a result, decoding depends on MAC-layer indicators and
grammar definitions from the specification. For instance,
RRC packets delivered over the downlink Dedicated Control
CHannel (DCCH) typically carry critical control messages
such as Security Mode Command for configuring security keys,
or DL Information Transfer for transporting NAS messages.

2.3. LTE signaling procedures

This section provides details on OTABase’s testing state
and control mechanism, examined further in this study.

UEs connect and maintain cellular service through three
distinct signaling procedures–Attach, Service Request,
and Tracking Area Update (TAU)–which ensure seam-
less registration, location updates, and service reconnection.
Each procedure involves a sequence of RRC and NAS mes-
sages [33], [34], during which the UE transitions between
specification-defined states outlined in clause 5.1.3 in [34].

Fig. 3 provides a concise overview of these states and
their transitions. The specification defines five main EMM
states: DEREGI, REGI-Init, REGI, TAU-Init, and SR-Init.
Appendix A provides detailed descriptions of each state,
including behavior and security properties.

3. OTABase goals and challenges

Goals. The primary objective of OTABase is to efficiently
detect memory crash vulnerabilities in COTS BPs through
OTA testing. Prior studies have faced key challenges such
as stateful behavior and connection timeouts, large protocol
surfaces, and limited crash detection capabilities in black-
box testing. Through specification-based approaches, we
seek to achieve three key goals:

1. Establish efficient testing procedures that maximize the
effectiveness of over-the-air interactions

2. Enable systematic testing of cellular protocol implemen-
tations without requiring implementation details

3. Develop an automated and reliable crash detection mech-
anism for over-the-air testing environments

Scope. Our work focuses specifically on memory crash
vulnerabilities in the baseband that occur during the pro-
cessing of signaling messages. We target NAS Mobility
Management (EMM) and RRC DCCH messages, respon-
sible for managing mobility, security, and radio resources.
These are chosen for their critical role and their use of
RLC AM, ensuring reliable message delivery. Note that we
do not address design flaws in the specifications or other
implementation bugs unrelated to memory corruption.
Challenges. To detect memory crashes in BP through OTA
testing, we need to address the following challenges.
C1. Coordinating UE states and timeouts. The stateful
behavior of the BP poses significant challenges for OTA
testing. Depending on its internal state, the same message
may be processed, ignored, or produce varying outcomes.
This variability hinders systematic testing, as it requires
precise control of the BP’s state.

Maintaining the UE in a specific state is inherently
difficult due to two main challenges: timer-driven state tran-
sitions and connection overhead. First, the BP autonomously
changes its state based on internal timers. For instance, after
sending an Attach Request (i.e. REGI-Init), the UE remains
connected only for 15 seconds. Then, it disconnects and
waits 10 seconds before attempting to reconnect. If several
attempts, it enters a back-off period of 12 minutes [34].
Notably, our tests revealed that some BPs (i.e. MediaTek)
extend this to 2 hours, resulting in 99.07% idle time (see
evaluations in §B). Moreover, this behavior cannot be reset
via standard methods such as toggling airplane mode; it
requires SIM reinsertion or a reboot. Recent studies also
reported that repeated Attach failures can lead to near-
permanent disconnects, often requiring manual interven-
tion [36]. Second, each connection and state transition incurs
a delay of 0.3–1 second, making per-test-case repetition
inefficient. Overall, OTABase requires precise control over



UE states and timers to ensure stable OTA connections and
maximize testing efficiency.
C2. Large number of messages and optional fields to test.
Testing BPs requires comprehensive coverage of a large
protocol surface. The LTE specification defines over 100
message types with more than 1,000 fields in RRC and NAS
protocols alone. COTS basebands must implement handlers
for all these messages and fields to ensure specification
conformance, making comprehensive testing challenging.
The lack of coverage feedback in OTA testing further
complicates assessing whether test cases adequately explore
protocol implementations. Thus, OTABase needs to generate
test cases that systematically explore protocol messages and
fields to uncover memory bugs.
Prior methods. Prior works have explored mutation-based,
specification-guided, and coverage-guided testing to address
this challenge. However, they could only explore a limited
subset of the messages and fields implemented in BP.

Mutation-based testing modifies traffic from live net-
work operations [3], [37]. However, this approach leaves
many protocol fields untested, as commercial traffic covers
only a narrow subset of possible message types and fields.
Worse, cellular protocols are highly grammar-sensitive, re-
jecting the vast majority of randomly mutated packets during
parsing—long before they reach the target handlers.

To address these limitations, several studies proposed
specification-guided testing [4], [38], [1], [39], [40]. These
efforts leveraged the specification to craft prohibited or
invalid messages, exposing logic bugs particularly in
authentication-related fields. However, such approaches left
memory bugs unaddressed despite improving protocol cov-
erage. An attempt to target memory bugs [29] still faces
limitations in coverage, supports only open-source UEs,
while its detailed methodology remains undisclosed.

Coverage-guided fuzzing also suffers from limited code
coverage. FirmWire [8], the state-of-the-art emulator-based
fuzzer, achieved only 3.5% code coverage for the RRC due
to its lack of network interaction support, restricting testing
to early baseband states. Recent follow-up efforts [41], [42]
improved emulator support but still exhibit limited coverage
and only support MediaTek and Exynos BPs.
C3. Limited oracle for detecting a crash. Detecting
memory corruption in BP is challenging due to the limited
debugging capabilities. Unlike traditional software, BP oper-
ates in a closed, proprietary system with restricted memory
access and debug interfaces [32]. This makes it difficult to
inspect runtime memory state or utilize existing debuggers
during testing. Moreover, memory corruption in BP is often
less observable via the user interface (UI) of the UE. Crashes
may remain silent, with no immediate UI indication; for
instance, the device may still show full signal bars even
after losing connectivity. Conversely, some UEs hide signal
bars before completing signaling procedures (§2.3). In sum-
mary, OTABase requires a reliable and efficient method for
detecting such silent crashes.
Prior methods. To assess existing approaches for detecting
memory crashes in BP, we gratefully leveraged FirmWire’s
publicly released payloads [45], which enabled evaluation

TABLE 1: Existing memory bug validation methods

Approach Impact Validation
w/ 1-day R A

Visual feedback Signal bar disappear [8] ✓ ✗ ✗
Cellular connection Lose connectivity [43], [44] ✓ ✗ ✗

ADB log ”CP Crash” log [8]
Other logs [36]

✗
✓

✓
✓

✓
✗

Bluetooth connection Bluetooth dead [44] ✗ ✗ ✓
Manufacturer’s

debug mode
Kernel panic [43],
MTKLogger [9] ✓ ✓ ✗

Proposed method Liveness check fails (§4.3)
& Kernel panic [43], ADB log [36]

✓
✓

✗
✓

✓
✗

R: ✓- Robust against false positives, ✗- prone to false positives
A: ✓- validated automatically ✗- validated manually

on COTS UEs in terms of usability, automation feasibility,
and false-positive resilience. Tab. 1 summarizes our findings.

Our experiments revealed significant limitations in the
practicality and reliability of commonly used validation
methods, particularly those based on emulation or device
logs. Emulation-based methods utilized address sanitizer [9]
or custom fault detectors [8] to catch crashes during fuzzing.
While these methods provide rich details on crash, they
require firmware access and involve complex setup, making
them impractical for testing diverse COTS devices.

Device log-based approaches extracted crash-related in-
formation from ADB logs [37], [8] or tools like Modem-
Manager [46]. While some studies reported success using
these methods, our experiments found that some are un-
reliable. In particular, when reproducing FirmWire’s pay-
load (§C), we confirmed that the payload triggered a crash
and led to signal loss. However, the expected CP Crash log
in ADB logcat, as reported in [8], did not appear, making
this approach unsuitable for consistent crash detection across
devices. Meanwhile, recent work highlighted that ADB logs
upon crash exhibit vendor-specific differences, necessitating
an initial manual analysis step [36].

Beyond these methods, prior work explored indirect or
vendor-specific methods. For instance, Bluetooth discon-
nection was proposed as a crash indicator [44], but in
our tests, the connection remained active after BP crashes.
Other studies relied on manufacturer-specific modes, such as
Samsung’s debug panic trigger [43] or MediaTek’s MTK-
Logger [9]. Both approaches have practical limitations:
Samsung’s mode requires manual intervention after each
crash—-holding hardware buttons for 10 seconds—-while
MTKLogger is proprietary and requires reverse engineering
to interpret crash information.

3.1. Our approaches

To address the above challenges, we present the three
contributions of OTABase.
A1. Network-side state control mechanism. To overcome
the challenges of coordinating UE states and timeouts (C1),
we propose precise state management through network-side
control logic derived from 3GPP standards. Our design is
based on a thorough analysis of the standards [34], [33], [47]
and prior work on baseband state machines [14], [12]. This
mechanism enables immediate transitions across key sig-
naling procedures (§2.3), avoiding lengthy back-off timers
and unintended UE-driven state changes that hinder testing.
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It required extensive empirical validation, as the call flows
for these state transitions are not explicitly documented in
the specifications, and existing open-source protocol stacks
lack the necessary support. While prior works also used
specification-compliant messages (i.e. reject message) for
state initialization [12], [13], we further extend this approach
to achieve robust state control across standard-defined states
and to avoid near-permanent disconnections requiring man-
ual interventions [36]. This ensures consistent testing con-
ditions and minimizes downtime by enabling reliable re-
attachment, making sustained over-the-air testing practical.
A2. Specification-guided test case generation. To address
the extensive testing surface (C2), we develop a systematic
approach for generating and mutating test cases based on
protocol specifications. Our method follows two key prin-
ciples: First, we identify security-sensitive fields—such as
length—that may trigger memory corruption, and generate
valid, standard-conformant test messages that always in-
clude these fields. We also consider the theoretical limits
of message and field lengths. Second, we apply grammar-
aware mutations that selectively corrupt these fields while
preserving the overall message structure. This is crucial, as
a single bit-flip can even corrupt the entire packet, leading to
early rejection at the parsing stage and inefficient testing. As
a result, OTABase can test rarely exercised message handlers
that are otherwise difficult to reach but still required by the
specification. This represents a fundamentally different use
of specification guidance from prior works.
A3. Two-phase crash detection oracle. To address the
limited crash detection capabilities (C3), we develop a two-
phase detection approach combining protocol-based liveness
checking and vendor-specific debug features. The first phase
identifies crash candidates by monitoring baseband liveness
through cellular protocol messages and ADB logs. Specif-
ically, OTABase performs both passive monitoring via RLC
ACK messages and active probing using specific RRC and
NAS messages. This insight stems from prior studies show-
ing that baseband crashes consistently result in connection
loss [43], [44]. While prior works such as DoLTEst also
utilized protocol messages as oracles to detect logic bugs [4],
their methods cannot be used for detecting the liveness
of the baseband. We additionally monitor the ADB log to
detect any signs for crash. Thereafter, we adopt a second
validation phase utilizing manufacturers’ debug features.
These features trigger kernel panic upon detecting memory
crashes, providing reliable confirmation without requiring
firmware access or complex debugging setups.

4. OTABase
4.1. System overview

Fig. 4 illustrates the components of OTABase and its
workflow. First, OTABase applies network-side state control
logic derived from specification analysis (§4.2). Next, it gen-
erates test cases by creating standard-conformant messages
and mutating security-sensitive fields (§4.4). We also design
an oracle to detect memory bugs over the air (§4.3). Using
these states and test cases, OTABase performs over-the-air
testing on various UEs and collects bug candidates. Also,
OTABase further reduces the downtime by using the airplane
mode (§4.5). Finally, after testing, OTABase verifies the bug
candidates using the manufacturer’s debug mode, and further
analyzes the suspected message field (§4.6).
Attack model. We consider several established attack
models in cellular networks, including fake base sta-
tions (FBS)[14], [2], [48], [49], man-in-the-middle (MitM)
attacks[1], [19], and signal injection attackers [18], [16]
(Fig. 5). In addition, we adopt the rogue carrier model used
in recent work [50], which assumes a stronger adversary
that possesses the victim’s cryptographic keys and can send
authenticated messages.

We argue that memory vulnerabilities in the BP must
be thoroughly evaluated, as attackers with key access can
still exploit critical paths beyond the scope of cryptographic
protection. Such vulnerabilities can enable unauthorized data
access and persistent RCE backdoors. Recent real-world
incidents such as Iran’s SIAM [51] demonstrate that state-
sponsored attacks are no longer hypothetical. Additionally,
the Android security team has officially included adversarial
network providers in its threat model [52], reinforcing the
need to consider rogue carriers in OTABase ’s design.

4.2. State control mechanism

OTABase ’s state control mechanism maintains connec-
tivity and systematically exercises key UE states (§2.3).
Timer-based state management. To prevent indefinite
waiting, basebands enforce state-specific timers as defined
in the specifications. OTABase conducts testing before these
timers expire to avoid unintended state transitions and radio
connection back-off, and uses targeted message sequences
to re-enter each state. Specifically, OTABase manages the
following NAS timers [34]: T3410 (15s) for REGI-Init,
T3430 (15s) for TAU-Init, and T3417 (5s) for SR-Init.
Initialization. Upon initial UE connection, OTABase sends
an Attach Reject with cause Illegal UE to clear any residual
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security or state context, forcing a transition to DEREGI.
Once the UE reconnects, it enters REGI-Init. If the tar-
get state is not REGI-Init, OTABase completes the Attach
procedure to reach REGI. Subsequent transitions to TAU-
Init or SR-Init are achieved via specific message sequences
described below.
State transition control. OTABase employs the following
mechanisms for each testing state:

• REGI-Init: Before the state timer expires, OTABase com-
pletes the Attach procedure to enter REGI, then sends a
NAS Detach Request with detach type re-attach required, fol-
lowed by an RRC Connection Release with cause others. This
causes the UE to disconnect and immediately reconnect,
returning to REGI-Init within approximately 0.7 seconds.

• REGI: Although this state has no state timer, OTABase
periodically resets it using a Detach Request to avoid state
contamination. The procedure follows the REGI-Init cycle.

• TAU-Init: OTABase first sends a TAU Accept to move the UE
to REGI, then issues an RRC Connection Release with cause
load balancing TAU required. This brings the UE back to
TAU-Init in about 0.2 seconds.

• SR-Init: OTABase uses RRC connection reconfiguration for
REGI transition, followed by RRC connection release with
cause others and RRC paging with UE’s S-TMSI. This se-
quence returns UE to SR-Init within 1.7 seconds.

Batch testing. Even with full control over UE states, each
connection and state transition introduces non-negligible
delays, making it inefficient to repeat them for every test
case. Thus, OTABase performs batch testing once the UE
reaches a target state.
Handling unexpected transitions. Batch testing assumes
the UE remains in the target state, but unexpected transitions
can occur due to internal logic or test messages sent by
OTABase. Implementation differences across devices can also
lead UEs to ignore messages or transition to unintended
states, due to specification ambiguities–as we observed when
identical messages triggered inconsistent behavior. OTABase
detects such cases through UE responses and recovers by
first returning the UE to REGI, then re-executing the re-
quired state transition sequence.

4.3. Oracle

OTABase employs a two-phase crash detection oracle
combining protocol-based liveness checks, ADB logs, and
manufacturer-specific debug features. The rationale behind
this design is that the BPs behave as a black box, requiring
OTABase to leverage every observable crash indicator to
maximize detection coverage.

However, the available signals differ by device family:
while generic Android devices expose ADB logs and cel-
lular liveness, Samsung devices additionally provide debug
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mode. Meanwhile, crash detection without false positives
requires either debug mode or device-specific ADB crash
log knowledge (Tab. 1), which can only be derived from
real crashes. Thus, while final confirmation requires vendor
feedback, OTABase can reliably detect crashes on Samsung
devices via debug mode, or on Android devices with known
ADB crash log signatures, as described below.
Phase 1: Protocol-based liveness and ADB log checking.
This phase monitors BP’s liveness using passive and active
approaches, leveraging layer 2/3 cellular protocols, and in
parallel, monitors ADB logs for potential crash evidence.

• Passive liveness check: OTABase inspects RLC ACKs for
each test message, verifying matching sequence numbers.
If the ACK is missing or mismatched, the test message is
marked as a crash candidate.

• Active liveness check: To complement passive checking,
OTABase periodically sends layer 3 probe messages (ev-
ery 10 test messages): RRC UE Capability Enquiry and NAS
Identity Request (IMSI type). These messages guarantee a
response regardless of UE state, and missing replies are
treated as potential crash indicators.

In phase 1, OTABase can autonomously collect crash
candidates, as the modem driver reboots the BP after a
crash. This reboot process typically takes within 10 seconds,
enabling seamless automated testing. Active checks offer
higher accuracy by catching crashes that don’t immediately
affect the lower layers. We observed such delayed effects
during testing. However, frequent active probing degrades
the testing speed, so OTABase uses it occasionally.
Collecting bug candidates. If a liveness check fails,
OTABase replays recent packets (i.e. last 10 packets) to
pinpoint the problematic one. In particular, it logs a message
as a crash candidate only when both liveness checks con-
sistently fail during replay, reducing false positives. When
device-specific crash log is known, ADB logs serve as an
additional signal to strengthen candidate collection.
Phase 2: Validation using manufacturer’s debug mode.
Each bug candidate is validated with the manufacturer’s
debug mode enabled. OTABase replays each candidate to
check for kernel panics, filtering out false positives and
confirming genuine memory crashes. The detailed operation
is described in §D. For non-Samsung devices, validation
relies only on ADB crash logs or vendor feedback.

4.4. Specification-guided test case generation

OTABase uses a grammar-aware approach combining
valid message generation and targeted mutations (Fig. 6).
Standard-conformant message generation. OTABase

leverages specification grammars to generate valid base



messages, including optional fields that are rarely used in
commercial networks. Given the infeasibility of testing all
combinations (e.g. over 4,000 RRC fields), OTABase prior-
itizes security-sensitive fields that are most likely to trig-
ger memory crashes. In particular, OTABase considers both
mandatory and optional fields when applying the security-
sensitive criteria explained below, ensuring that all such
fields are explicitly included in the generated test cases.
Also, nested structures defined in ASN.1 or TLV formats
are recursively expanded so that inner elements can also be
selected for mutation. The remaining fields are filled with
compliant random values to ensure standard conformance.
Security-sensitive fields. OTABase defines the following
categories of fields as security-sensitive to target:

• Length-related fields: (1) Single fields whose length
defines content size (e.g.MS network capability in NAS,
codebookSubsetRestriction-r13 in RRC)), (2) List fields
where length represents the total size of multiple sin-
gle fields it contains (e.g.Emergency number list in NAS,
UE-CapabilityRAT-ContainerList in RRC).

• Range-constrained fields: Fields with a valid range smaller
than their allocated size, such as a 3-bit field that only
defines values 0—5, leaving 6-–7 outside the standard-
conformant range (e.g.locationCE-ModeB-r15 in RRC).
Mutation Strategy. After generating base messages,
OTABase applies grammar-aware mutations to introduce con-
trolled invalidity. This preserves structural integrity up to the
target field while breaking compliance beyond it.

• Length-related fields: OTABase independently mutates both
length and content fields, using maximum, minimum, and
random values both within and outside specification-defined
ranges. Mismatches include cases like zero-length with non-
empty content, or unchanged length with truncated content.
For list fields, OTABase manipulates both total length and
individual element fields independently, creating various
mismatches between declared and actual sizes.

• Range-constrained fields: OTABase tests values outside the
valid range, including edge cases and random invalid values.

• Packet manipulation: OTABase modifies entire packet pay-
loads by adding or truncating random bits or bytes.

4.5. Handling unexpected radio disconnections

To sustain efficient testing, OTABase implements mecha-
nisms to minimize UE disconnection time. While the state
management logic (§4.2) typically ensures stable connectiv-
ity, disconnections may still occur due to:

• Certain field values in test messages can disrupt connec-
tions or corrupt RF settings–for example, RRC Connection
Release may redirect the UE to invalid frequencies, or
RRC Connection Reconfiguration may apply incompatible an-
tenna parameters.

• External factors like poor signal or hardware faults.
Statically filtering such values is impractical due to the
manual effort required to analyze thousands of fields.

To address these cases, OTABase adopts two mechanisms:
Temporary blacklisting. Upon detecting a connection
drop via its oracle (§4.3), OTABase temporarily blacklists

messages targeting the same field. If a message causes three
disconnections, it is skipped for the next 30 attempts. This
reduces repeated disruptions from unstable inputs.
Connection reset mechanism. If the UE fails to recon-
nect, OTABase toggles airplane mode via ADB to reset the
radio stack. We initially attempted to recover using protocol
messages (RRC Connection Release, Paging), which helped in
partial disconnection scenarios. However, airplane mode
toggling proved more effective overall.

4.6. Over-the-air testing workflow

Using the above components and logic, OTABase per-
forms OTA testing and post-analysis as follows.
State preparation and testing setup. When a UE connects,
OTABase transitions it to the user-specified testing state,
confirming the transition by monitoring UE responses. It
then initiates testing for a fixed duration based on the state’s
transition logic. For example, in REGI-Init, OTABase only
establishes the RRC connection and sets a 13-second timer,
without completing the Attach procedure.
Message testing process. OTABase sends RRC or NAS
test messages to the UE. For states beyond REGI-Init, it
adds appropriate security headers to avoid early rejection
due to authentication failure. Each message is followed by
a passive liveness check via uplink RLC ACK, allowing
one message every 20–25 ms (per clause 11.2 of [33]).
Active liveness checks are performed every ten messages,
and testing resumes once a response is received.
Bug candidate collection. OTABase monitors liveness un-
til the state timer expires. If a crash is suspected, it re-
establishes the connection using state transition logic and
continues until all test cases are processed.
Human intervention. While automated, OTABase occasion-
ally requires human intervention due to SDR hardware fail-
ures. For instance, our USRP B210 encountered rare runtime
errors during tests exceeding 10 hours, necessitating USB
reconnection—a known issue with no reliable mitigation.
To the best of our knowledge, there is currently no reliable
mitigation for this issue.
Vulnerability analysis. After collecting crash candidates,
OTABase conducts manual post-analysis using the manufac-
turer’s debug mode. For crashes with kernel panics, we:

• Identify malformed fields using specification refer-
ences [34], [33] and ASN.1 decoders [53], [54].

• Perform ablation testing by incrementally removing N bytes
to isolate faulty segments.
Confirmed bugs are reported to the vendor. A detailed
example is in §C.

5. Implementation

We implemented OTABase by integrating two key com-
ponents: srsRAN [31], an open-source cellular stack, and
pycrate [53], a Python library for cellular packet analysis.
Our implementation consists of 5,116 lines of C++ ex-
tending srsRAN and 6,091 lines of Python using pycrate.
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Figure 7: OTA testing speed per state (N: NAS, R: RRC)

For test case generation (§4.4), pycrate provides function-
ality for precise manipulation of RRC and NAS messages
based on their grammar. It includes an ASN.1 compiler that
converts RRC specification into Python structures, ensur-
ing compliance. While pycrate supports NAS EMM mes-
sages, some fields (e.g.CipherKeyData) were found to have
loosely constrained lengths inconsistent with the specifi-
cation. To address this, we used BaseSpec [6] to extract
correct values from the specification and applied them to
pycrate. OTABase adopts release v17.4 of RRC and release
v16.6 of NAS specifications. To support the state control
mechanism (§4.2), we extended srsRAN to implement three
procedures: network-initiated Detach, Service Request, and
Tracking Area Update. We also referenced the ADB crash
logs reported by LLFuzz [36] for ADB log-based detection.
Testing environment. We ran OTABase using a USRP
B210 [55] as the radio interface on an Ubuntu 18.04 LTS
equipped with an Intel Core i5-3570 CPU (4 cores) at
3.40 GHz and 16 GB DDR3 RAM. The UE under test
was equipped with a programmable SIM card (sysmoISIM-
SJA2 [56]) and placed inside a Faraday cage to prevent our
test signals from interfering with commercial users.

6. Results

6.1. Generated test cases

OTABase identified 52 security-sensitive fields out of
62 IEs in NAS, 724 security-sensitive fields—395 from
primitive types (37 out of 70 OCTET STRING, 12 out of 187
BIT STRING, and 346 out of 830 INTEGER) and 329 from
structured types (329 out of 377 SEQ OF) in RRC. The
remaining fields, both from the above types, other primitive
types (851 ENUM and 165 BOOLEAN) and structured types (1,099
SEQUENCE and 471 CHOICE), do not contain length-related or
range-constrained elements. Their bit flips either modify
values within standard-conformant ranges or fully corrupt
the packet structure. Additionally, there are 16 NULL fields
that carry no data.

To systematically evaluate protocol implementations,
we generate test messages that cover all possible posi-
tions where security-sensitive fields can appear. Since a
security-sensitive field can be used in various locations
within messages, we create standard-conformant messages
for each possible case, resulting in 88 NAS messages and
10,007 RRC messages. Note that the large number of RRC
messages results from its inherent recursive optional field
structure and frequent field reuse across multiple locations.

After applying our mutation strategy, we obtain 51,185
RRC test cases and approximately 830 NAS test cases. We

TABLE 2: Number of bugs discovered for each test device
BP

vendor Device model Chipset
model

Tested firmware
version (YYMM)

NAS
0d —1d

RRC
0d —1d

Qc Galaxy ZFlip4 SM8475 2311 0 — 0 0 — 0
Qc Galaxy S8 MSM8998 2012 0 — 0 0 — 0
Exy Galaxy S21 Exynos 2100 2307 3 — 0 0 — 0
Exy Galaxy Note 8 Exynos 8895 2001 3 — 1 0 — 0
Mtk Galaxy A32 Helio G80 2308 3 — 0 1 — 0
Mtk Galaxy A31 Helio P65 2207 3 — 0 1 — 0

BP vendor: Qc-Qualcomm, Exy-Exynos, Mtk-MediaTek, Tested firmware ver-
sion: For newer models, the firmware was updated to the latest version available
at the time of testing, 0d — 1d: Number of 0-day and 1-day bugs discovered.

repeat this process 3 times for RRC and 50 times for NAS,
ultimately generating 153,555 RRC test cases and 41,942
NAS test cases. For NAS, the number of test cases after
mutation varies slightly due to additional randomness during
packet mutation. See Appendix §G for test case details.

6.2. Over-the-air throughput

We evaluated OTABase’s testing throughput by measuring
the number of test messages sent over-the-air during a 10-
minute period. The evaluation used RRC and NAS messages
on three BPs (MediaTek, Exynos, Qualcomm) across all
testing states. To focus on speed itself, we selected packets
that do not cause crashes or disconnections. As in regular
testing, OTABase performed both active and passive liveness
checks, where these messages were not counted in the result.
Fig. 7 presents the messages sent in 30-second intervals,
which includes at least one state transition and any necessary
recovery actions triggered by unexpected UE behavior.

The results show that all devices generally achieved
700–1250 test messages per 30 seconds across most states.
The overall speed decreases in the SR-Init due to its shorter
timer (§4.2), which forces more frequent state transitions.
Notably, the Galaxy S21 with Exynos BP exhibits slower
testing speeds, particularly due to extended state transi-
tion times. This performance degradation stems from its
unstable state transition behaviors – the device often fails
to properly respond to standard-conformant messages such
as RRC paging, which leads to longer recovery times. Given
our later findings of state transition misimplementations in
the Exynos BP (§F), these issues likely contributed to the
observed slowdown.

Importantly, these results reflect ideal conditions and
do not represent actual testing throughput. In real tests,
messages may trigger crashes or connection losses, causing
delays of one to over ten seconds per incident.

In our experiments, the time to complete testing var-
ied depending on whether crashes occurred in the target
state. For NAS testing, test states with specific chipset
combinations that had no crashes took an average of 25 to
55 minutes to complete. However, in states where crashes
were discovered, the testing time increased to an average of
approximately 150 to 270 minutes. Similarly, RRC took on
average 6 to 10 hours in states without crashes, but increased
to approximately 15 to 30 hours in states where crashes were
found. We believe this significant increase in testing time
is due to bugs found in relatively shallow locations (§6.3),
causing them to be frequently triggered during our testing.



TABLE 3: Identified New Vulnerabilities in LTE Baseband
# Category Message IE Impact Chipset State CVE Duplicated

V1 NAS EMM Information Short name for network RCE∗, Remote DoS Mtk REGI CVE-2024-20039 No
V2 NAS Downlink Generic NAS Transport Additional Information Remote DoS Mtk REGI - No
V3 NAS Downlink NAS Transport NAS message container Remote DoS Mtk REGI - No
V4 NAS Attach Accept Emergency number list Remote DoS Exy REGI - Yes
V5 NAS Detach Accept - Remote DoS Exy All CVE-2023-37366 Yes
V6 NAS Authentication Reject - Remote DoS Exy All CVE-2023-37366 Yes
V7 RRC DLInformationTransfer DedicatedInfoNAS Remote DoS Mtk All CVE-2023-32890 No
Message: Message type associated with the vulnerability. IE: The name of IE associated with the vulnerability. If no specific IE is associated, it

is represented as -. Chipset: Mtk-MediaTek, Exy-Exynos. State: The state in which the vulnerability is triggered. CVE: CVE identifier assigned
by the manufacturer. Duplicated: Indicates whether the manufacturer classified our reports as duplicates. ∗: Independently verified.

6.3. Discovered bugs

We adopt OTABase to test six cellular devices from three
major baseband manufacturers, Qualcomm, Exynos, and
MediaTek, including both new and old models from each
manufacturer. The details of the test devices and the number
of bugs are presented in Tab. 2. Our findings include seven
previously unpatched memory crash bugs: three in the NAS
and one in the RRC of the MediaTek BPs, as well as three
in the NAS of the Exynos BPs. Additionally, we identified
a 1-day bug in an older version of the Exynos BPs, which
aligns with the findings reported in [6]. Notably, several
of the discovered bugs arise from deeply embedded states,
triggered in the final stages of the attach procedure (REGI)
by specific optional fields (V1, V2, and V4).

Tab. 3 summarizes the vulnerabilities, and the complete
test payloads are provided in Appendix E, including details
of V2-V3 and V5–V6. Below, we detail our findings.
V1: EMM Information. The Short name for network IE
in EMM Information crashes the baseband when its length
value exceeds 0xE7. This optional IE, designed to display an
abbreviated network name to users, causes an out-of-bounds
write according to MediaTek’s patch report, enabling RCE
without user interaction. This issue affects 75 chipsets, was
classified as high severity, and was assigned a CVE.
V4: Attach Accept. A vulnerability in Attach Accept allows
baseband crashes through malformed Emergency Number List
IE. The crash occurs when the IE’s length exceeds the range
specified in [57]. While we confirmed this vulnerability in
the latest Exynos firmware, Samsung indicated it duplicates
a bug already undergoing patching. Interestingly, a memory
bug was also found in the same IE, but in the MediaTek
BPs, as reported by previous works [9], [58].
V7: RRC DLInformationTransfer. When the mandatory
field dedicatedInfoNAS in RRC DL Information Transfer con-
tains empty contents, it triggers a baseband crash. According
to MediaTek, this malformed message triggers a null pointer
dereference, leading to a temporary DoS. The issue affects
13 chipsets, and was assigned a CVE with high severity.

In addition to these memory corruption bugs, we also
identified two misimplementations in Exynos BPs. Because
these issues fall outside the primary scope of this work, their
details are provided in Appendix §F.

6.4. Implications

Memory crashes identified in Tab. 3 can be exploited for
both DoS attacks and RCE.

Denial-of-service. All the memory vulnerabilities we iden-
tified can lead to DoS attacks that can persistently disrupt
cellular connectivity. When exploited, these vulnerabilities
force BPs to crash and silently reboot, causing approxi-
mately 3 to 7 seconds of complete cellular service disrup-
tion. During this period, while the mobile OS continues to
function, all cellular services become unavailable – includ-
ing emergency calls, cellular menus, and basic connectivity,
with the signal indicator disappearing entirely1.

Notably, three of these vulnerabilities—V5, V6, and
V7—arise before the authentication (i.e. REGI-Init). As UEs
accept such messages without authentication, an adversary
operating an FBS or performing signal injection [18] can
reliably deliver the malformed payloads, leading to a DoS.

What makes these DoS attacks particularly concerning
is their ease of automation. An attacker can use LTES-
niffer [59] to monitor nearby UEs attempting network
connections, and then trigger crashes by using the pre-
authentication payloads. This enables a self-sustaining attack
cycle: the victim’s BP crashes, attempts to reconnect, and is
immediately attacked again, causing the device to crash on
every reconnection attempt. Once deployed, such an attack
can indefinitely deny service to all vulnerable devices in
range, making it highly efficient and difficult to mitigate.
Remote code execution. Although our discovered bugs
manifest primarily as service disruption, their underlying
memory corruption may enable broader exploitation. Our
discovered memory crashes also pose a risk of RCE, es-
pecially out-of-bounds write vulnerabilities (i.e. V1) that
allow corruption of memory regions critical to code execu-
tion control. An external security researcher independently
rediscovered V1 and kindly shared with us that they had
successfully developed a zero-click RCE exploit on a real
device [41], confirming its practical exploitability. In the
hands of a state-sponsored attacker (§4.1), such vulnera-
bilities can be weaponized for targeted attacks. Attackers
can identify vulnerable devices by obtaining the UE model
and software version via a NAS Identity Request asking for
IMEISV [60] or through fingerprinting techniques [61],
[62]. The attacker develops exploits tailored to devices with
vulnerable BP by utilizing publicly available tools [8], [63],
[50] or reverse engineering [64], [65], [27]. While building
such exploits typically requires substantial expertise and
resources [23], [24], [25], [26], [22], OTABase facilitates
exploit development by identifying crash candidates with
exploitation potential for prioritized investigation.

1. The demo video is available at https://youtu.be/VgVlGe91doM

https://youtu.be/VgVlGe91doM


TABLE 4: Our test case coverage of problematic fields and
comparison with prior LTE studies reporting memory bugs

Criteria FW [8] BSP [6] BSF [9] [43] BB [41] LR [42]
Total LTE NAS and RRC bugs found 4 2 1 3 6 1
Covered by our test cases 3 2 1 0 5 1
Our bugs not found by each work 7 7 6 7 5 7

FW: FirmWire, BSP: BaseSpec, BSF: BaseSAFE, BB: BaseBridge, LR: LORIS

6.5. Coverage of existing LTE works

We examined whether our test cases cover the memory
bugs identified in previous works. Specifically, we analyzed
publicly available details of NAS and RRC vulnerabilities
documented in prior LTE research and assessed whether the
problematic fields identified in these studies align with our
security-sensitive fields (§6.1).

Tab. 4 summarizes the number of NAS and RRC bugs
discovered in each study and how many of them are covered
by our test cases. While OTABase contains test cases targeting
many of these problematic fields, it does not cover vulnera-
bilities involving protocol messages outside our target scope,
such as an RRC MCCH message reported by Firmwire [8],
and several bugs identified by Klischies et al. [43] related
to RRC BCCH broadcast messages and GSM SMS. As
shown in the third row of Tab. 4, OTABase’s test cases found
several memory bugs that were missed by prior LTE works,
highlighting its complementary coverage.

6.6. Speed comparison with prior works

We compare the testing speed of OTABase with existing
baseband testing tools in terms of test case execution speed,
as summarized in Tab. 5. While prior tools like LTEFuzz [8]
and Berserker [29] did not report concrete speed metrics,
DoLTEst [4] achieved a throughput of one message per
two seconds, and Berserker required 20 to 125 seconds
per message. For open-source tools where no speed was
reported (i.e. 5Ghoul [37]), we reproduced their test execu-
tions and measured an approximate speed of three test cases
per second. In contrast, OTABase reached a speed of around
41 messages per second under ideal conditions, enabled
by our batch testing and protocol-aware state management.
These measurements are based on stable testing runs without
connection drops, to enable fair comparison across tools.
While actual testing speeds are reduced by connection dis-
ruptions and crash recovery, OTABase achieves an order-of-
magnitude speedup over prior tools, providing the improved
throughput necessary for uncovering memory crashes in
black-box OTA environments and enabling practical large-
scale test execution.

6.7. PoC 5G measurement

OTABase was originally developed for LTE, but its design
elements—state control to enhance the speed of over-the-air
testing, specification-guided test case generation, and bug
oracle—are extensible to 5G basebands due to structural and
protocol-level similarities between LTE and 5G. To demon-
strate this, we implemented a proof-of-concept version of
OTABase for 5G by modifying the srsRAN 5G stack [66],

TABLE 5: Comparison of tools and testing speed
Tool Open-sourced? Speed Reported? Our Evaluation
LTEFuzz [3] ✗ ✗ N/A
DoLTEst [4] ✓ 1 msg per 2 seconds –
Berserker [29] ✗ 1 msg per 20–125 seconds –
5Ghoul [37] ✓ ✗ ∼3 test cases every 1 second
OTABase ✓ (will be) ∼41 msgs per 1 second –

✓: open-sourced tool; ✗: not open-sourced; OTABase will be open-sourced. Speeds are either
reported in the paper or estimated.
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Figure 8: OTA testing speed per state in 5G

which required considerable porting effort. We integrated
OTABase’s core functionalities including automated state
control mechanism (§4.2) and crash oracle (§4.3). Also, we
reused the specification-guided NAS/RRC test case genera-
tion logic with minor adjustments for 5G message formats
by extending Pycrate [53].

Using this prototype, we evaluated over-the-air through-
put and bug-finding capability on a 5G baseband.
Throughput measurement. We evaluated this prototype
on two COTS 5G UEs—Xiaomi Redmi Note 9T (Medi-
aTek Dimensity 800U) and iPhone 16e (Apple C1)— that
successfully connected to an open-source gNB. Following
the same methodology used in our LTE measurement (§6.2),
we measured the speed of our 5G prototype. Fig. 8 shows
that the prototype maintains high execution speed under
stable conditions, with an average of around 1,400 and 700
RRC/NAS messages sent every 30 seconds on the Note 9T
and iPhone 16e, respectively. While the current PoC covers
only the REGI-Init and REGI states-—due to the removal
of TAU procedure in 5G and the exclusion of SR procedure
from our evaluation—-it demonstrates the feasibility and
scalability of our design in 5G settings.
5G NAS and RRC testing. We conducted an end-to-end
experiment with this prototype on a Google Pixel 9 (5G)
to evaluate its effectivess in discovering memory bugs. As
summarized in Tab. 6, we executed over 20,000 NAS and
RRC test cases in both the REGI-Init and REGI states.

As a result, we uncovered three previously unknown
bugs: two in NAS and one in RRC.

• 5G-V8 (NAS): In Downlink NAS Transport, the mandatory
variable-length payloadContainer, which can be configured
as a multiple-container with nested payloadContainerEntry
elements, triggered a crash when an internal length field
exceeded the actual payload size. This confirmed by the
vendor as a duplicate of a previously reported issue.

• 5G-V9 (NAS): In the Registration Accept message, the
length of the optional field SOR transparent container must
be at least 20 bytes. Supplying a shorter value caused a
crash; the vendor assessed this bug as medium severity.

• 5G-V10 (RRC): In RRCReconfiguration, the optional
secondaryCellGroup field (OCTET STRING) triggered a crash
when set to zero length. Because this message is processed
in REGI-Init, an FBS could reliably trigger repeated crashes
in a 5G BP (§6.4). This case is under vendor review.



TABLE 6: Summary of 5G test results
Protocol State # of test case Test time Findings

NAS REGI-Init 22633 28min 26sec -
REGI 22633 35min 50sec 5G-V8, 5G-V9

RRC REGI-Init 21204 64min 31sec 5G-V10
REGI 21204 24min 35sec 5G-V10

# of test case: Number of executed test cases in each state. Findings: Bugs
newly identified during the tests.

TABLE 7: Impact of state control on UE state behavior

State Occurrences Improvement Residence time (%) ImprovementWithout With Without With

REGI-Init 15 324 21.6× 6.25 94.40 +88.2%p
REGI 5 294 58.8× 2.53 91.33 +88.8%p
TAU-Init 2 358 179× 0.83 98.65 +97.8%p
SR-Init 18 618 34.3× 2.50 78.99 +76.5%p

Occurrences: Number of times the UE entered the state in 60 minutes.
Residence time: Percentage of the session spent in the state.

6.8. Ablation study

To isolate the contributions of the main components of
OTABase, we conducted two ablation studies.
State control mechanism. We quantify the effect of the
state-control mechanism by comparing OTABase with and
without it in a 60-minute connection. Without explicit state
control, OTABase cannot directly drive the UE into target
states and must instead wait for autonomous reconnections.
This leads to long idle periods, reducing controllability and
efficiency. In contrast, with state control enabled, OTABase
deterministically re-enters the UE into target states on de-
mand, eliminating unnecessary delays.

We conducted 60-minute measurements for each state on
srsRAN, both with and with state control, while monitoring
the UE’s current state using XCAL logs and NAS/RRC
messages. We measured the number of occurrences (how
many times the UE entered a given state) and the residence
time (the percentage of the session the UE remained in
that state) for each target state. As shown in Tab. 7, state
control substantially increased both the frequency of valid
state entries and the time the UE remained in each state.
Specification-guided test case generation. We evaluate
the impact of specification-guided test case generation by
comparing OTABase with a baseline that mutates packets
without specification guidance, which is based on traffic
collected from live networks, following the methodology
of prior work [37]. While OTABase systematically generates
valid NAS/RRC packets to exercise both mandatory and
optional security-sensitive fields for mutation, traffic logs
from open-source (srsRAN) and commercial networks con-
tain only a limited subset of fields.

To quantify this gap, we collected NAS/RRC traffic for
2.5-3.5 hours per network from two commercial and one
open-source networks with XCAL [67], while inducing di-
verse events such as toggling internet connectivity. We then
measured the number of security-sensitive fields included
in the collected traces and compared it with those covered
by our approach. As summarized in Tab. 8, specification
guidance increased the coverage of security-sensitive fields,
thereby enabling the broader testing of memory crashes.

TABLE 8: Comparison of security sensitive fields with and
without specification guidance

Method Entity NAS RRC Time
BIT INT OCT SEQ

Without
spec-guided

(Traffic logs)

MNO A 15 10 31 3 13 2h 36m
MNO B 19 8 25 4 12 2h 56m
srsRAN 10 1 2 2 5 3h 33m

Spec-guided OTABase 52 12 346 37 329 N/A

NAS, RRC fields: Number of security-sensitive fields discovered in each
category. BIT–BITSTRING, INT–INTEGER, OCT–OCTET STRING, SEQ–
SEQUENCE OF. Time: Duration of traffic collection.

7. Discussions and limitations

Bug validation via Samsung debug mode & ADB logs.
Our validation relies on Samsung’s debug mode and device-
specific ADB crash logs. OTABase can test various BP
implementations, including Qualcomm, as long as they are
integrated into Samsung devices. For non-Samsung devices,
validation is feasible only when ADB crash log patterns
are known; otherwise, vendor feedback is required. This
reliance highlights that OTABase cannot validate crashes
outside Samsung devices without such information, and the
approach would not work if Samsung discontinues debug
mode support. Nevertheless, some manufacturer dependency
is inevitable in black-box OTA testing due to limited de-
bugging capabilities and the absence of standardized crash
behavior. While recent studies have adopted ADB logs
as crash oracles [37], [36], these approaches also require
prior knowledge of crash log or Samsung’s debug mode.
In this context, our results contribute to improving ADB
log–based detection methods, particularly given the limited
public knowledge on reproducing crash behaviors.
Exploitability is unknown. OTABase cannot determine the
exploitability of detected memory crashes due to its black-
box nature. While OTABase can detect crashes, understanding
their root cause, impact beyond DoS, or whether they are
exploitable requires source code access or detailed binary
analysis. We were only able to assess the impact of our
findings through vendor feedback during responsible dis-
closure, and exploitability of one bug was later confirmed
independently by an external researcher. Future work could
incorporate firmware reverse engineering [27] or debugging
frameworks [8], [41] to better assess the vulnerabilities’
severity and exploitability.
Explicit and implicit states. In this work, we focus on pro-
tocol states explicitly defined in the specification. As the UE
is always in one of the EMM states when connected to the
network, all discovered memory crashes in our evaluation
were triggered in these states. This scope aligns with prior
findings that basebands commonly implement functions for
specification-defined procedures [68]. However, specifica-
tions contain numerous implicit states that arise from unde-
fined or underspecified behaviors. Such implicit states may
enable complex vulnerabilities that are not observable in
single well-defined transitions, including memory bugs that
manifest only after unusual state interactions or ambiguous
signaling paths [43]. OTABase, by design, cannot capture
these implicit-state bugs, leaving them as an open challenge.
Non-crash and multi-step vulnerabilities. All vulnerabil-
ities identified by OTABase are memory crashes induced by



single-message inputs, yet other classes of memory bugs
remain outside this coverage. Because OTABase relies on
observable crashes [32], it may miss other types of memory
bugs, such as silent use-after-free, whose effects do not
manifest immediately. In addition, bugs that require specific
sequences of malformed messages to manifest cannot be
detected by OTABase’s current workflow. Exploring such
non-crash and multi-step vulnerabilities is left for future
work, and we believe that OTABase’s state-control and
oracle design can be extended to support these scenarios.
5G and other protocols. Beyond NAS and RRC, mem-
ory bugs in other cellular protocols may also be tested
over the air. In LTE, four other protocols are delivered by
the NAS EMM message: SMS, EPS session management
(ESM), location service (LCS) [69] or positioning protocol
(LPP). Since these protocols are defined in tabular or ASN.1
formats, our test case generation methodology may be appli-
cable. Similarly, lower-layer protocols, other RRC messages
(e.g. BCCH), other generations (e.g. GSM), or application-
layer protocols (e.g. SIP) present further opportunities for
discovering memory bugs. However, each extension would
require protocol-specific support, such as managing stateful
behaviors and designing dedicated oracles. For example,
testing 5G BPs requires adapting to 5G-specific changes like
the removal of the TAU procedure.

8. Related work

Identifying design bugs. Previous studies have reported
various design bugs that can lead to denial-of-service [2],
signal injection [18], identity exposure [16], [17], bidding
down attacks [61], [70] and user data manipulation [19],
[20]. To uncover these issues, researchers utilized multiple
approaches. Formal verification are widely adopted, with
a number of researches building formal models from the
standards [71], [14], [15], [72], [43]. Additionally, natural
language processing techniques are employed to analyze
the specifications and automatically find potential vulner-
abilities [10] or build formal models [11]. In contrast to
those researches, OTABase’s primary objective is to identify
memory bugs in cellular basebands.
Finding logical bugs. Researchers proposed several ap-
proaches to identify logical vulnerabilities that stem from
incorrect implementations of cellular protocols. One promi-
nent direction is dynamic testing approach with non-
standard-conformant messages [1], [3], [4], [38]. To re-
duce human efforts, some works automatically generated
messages by leveraging natural language processing [10],
[73], [74] or model-based techniques [5]. Alternative ap-
proaches include static analysis to uncover integrity protec-
tion bugs [7], automata learning for protocol state verifica-
tion [75], [13] and noncompliance detection [12], as well
as a combination of static and dynamic approaches [39].
Unlike those works, OTABase focuses on finding memory
bugs instead of logical bugs.
Memory bugs. For static approaches, reverse engineering
has proven effective in identifying memory bugs in baseband
implementations, from early research on 2G/3G protocols,

including SMS [76], cell broadcast [24], and other layer
3 messages [65], [21], [77], to extensive works on LTE
implementations [27], [28], [25], [26], [22]. Recent auto-
mated techniques compare implementations against speci-
fications to detect deviations [6] or undefined behaviors in
standards [43]. Others applied coverage-guided fuzzing to
RAN–Core interfaces [78] and NAS handlers in the core
network [79], uncovering memory bugs in open-sources.

Dynamic analysis has also been explored through emula-
tion and over-the-air fuzzing. Maier et al. [9] and Grassi and
Chen [58] emulated MediaTek’s RRC/NAS layers, while
Hernandez et al. [8] emulated full Exynos and MediaTek
firmware using AFL++ [80], discovering multiple memory
bugs. Silvanovich et al. [81] extended this to SDP and SIP,
revealing additional multiple memory bugs. However, these
approaches can only be applied to devices with emulatable
firmware, which limits their applicability to a specific range
of devices. Recently, Lisowski et al. [50] introduced a SIM-
side research tool, which could be integrated to emulation-
based approaches that can improve state exploration.

Over-the-air fuzzing has also shown promise, particu-
larly in detecting memory bugs at Layer 2 and 3 [82], [37],
[44]. Potnuru et al. [29] applied specification-guided fuzzing
to open-source LTE stacks, discovering bugs in the EPC.
Beyond cellular, researchers have explored OTA fuzzing in
Wi-Fi [83] and Bluetooth [84]. Similar to prior OTA efforts,
OTABase uses over-the-air fuzzing—-but uniquely enables
systematic memory bug detection in commercial LTE BPs.

9. Conclusion

While memory vulnerabilities in BPs pose critical secu-
rity risks, their black-box nature has constrained research fo-
cused on detecting them. We present OTABase, a framework
that uses the OTA interface to efficiently detect memory
crashes in LTE BPs, combining network-side state control,
specification-guided test generation, and two-phase crash
detection. Testing six commercial BPs, OTABase revealed
seven previously unpatched vulnerabilities–including three
CVEs with one enabling RCE–demonstrating its effec-
tiveness and showing that systematic memory testing is
achievable through specifications without access to propri-
etary firmware. As BPs evolve, future work should expand
OTABase beyond downlink LTE NAS and RRC to cover
uplink traffic, 5G protocols, and non-terrestrial networks,
which all introduce new challenges in protocol and state
handling. Such expansion will be crucial for comprehensive
testing of wireless infrastructure, especially in emerging
domains like industrial control and robotics.
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Appendix A.
EMM States in LTE

This appendix provides detailed descriptions of the five
main EMM (EPS Mobility Management) states defined in
the LTE specification (3GPP TS 24.301 clause 5.1.3). Each
state corresponds to a specific point in the UE’s connectivity
lifecycle and has distinct security characteristics.
EMM-Deregistered (DEREGI): UE is not connected to the
network in this state. The UE remains in DEREGI when it
is switched off or has not yet found a cell to connect. Also,
UE transitions to this state from others when an unexpected
failure occurs during protocol operations, or when it receives
certain Reject message during the signaling procedure.
EMM-Registered-Initiated (REGI-Init): UE enters this
state by initiating the Attach procedure with an Attach

Request. During this state, unprotected messages are ex-
changed to complete the Attach procedure, including au-
thentication and key establishment. UE transitions to REGI
if successful, or to DEREGI if it fails.
EMM-Registered (REGI): UEs in this state completed the
Attach procedure and registered to the network. All NAS
and RRC messages are encrypted and integrity protected
except for a few error-handling messages. UE transitions to
DEREGI when it detaches from the network.
EMM-Tracking-Area-Update-Initiated (TAU-Init): UE
moves to this state when it decides to initiate the TAU
procedure by sending TAU Request. In this state, only NAS
messages are protected since security keys for RRC need
to be re-established. UE returns to REGI if the procedure
succeeds, or moves to either REGI or DEREGI if it fails.
EMM-Service-Request-Initiated (SR-Init): Similar to
TAU-Init, UE moves to this state when it decides to ini-
tiate Service Request procedure and only NAS messages are
protected during this state. UE always returns to REGI state
whether the procedure succeeds or fails.

Appendix B.
Analysis on back-off behavior
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Period Down time

Exynos ~1160s ~830s

Qualcomm 835s 760s

MediaTek 8065s 7990s

HiSilicon ~835s ~760sFigure 9: Different connection patterns in REGI-Init

TABLE 9: Back-Off measurements of different BPs
Chipset Period (s) Downtime (s) Ratio (%)

Exynos (Galaxy S21) ∼1160 ∼830 ∼87.07
Qualcomm (Galaxy Z Flip 4) 835 760 91.02

MediaTek (Galaxy A32) 8065 7990 99.07
HiSilicon (Huawei P20) ∼835 ∼760 91.02

We conducted experiments to analyze how back-off be-
havior impacts over-the-air testing across different baseband

implementations during the signaling procedures (§2.3). In
particular, we measured back-off behavior of different base-
band implementations in REGI-Init, the most common target
in cellular security research, to understand their available
testing windows. Our experiments included devices with
Samsung Exynos, Qualcomm, MediaTek, and HiSilicon
basebands. When UE connects, we move it to REGI-Init
and send NAS Identity Request messages at 0.02 second in-
tervals. Note that UEs must respond with Identity Response
messages in this state. Thus, the UE continues to respond
as long as it remains connected, and stops responding when
it switches to idle state. Through this method, we measured
the duration of connected and idle periods for COTS UEs.

During our experiment, all devices initially remain con-
nected in REGI-Init for approximately 15 seconds (as de-
fined by T3410 in [34]) before entering the idle state. The
devices then stay idle for 10 seconds before reconnecting
to the network. However, after this first reconnection cy-
cle, BPs exhibit different behavior patterns. Qualcomm and
HiSilicon BPs repeat this reconnection cycle with 10-second
idles three more times. At the fifth cycle, instead of 10
seconds, the UE backs off for 720 seconds. After exiting
the back-off, they start again from their first reconnection
cycle, as shown in Fig. 9. In contrast, the MediaTek BPs
backs off for about 760 seconds during their second recon-
nection cycle. Moreover, at the fifth cycle, their back-off
time increases to 7200 seconds. Thereafter, they also restart
from their first reconnection cycle.

Tab. 9 summarizes our measurements across the different
BP manufacturers. The period column represents the total
time from the first reconnection cycle to the end of back-
off status, while the downtime column shows the total time
spent in idle. The last column presents the ratio of downtime
to the total period.

Appendix C.
Analyzing a 1-day bug

We analyzed a previously published one-day pay-
load [45] to understand how malformed fields trigger
crashes. Using an unpatched Galaxy S10 (Exynos BP) with
vulnerable firmware, we reproduced the crash by transmit-
ting the payload in the REGI-Init state and confirmed it
with Samsung’s debug mode. We then decoded the payload
using standard RRC decoders [54], [85]. Note that repro-
ducing such one-day bugs is generally difficult in practice:
public disclosures (e.g., vendor patch reports and CVEs)
rarely include full payloads, and while research papers and
conference talks provide useful analysis [28], [27], [81],
[25], [26], they seldom publish complete payloads. More-
over, anti-rollback protection typically prevents downgrad-
ing devices to vulnerable firmware versions, further limiting
reproducibility.

Fortunately, we were able to obtain an unpatched Galaxy
S10 running vulnerable firmware, which allowed us to re-
produce one bug reported in FirmWire [45]. We modified
srsRAN [31] to transmit the following payload over-the-air
when the test device connects in REGI-Init state:



Figure 10: Manufacturer’s troubleshooting features
RRC RRCConnectionReconfiguration v890 IEs PREFETCH ABORT
2205800068079696969696969696969696969696169696969696967ff
7ff002000b4686835dbfff10064212f8b696e

We confirmed that our reproduction caused the crash
by using Samsung’s manufacturer debug mode. This further
allow us to perform ablation studies; we found that the
first seven bytes (up to 0x96) were sufficient to trigger
the crash. ASN.1 decoding (see Listing 1) further revealed
that the problematic element was lateNonCriticalExtension
within RRCConnectionReconfiguration-v8m0-IEs, where the
OCTET STRING length value (0x96) exceeded the actual data
size. This invalid length encoding caused the crash.

Listing 1: ASN.1 decoding result of FirmWire 1-day payload
<encoding> 22058000 680796 </encoding>
<DL−DCCH−Message> <message> <c1>

<rrcConnectionReconfiguration>
[...]
<nonCriticalExtension>
< lateNonCriticalExtension>
<RRCConnectionReconfiguration−v8m0−IEs>
<!−− Problematic field that triggered decoding error −−>
< lateNonCriticalExtension />

</RRCConnectionReconfiguration−v8m0−IEs>
</ lateNonCriticalExtension>

</nonCriticalExtension>
</rrcConnectionReconfiguration>

</c1> </message> </DL−DCCH−Message>

<error>
<description>Unexpected end of stream reached when decoding</

description>
<nature>fr.marben.asnsdk.japi . InconsistentStructureException </nature>
<ErrorOffset>1</ErrorOffset>
<ValuePath>DL−DCCH−Message.message.c1.rrcConnectionReconfiguration.

criticalExtensions.c1.rrcConnectionReconfiguration−r8.
nonCriticalExtension . lateNonCriticalExtension .
RRCConnectionReconfiguration−v8m0−IEs.lateNonCriticalExtension</
ValuePath>

</error>

Appendix D.
Samsung’s troubleshooting feature

Samsung devices provide a range of troubleshooting
features accessible through their SysDump menu. As shown
in Fig. 10, these features include options for setting the
debug level. By default, the debug level is set to low, during
which a memory crash causes the modem to silently crash
and reboot. However, when set to mid or high, the device
enters a kernel panic state, as illustrated on the left side.

Appendix E.
Full payload used to discover our bugs

We provide a full payload of our test cases that were
used to discover our bugs, with a brief explanation on

them. In the payload, blue highlights the problematic IE,
while red indicates their abnormal length values. Messages
requiring authentication start with 0x27, followed by a 5-byte
field consisting of the valid message authentication code
and sequence number. Messages that can be transmitted in
plaintext start with 0x07.

V1: ”Short name for network” IE in EMM Information

27 MA CF IE LD SN 07 61 45 ff 82 d8 04 8d b0 be 75 c7 07 7a 8c 3a 84 e5
4e 65 e0 b0 38 e8 6a 71 8d f5 35 09 8e 9d 5d b5 98 a7 3b 32 ac 3d ef 72
7f 79 3c 25 64 1e d5 af 1a 03 e1 17 ce ac dd c7 12 62 ff 93 7d 7e 9c 16
71 ef 8b cc 81 ec f5 2b fd d7 7a cd 0c 2d 90 29 23 3d 0c 08 5a 87 ba 5e
c5 1b 01 fc 96 03 98 7b 69 a7 54 c5 7e 12 02 85 f0 2c 74 34 93 c5 93 f3
b9 fd 6c 73 44 7d 50 42 f5 b6 55 3a fc 78 d2 00 10 05 e7 c4 78 a7 2d c7
2c e1 3d 06 62 bf e8 0c ab 15 f7 7d 13 6a a0 03 b4 c0 56 a5 c2 42 d5 d9
36 6b e4 34 51 e6 3f c1 3b 83 92 7e 31 bc 62 3f ca ec 94 b6 09 99 76 51
ac 03 99 37 68 15 e0 ab 61 3c ff 27 56 1a cf c6 80 4f 1b 04 f8 23 02 d2
85 e0 95 b0 a6 e6 0d c1 d4 8a c0 a1 ed 87 cc b2 64 7d d2 a6 f9 65 16 ca
0a e0 e3 ae 5f ad 0e 9b d2 cc b8 fb b1 c6 00 82 59 0b 16 5e 03 55 9c ab
0d 49 89 01

EMM Information message containing the short name for
network IE (0x45) with a length greater than or equal to 0xe7
crashes the MediaTek BPs. The the IE is indicated by two
bytes (blue) 0x45, and the length of the IE is specified by the
following byte 0xff (red). Although the specification does
not restrict the length of this IE, the baseband crashes if the
length is greater than or equal to 0xe7.

V2: ”Additional Information” IE in Downlink generic NAS trans-
port

27 MA CF IE LD SN 07 68 02 00 02 a9 d0 65 00 d0

Downlink generic NAS transport message containing the
optional IE, additional information (0x65) with a length
value of 0x00 crashes the MediaTek basebands. The payload
of the additional information IE consists of ‘6500d0’. Two
bytes (blue), 0x65, indicate the IEI, and the following byte
0x00 (red) specifies the length of the field, followed by
‘d0’ as the contents. According to MediaTek, V2 triggers
a memory allocation with size 0; they classified this as
low severity since it only results in temporary DoS after
authentication (i.e. REGI).

V3: ”NAS message container” IE in Downlink NAS transport

27 MA CF IE LD SN 07 62 00 09 10 51

Downlink NAS transport message containing the NAS

message container IE with a length value of 0x00 crashes the
MediaTek baseband. The IE is mandatory and thus contains
only the length and value fields without IEI. The payload
after ‘0x62’ indicates the Downlink NAS transport IE, where
the first two bytes (0x00) specify the length, followed by the
contents. According to MediaTek, V3 results in an invalid
zero-length memory allocation, leading to a crash. This issue
was classified as low severity.

V4: ”Emergency number list” IE in Attach Accept

1) 27 MA CF IE LD SN 07 42 01 10 12 2c 78 09 74 f1 ca 00 91 96 05 c7 95
2e 27 02 97 01 14 00 03 00 00 00 34 0c ff 15 03 12 d7 95 02 1f 8a 02 00
e8 64 02 eb 00
2) 27 MA CF IE LD SN 07 42 02 56 17 28 11 31 93 f7 0f 41 29 19 84 74 8d
01 71 86 4a 65 26 74 66 71 ad ea 00 03 00 00 00 34 ff 04 0d 74 b7 7d 04
0c 8c 78 a7 04 0c bc e3 09 04 10 93 51 88 f0



NAS Attach Accept message containing the Emergency

number list IE (0x34) with an abnormally large length value
crashes the Exynos baseband. According to the specifica-
tion [57], the length of this IE should be between 5 and 50
bytes. We identified two payload patterns that trigger this
crash: [Payload 1] consists of ‘340cff’, where the Emer-
gency number list IE (0x34, blue) has a length of 0x0c,
followed by an invalid first Emergency information length
of 0xff (red). [Payload 2] contains five Emergency Number
information elements, where the first four elements have
valid 4-byte lengths, but the fifth element has an abnormal
length value, 0xf0 (red).

V5: Detach Accept

07 46 01 0c 38 28 46 61 03 4b e8 05 63 16 34 89 2b 37 1d a6 a7 9f 43 0b
b4 67 3c 07 03 67 21 c6 f1 25 bc 32 6d d4 31 08 9a 32 df d8 ab ca c8 2d
77 64 13 51 29 01 98 83 65 6a 26 c7 d2 00 03 00 00 00 5e 01 de

NAS Detach Accept message containing additional data
crashes the Exynos baseband. Per 3GPP specifications, this
messages must be fixed-length with no additional IEs, hav-
ing payloads of 0x0746. Thus any payload after the message
type (first 2 bytes) violates the specification, and triggers
a crash. Through ablation study, we confirmed that even
a minimal payload of ‘074601’ is sufficient to trigger the
crash. Samsung marked V5 as a duplicate of a known issue,
and a CVE was later assigned by the Android security team.
This issue affects 16 chipsets.

V6: Authentication Reject

07 54 01 0c 38 28 46 61 03 4b e8 05 63 16 34 89 2b 37 1d a6 a7 9f 43 0b
b4 67 3c 07 03 67 21 c6 f1 25 bc 32 6d d4 31 08 9a 32 df d8 ab ca c8 2d
77 64 13 51 29 01 98 83 65 6a 26 c7 d2 00 03 00 00 00 4a 09 72 05 54 93
42 19 75 18 68

NAS Authentication Rejectmessage containing additional
data crashes the baseband, similar to V5.

V7: ”dedicatedInfoNAS” field in DLInformationTransfer

0a 00 00

RRC DLInformationTransfer message containing the
dedicatedInfoNAS field with a length value of 0 crashes the
MediaTek basebands. The dedicatedInfoNAS field carries a
primitive type OCTET STRING with variable length. Thus, it
consists a length field followed by contents.

Appendix F.
Other findings

While developing OTABase, we discovered two misim-
plementations unrelated to memory in Exynos BPs.

First, we found an NAS security context handling issue.
When a UE receives a Detach Request with the detach type
re-attach required, it improperly deletes its NAS security
context while still marking the following Attach Request as
integrity protected (security header type 1) with an empty
MAC (0x00000000). This behavior violates clause 7.2.5 of
[47], which requires maintaining authentication data during
re-attach. We demonstrated that this vulnerability enables
unauthorized access to sensitive information. Specifically,

after the UE entered this state, we sent NAS messages with
invalid MACs: an Identity Request for IMEI and an EMM
Information. Though the specification mandates discarding
such messages, the UE accepted them, leaking a sensitive
device identifier (IMEI) and allowing unauthorized modifi-
cation of the device’s time. Samsung classified this issue as
low severity, and subsequently released a patch.

Second, we observed improper protocol state handling of
Service Reject messages. According to [34], these messages
should only be processed during the Service Request proce-
dure (i.e. SR-Init), and ignored in other states like REGI-Init
or REGI. However, Exynos BPs always disconnect upon
receiving Service Reject regardless of state, then initiate
a new Service Request. This behavior is unspecified and
abnormal. Samsung reviewed this issue but did not classify
it as a vulnerability requiring remediation.

Appendix G.
Test case breakdown

TABLE 10: Number of test messages per NAS message type

Message
name

Attach
Accept

Detach
Request

Detach
Accept

TAU
Accept

TAU
Reject

Service
Reject

Service
Accept

GUTI
Reallocation
Command

Authentication
Request

Number 12686 399 149 12657 940 1476 1258 2914 748

Message
name

Authentication
Reject

Identity
Request

Security
Mode

Command

EMM
Status

EMM
Information

Downlink
NAS

Transport

CS
Service

Notification

Downlink
Generic

NAS
Transport

Number 149 250 2437 200 2275 600 1597 1207

TABLE 11: Number of test messages per RRC message type

Message
name

csfbParameters
Response

CDMA2000

dlInformation
Transfer

handover
FromEUTRA
Preparation

Request

mobility
From

EUTRA
Command

rrcConnection
Reconfiguration

security
Mode

Command

Number 138 750 138 726 108183 69

Message
name

ueCapability
Enquiry

counter
Check

ueInformation
Request-r9

logged
Measurement

Configuration-r10

rnReconfigu
ration-r10

rrcConnection
Resume-r13

Number 360 99 81 396 1797 40668

Message
name

dlDedicated
Message

Segment-r16
Number 150

Tab. 10 and Tab. 11 present the number of test messages
for each message type in NAS and RRC used by OTABase for
testing. The large number of test messages for specific types,
such as RRC Connection Reconfiguration and RRC Connection
Resume, is primarily due to the extensive number of optional
fields these messages can include.

RRC messages inherently possess a unique characteris-
tic where optional fields can themselves include additional
optional fields, creating a recursive structure. This recursive
nature, combined with the large variety of optional fields
present in these message types, allows packets to include
a substantial number of security-sensitive fields, with the
same field potentially appearing in multiple locations within
a single packet. To ensure thorough testing of security-
sensitive fields, all possible variations of such packets were
generated and mutated, resulting in the high number of test
messages observed.
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