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Abstract
Most memory corruptions occur on the heap. To harden

userspace applications and prevent heap-based exploitation,
Google has developed Scudo. Since Android 11, Scudo has
replaced jemalloc as the default heap implementation for all
native code on Android. Scudo mitigates exploitation attempts
of common heap vulnerabilities.

We present an in-depth study of the security of Scudo on
Android by analyzing Scudo’s internals and systematizing
Scudo’s security measures. Based on these insights we con-
struct two new exploitation techniques that ultimately trick
Scudo into allocating a chunk at an attacker’s chosen address.
These techniques demonstrate — given adequate memory cor-
ruption primitives — that an attacker can leverage Scudo to
gain arbitrary memory write. To showcase the practicality of
our findings, we backport an n-day vulnerability to Android
14 and use it to exploit the Android system server.

Our exploitation techniques can be used to target any appli-
cation using the Scudo allocator. While one of our techniques
is fixed in newer Scudo versions, the second technique will
stay applicable as it is based on how Scudo handles larger
chunks.

1 Introduction

Most modern critical memory corruption vulnerabilities
are heap related [36]. On Android, multiple publicly doc-
umented examples demonstrate the feasibility of exploit-
ing a heap-based vulnerability to gain arbitrary code execu-
tion [14, 27, 30]. To protect userspace processes against heap
vulnerabilities, Google has introduced the hardened Scudo
allocator in Android 11 [49].

Since then, Scudo has become the default allocator for
native userspace code in the Android Open Source Project.
Unless explicitly modified by the vendor, all userspace pro-
cesses, including apps and higher-privileged system services
use Scudo.

Scudo is explicitly designed to increase the cost and com-
plexity of heap-based exploits [3]. To protect itself from at-

tacks, Scudo implements security measures to ensure the in-
tegrity of inline heap metadata and to prevent a predictable
heap layout.

Exploitation techniques that target the allocator to esca-
late a heap-bound memory corruption vulnerability into an
arbitrary memory write primitive or code execution have a
long tradition. The security community has compiled a large
compendium of such techniques for allocators like ptmal-
loc [5, 9, 29, 31, 43] (the glibc allocator) or jemalloc [6, 44]
(Android’s previous default allocator). Only by understanding
these techniques can an analyst assess the criticality and ex-
ploitability of a heap-bound memory corruption vulnerability.
However, Scudo has avoided scrutiny. So far, no comprehen-
sive study on techniques targeting Scudo exists.

In this work, we explore the limitations of Scudo’s protec-
tions. In particular, we find that Android’s userspace architec-
ture significantly weakens Scudo’s security. All app processes
and several system services are forked from a single process
(the Zygote process) [21] and end up sharing the same address
space layout and allocator state. The allocator state contains
the secrets used to protect inline heap metadata and randomize
allocation addresses. In a scenario where one Zygote-forked
process attacks another such process, the allocator’s secrets
are shared between the attacker and the target process. This
effectively bypasses any protection relying on the confiden-
tiality of these secrets. Stripped of these security measures
Scudo becomes a promising target for exploitation.

We present two exploitation techniques targeting Scudo.
In the context of attacking Zygote-forked Android processes,
our techniques only require a sufficiently powerful memory
corruption primitive, which allows manipulating inline heap
metadata, to gain arbitrary memory write. Furthermore, these
techniques can be applied to any program utilizing the Scudo
allocator. However, in a more generic attack scenario, an
additional memory leak primitive is required.

To demonstrate that our findings apply to realistic scenarios,
we backport a known vulnerability (CVE-2015-1528 [39])
to Android 14. The vulnerability is a heap under/overflow
in Android’s Binder deserialization. We show that in this



scenario the heap underflow can be leveraged by a malicious
app to achieve code execution in the system server, using our
exploitation techniques.

In summary, we make the following contributions:

• Analysis and systematization of Scudo’s security mea-
sures.

• Discovery of two exploitation techniques that target
Scudo.

• Exploitation case study utilizing our techniques to
achieve arbitrary code execution in the system server
on Android 14.

• Discussion of possible mitigations, memory corrup-
tion primitives required to leverage our techniques, and
Scudo’s impact on Android userspace security.

• Development of a gdb plugin and python library to help
in analyzing and exploiting Scudo.

We disclosed our findings to the Scudo maintainers. One
of our techniques has been fixed in Android 14. While we
proposed a further extension to Scudo, which mitigates our
second exploitation technique, it was not merged due to per-
formance concerns. Consequently, Scudo remains susceptible
to our second technique. We will open-source our tooling for
Scudo along with our exploits.

2 Scudo Security Measures

Scudo is a drop-in replacement for the glibc memory allocator,
exposing the same API (e.g., malloc, free). As a security-
hardened allocator, it implements four security measures: (i)
isolation, (ii) randomization, (iii) protection, and (iv) separa-
tion. In this section, we present these security measures and
discuss how they protect from exploiting heap-based vulnera-
bilities.

To give concrete examples of the security measures impact,
we use the example program in Listing 1, which uses the
Scudo allocator. The program reads the attacker’s input into
the tmp buffer (Line 8) in a loop, allocates a 0x18 sized chunk
(Line 11), copies data from tmp into the chunk (Line 13),
and then frees a specific chunk based on the value of status
(Lines 14 - 16). The attacker controls the values of the status
and size variables. This results in two security vulnerabilities,
a heap-based overflow on Line 13 and a double free on Lines
14 and 15.

Isolation. Based on the requested allocation size, chunks
are either handled as primary or secondary chunks. Primary
chunks are placed into dedicated heap memory regions, while
secondary chunks are allocated separately in their own mem-
ory region. To handle primary chunks, Scudo maps multiple

1 int main(){
2 char tmp[0x100];
3 void∗ class_0_secondary_chunk = malloc(0x20000);
4 void∗ class_1_chunk = malloc(0x8);
5 void∗ class_2_chunk = malloc(0x18);
6 printf("victim:%p\n", class_2_chunk);
7 while(1){
8 read(0, tmp, 0x100);
9 int status = ∗(int∗)tmp;

10 int size = ∗(int∗)(tmp+sizeof(int));
11 char∗ chunk = (char∗)malloc(0x18);
12 printf("address:%p\n", chunk);
13 memcpy(chunk, tmp+sizeof(int)∗2, size);
14 if(status & 0x2){free(chunk);}
15 if(status & 0x4){free(chunk);break;}
16 if(status & 0x8){free(class_2_chunk);}
17 }
18 }

Listing 1: A vulnerable example program with a heap buffer
overflow and a double free (both values of the size and
status variable are under the attacker’s control). The at-
tacker’s input is read from standard input.

memory regions. Each of these regions is assigned a size
range, and chunks sized within the specific range will be allo-
cated from the corresponding region. Zero permission guard
pages are used to separate these regions. In Scudo, these size
ranges are referred to as class IDs. For primary chunks the
class ID depends on the size, see Table 5 in the Appendix
for a mapping between classes and size ranges. For exam-
ple, a chunk of size 0x18 is assigned the class ID 2. The
class ID-specific regions only hold chunks. Allocator-internal
metadata such as lists of freed chunks or the information on
memory regions are stored in a separate region protected by
guard pages, and libc’s writable section.

In Lines 3-5 of Listing 1, chunks of different sizes are allo-
cated, resulting in a heap memory layout shown in Listing 2.
Thus, the heap buffer overflow in Listing 1 can only over-
write memory inside the [Class 2 region] memory region
and cannot directly overwrite chunks of other size classes or
allocator-internal metadata.

Security Measure Isolate:
Chunks are allocated in dedicated isolated memory
regions. Furthermore, allocator-internal metadata is
stored in separate memory regions from chunks.

Randomization. The chunks inside a region are allocated
at random offsets. When a region is first mapped, several
addresses where a chunk may be allocated are placed into a
so-called TransferBatch. The order in which these addresses
are returned from the TransferBatch is randomized. This ran-
domization is achieved by shuffling the addresses in the Trans-
ferBatch using a seed stored in the allocator. This randomiza-



size permission
...
0x00001000 --- [Secondary guard]
0x01001000 rw- [Class 0 secondary chunk]
0x00001000 --- [Secondary guard]
...
0xa0006000 --- [Guard and reserve]
0x00040000 rw- [Primary chunk free lists]
0x2ffbf000 --- [Guard and reserve]
0x00040000 rw- [Class 1 region]
0x2ffc0000 --- [Guard and reserve]
0x00040000 rw- [Class 2 region]
0x0ffcb000 --- [Guard and reserve]
...
0x00044000 r-- libc.so
0x00094000 r-x libc.so
0x00004000 r-- libc.so
0x00002000 rw- libc.so
0x00452000 rw- [Allocator metadata]
...

Listing 2: An example memory map of Scudo relevant regions.
Marked in blue are regions where Scudo stores free lists
and other allocator-internal metadata. Marked in orange are
regions where chunks are stored. In this example, a single
secondary chunk was allocated, and at least one chunk of class
IDs 1 and 2 were allocated. Scudo memory regions containing
chunks are surrounded by 0 permission guard pages.

tion ensures that addresses of consecutively allocated chunks
cannot be predicted, effectively removing the foundation for
any heap feng shui attempts. Figure 1 shows the output when
running the program in Listing 1 twice for five loop iterations
with the same input. As can be seen, the addresses of chunks
allocated after one another are not consecutive and also differ
between program executions.

Security Measure Randomize:
Addresses of consecutive allocations are randomized.

Protection. When allocating a chunk, Scudo places a chunk
header at address returned pointer-0x10. The chunk
header is shown in Table 1. The relevant fields are the
ClassId, State, and Checksum. The ClassId stores the
chunk’s class ID. The State field tracks if the chunk is cur-
rently in use or has been freed. To protect this header, Scudo
stores a truncated CRC32 checksum of the header fields in the
Checksum field. The checksum is computed using the chunk’s
address, the header, and a 32-bit cookie value, which is ran-
domly generated when the program starts. Listing 3 shows
how the checksum is computed. Any time Scudo interacts

> ./example < input
victim: 0x7fd4f720f650
address:0x7fd4f720e510
address:0x7fd4f720f750
address:0x7fd4f720f190
address:0x7fd4f720e4d0
address:0x7fd4f720efd0

> ./example < input
victim: 0x7fd4f7208b50
address:0x7fd4f7208390
address:0x7fd4f7209250
address:0x7fd4f7208990
address:0x7fd4f7209bd0
address:0x7fd4f7209190

Figure 1: The output of running the example program in
Listing 1 two times to show Scudo randomizing allocation
addresses. Note that for this example ASLR was disabled to
show the chunk offsets in the same memory region changing
between runs.

# bits Field

8 ClassId
2 State
2 OriginOrWasZeroed
20 SizeOrUnusedBytes
16 Offset
16 Checksum

Table 1: The fields and corresponding sizes in the
Scudo chunk header. The OriginOrWasZeroed field indi-
cates the origin of the chunk, e.g., malloc or new. The
SizeOrUnusedBytes field indicates the exact chunk size.
Offset is filled with zeros.

with a chunk, it recomputes the checksum and compares it
with the Checksum field to ensure the integrity of the chunk
header. In the example program in Listing 1, if the attacker
blindly overwrites the chunk header of the class_2_chunk
with the heap overflow, Scudo will abort when freeing the
chunk (Line 16) as the checksum will not match the header
contents. By ensuring that the State field has the expected
value, i.e., the chunk currently being freed is not already free,
Scudo prevents double-free attacks. In Lising 1, if an attacker
sends a payload that results in a status of 0x6, this triggers
a double free (Lines 14-15). However, Scudo immediately
aborts on Line 15 as it detects the double free using the State
field.

Security Measure Protect:
The chunk header, stored inline on the heap, is pro-
tected by a checksum.

Separation. Secondary chunks have the same chunk header
as primary chunks, with the ClassId field set to 0. Addition-
ally, secondary chunks have an extended header beginning
at returned pointer - 0x40, see Table 2 for an overview
of the fields. This extended secondary chunk header stores
pointers to a linked list in next and prev of allocated sec-



short checksum(long address, long header, int cookie){
int intermediate = CRC32(cookie, address);
intermediate = CRC32(intermediate, header);
return = (short) (intermediate & (intermediate >> 16)) & 0xffff;

}

Listing 3: Pseudocode of how Scudo computes a chunk’s
checksum. Address points to the chunk, header is the chunk
header without the checksum and cookie is a secret, set when
the allocator is initialized.

# bytes Field Checksum

0x8 Prev ✗
0x8 Next ✗
0x8 CommitBase ✗
0x8 CommitSize ✗
0x8 MapBase ✗
0x8 MapSize ✗
0x8 Scudo Chunk header ✓

Table 2: The fields and corresponding sizes in the secondary
chunk header for 64-bit programs. Only the Scudo chunk
header is protected by a checksum.

ondary chunks. It also stores the mapping’s base address
and size, with and without the guard pages respectively in
MapBase, MapSize, CommitBase, and CommitSize. Impor-
tantly, the secondary chunk header is not protected by a
checksum. Instead, Scudo relies on the fact that only one
chunk is stored in the mapping and that the mapping is sur-
rounded by guard pages to protect the extended header. The
chunk header and secondary chunk header are the only in-
stances of Scudo storing metadata inline on the heap. In
Listing 1, the chunk class_0_secondary_chunk is allo-
cated on Line 3 and its secondary chunk header is stored at
class_0_secondary_chunk-0x40. In Listing 2 this chunk
resides in the [Class 0 secondary chunk] memory re-
gion.

Security Measure Separate:
Pointers stored inline are placed in separate mappings
and protected by guard pages.

3 Threat Model

In our threat model, a malicious attacker-controlled Android
app aims to escalate privileges by attacking another app or
system service on the same device. The device is running an
Android version using Scudo.

The attacker’s goal is to gain code execution in the target
process by corrupting the target’s memory. Due to Android’s

ZYGOTE
fork()fork()

SCUDO

SENSORSERVICE

SCUDO

EXPLOIT
BINDER IPC

setresuid(u0_a123) setresuid(system)

MALICIOUS APP SYSTEM SERVER

Figure 2: The malicious app is attacking the vulnerable Sen-
sorService running in the system server. The app uses Binder
IPC to communicate with the SensorService. Both the app
and system server are forked from Zygote.

separation of userspace processes, the attacker cannot directly
manipulate the target’s memory. Instead, the attacker relies on
the target’s exposed functionality to interact with the target’s
memory. Furthermore, the target contains memory corruption
vulnerabilities triggerable by the attacker. There are many
examples of such memory corruption vulnerabilities in apps
(CVE-2019-11932 and CVE-2021-24041 [14, 42]), or sys-
tem services (CVE-2015-1528, Stagefright, CVE-2020-0026,
CVE-2019-2136, and CVE-2022-39907 [10, 25, 39–41]). See
Figure 2 for a concrete example of our threat model.

The attacker plans to use these vulnerabilities to bypass
Scudo’s four security measures and leverage Scudo to achieve
an arbitrary memory write for subsequent code execution. In
the following sections, we discuss how in the context of our
threat model each of Scudo’s security measures is broken.

4 Compromising Protect and Randomize

Both security measures Randomize and Protect rely on the
confidentiality of Scudo metadata and ASLR (Address Space
Layout Randomization). Concretely, if an attacker can leak
the contents of the TransferBatch or the seed used to shuf-
fle the TransferBatch, the security measure Randomize is
compromised. With the leaked information, the attacker can
pinpoint exactly where Scudo will allocate future chunks. To
compromise the security measure Protect, the attacker needs
to first compromise the security measure Randomize or leak
the address of the target chunk in another way. Additionally,
the attacker also needs to obtain the cookie to calculate the
checksum correctly.

In our threat model both security measures Randomize
and Protect are immediately compromised. On Android, all
apps as well as several system services are forked from the
same Zygote process. This reduces the startup time and re-
duces memory consumption by sharing RAM pages used for
framework code and resources [21] but comes at a devastat-
ing cost to security [32]. As a consequence, most Android
userspace processes share the same ASLR layout, including
Scudo regions. Furthermore, the Zygote process allocates sev-



eral chunks initializing the Scudo allocator i.e., setting the
cookie and TransferBatch randomization seed. After forking
all of this allocator state is preserved. A malicious app can pre-
dict exactly where chunks of other Zygote-forked processes
will be allocated by using its allocator as an oracle, which
breaks security measure Randomize. To break security mea-
sure Protect, the malicious app can simply read out its Scudo
cookie and forge valid checksums for any chunk header.

Security measures Randomize and Protect are com-
promised in an attack scenario in which a malicious
Android app is attacking another Zygote-forked pro-
cess.

Going forward, we assume that the attacker has compro-
mised the security measures Randomize and Protect.

5 Arbitrary Write

The holy grail of heap exploitation is to coerce the alloca-
tor into allocating a chunk at an attacker’s chosen address.
This can lead to code execution for example by allocating
a chunk on the stack and writing a ROP (Return Oriented
Programming) chain to the chunk. Since the security mea-
sures Randomize and Protect are bypassed, only the measures
Isolate and Separate stand in the way of an arbitrary write.
In classical ptmalloc heap exploitation, an arbitrary write is
usually achieved by manipulating inline pointers. However, as
shown in Section 2 the security measure Separate separates
inline pointers from the rest of the heap. The only instance
of Scudo storing pointers inline is in the secondary chunk
header, which is stored in memory regions separated from the
rest of the heap.

To go further we assume the attacker to have access to a
memory corruption primitive which allows manipulating the
header of a victim chunk. This memory corruption primitive
is limited to Scudo’s primary heap regions. An example of
such a primitive is a heap buffer overflow that overwrites the
chunk header of a subsequent victim chunk. After bypass-
ing the security measure Protect, the attacker can freely set
any fields of the overflown chunk header (Table 1) and cal-
culate a valid checksum. When the victim chunk is freed,
the checksum verification will succeed and Scudo will parse
attacker-controlled metadata. An example of such a primi-
tive is shown in Listing 1. The vulnerable program allows an
attacker to overwrite the chunk header of class_2_chunk us-
ing the heap buffer overflow. Since the attacker has broken the
Randomize security measure, the attacker can keep allocating
chunks in a loop until the overflowing chunk is just below the
class_2_chunk. Subsequently the class_2_chunk can be
freed (Line 16) by setting status to 0x8.

Both, manipulating the State and ClassId fields, are in-
teresting for the attacker. By manipulating the State field, a
double free can be turned into a UAF (Use After Free). In this

...
0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000
0xb6fd000000020102 0x0000000000000000
0x6f77206f6c6c6568 0x0000000a21646c72
0x0000000000000000 0x0000000000000000
...

Before Overflow

...
0x4141414141414141 0x4141414141414141
0x4141414141414141 0x4141414141414141
0x4141414141414141 0x4141414141414141
0x4141414141414141 0x4141414141414141
0x3c4e000000000100 0x0000000000000000
0x6f77206f6c6c6568 0x0000000a21646c72
0x0000000000000000 0x0000000000000000
...

After Overflow

Checksum: 0xb6fd
State: allocated
ClassId: 2

Primary Chunk

Prev: 0x41414141...
Next: 0x41414141...
CommitBase: 0x41414141...
CommitSize: 0x41414141...
MapBase: 0x41414141...
MapSize: 0x41414141...
Checksum: 0x3c4e
State: allocated
ClassId: 0

Fake Secondary Chunk

Figure 3: A heap buffer overflow, which overwrites a chunk
header and changes a primary chunk’s ClassId to 0, defeats
security measure Separate. Note that the figure shows lower
addresses at the top, growing downwards.

scenario, the chunk is first freed, the attacker then overwrites
the header and changes the State field from freed back to
allocated. The chunk is then freed again and ends up in
the free list twice, setting up the UAF. However, the UAF is
only interesting if attacking the application’s data is in scope
since the UAF does not give access to any Scudo metadata.
As opposed to ptmalloc where a UAF may allow overwriting
pointers to other free chunks.

More interesting for the attacker is manipulating the
ClassId field. By changing the ClassId of a primary chunk
to 0, the class ID of secondary chunks, the attacker effectively
places the secondary chunk header inline on the heap render-
ing the security measure Separate ineffective. In the scenario
of an overflow, the secondary chunk header is fully under
the attacker’s control. Figure 3 illustrates this phenomenon.
Before the overflow, the victim chunk is simply a primary
chunk with ClassId 2. After the overflow, the victim chunk
is replaced by a fake secondary chunk with a bogus secondary
chunk header. Freeing the overflown victim chunk causes
a segfault as Scudo attempts to read the linked list entry at
0x4141414141414141.

To compromise security measure Separate an attacker
needs access to a memory corruption primitive which
allows the creation of faked secondary chunks.

In the following sections, we present two exploitation tech-
niques, Forged CommitBase and Safe Unlink. Both tech-
niques manipulate this newly created and inlined secondary
chunk header in different ways to achieve an arbitrary memory
write, thus breaking security measure Isolate.



5.1 Forged CommitBase
The Forged CommitBase technique manipulates the
CommitBase header field of the inlined secondary header to
achieve an arbitrary memory write.

The CommitBase field of the secondary chunk header
stores a pointer to the start of the secondary chunk (includ-
ing the secondary chunk header). After freeing the secondary
chunk, the CommitBase is stored in the free list of secondary
chunks. When this secondary chunk is used to serve an allo-
cation request, Scudo uses the CommitBase stored in the free
list to determine where this chunk is located.

By cleverly setting the CommitBase of the faked secondary
header to the desired target address, the attacker can bring
Scudo to allocate a secondary chunk at the desired address,
breaking security measure Isolate.

Figure 4 shows the sequence of events taking place in this
exploit and the relevant fields of the faked secondary chunk.
At 1 the attacker overwrites the primary chunk’s header
and places the fake secondary chunk on the heap, using a
memory corruption primitive (for example an overflow). The
CommitBase is set to the target address (0x7fffffffd840).
As discussed previously, Prev and Next are pointers to entries
in a linked list. For the free to succeed, these pointers need
to be valid. Fortunately, Scudo checks if the pointers are null.
If they are, the unlinking step is skipped. At 2 the fake
secondary chunk is freed, and the CommitBase address is
placed into the secondary chunk free list. At 3 a secondary
chunk is requested, which Scudo serves from the secondary
free list. Since Scudo uses the address stored in the free
list, the newly allocated chunk is located on the stack (at
0x7fffffffd840). Note that the attacker is free to choose
any CommitBase address.

For this exploit to succeed, at least one secondary chunk
needs to be allocated at the time of freeing. Otherwise, the
counter of secondary chunks in use is flipped to -1 and Scudo
will crash on the next secondary chunk allocation.

Security measure Isolate can be bypassed by manip-
ulating the CommitBase field of a secondary chunk
header.

In the next section we present an alternative technique,
which achieves an arbitrary write by manipulating different
secondary chunk header fields.

5.2 Safe Unlink
In contrast to the previous technique, our second technique

(Safe Unlink) leverages the unlinking taking place when a
secondary chunk is freed to obtain an arbitrary memory write.

In glibc heap exploitation, the "unsafe unlink" attack [45]
for newer libc versions exploits a linked list unlink to achieve
arbitrary memory write. This technique is almost directly
applicable to the unlinking taking place when the secondary

PRIMARY SCUDO REGION

STACKFREE LIST (SECONDARY)

Checksum: 0xb6fd
State: allocated
ClassId: 2

Primary Chunk Prev: 0x0
Next: 0x0
CommitBase: 0x7fffffffd840
CommitSize: 0x20000
Checksum: 0x3c4e
State: allocated
ClassId: 0

Faked Secondary Chunk

Size: 0

Size: 1
Chunk 0: 0x7fffffffd840

Size: 0

Prev: ...
Next: ...
CommitBase: 0x7fffffffd840
CommitSize: 0x20000
Checksum: 0x9d13
State: allocated
ClassId: 0

Stack Secondary Chunk

3

1

3

2

2

Figure 4: The attacker overwrites a primary chunk’s header
and modifies the CommitBase. After freeing the chunk, a
stack address is placed into the secondary chunk free list.
Allocating from the secondary chunk free list then allocates a
chunk on the stack. (0x7fffffffd840 is a stack address in
this example.)

struct PerClass {
short Count;
short MaxCount;
void∗ Chunks[MaxCount];

};

Listing 4: The PerClass free list, which stores class-specific
free chunks. Count tracks the number of entries in the list.
MaxCount is the maximum number of chunks that may be
stored in the list. Chunks is an array of pointers, pointing to
the address of the free chunks headers.

chunk is freed. Just like newer glibc versions, Scudo diligently
checks the integrity of the linked list, see Listing 8 in the Ap-
pendix. To leverage this safe unlink, the attacker needs to
create a fake linked list. While the glibc exploitation tech-
nique relies on an application-specific pointer, for Scudo, we
will leverage allocator metadata to fake a linked list with two
entries. One entry is the secondary chunk header, the other
entry is placed inside the PerClass structure. The PerClass
structure is a free list storing pointers to free chunks of a spe-
cific class ID. Listing 4 shows the structure of the PerClass
free list. It holds the number of chunks, the maximum number
of chunks, and a list of pointers to free chunks.

By cleverly forging primary chunks overlapping the fake
secondary header and freeing these chunks, the attacker can
place pointers to the fake secondary header into the PerClass
structure. Figure 5 shows the attacker-created fake linked list
before and after unlinking. After unlinking, an address point-
ing to the free list will be inserted into the free list itself.



BEFORE UNLINKING AFTER UNLINKING

&CHUNK

&PERCLASS

Prev: &PERCLASS+0x8
Next: &PERCLASS+0x8
ClassId: 0

Faked Secondary Chunk

Count: 2
MaxCount: ...
Chunk 0: &CHUNK+0x0
Chunk 1: &CHUNK+0x0

PerClass Free List

&CHUNK

&PERCLASS

Prev: &PERCLASS+0x8
Next: &PERCLASS+0x8
ClassId: 0

Faked Secondary Chunk

Count: 2
MaxCount: ...
Chunk 0: &PERCLASS+0x8
Chunk 1: &PERCLASS+0x8

PerClass Free List

Figure 5: The attacker created linked list with two entries.
The linked list is created by freeing fake chunks that overlap
the secondary chunk header and adjusting the Next and Prev
pointers to point into the PerClass free list. The attacker
knows the address of the PerClass free list due to mitigations
Randomize and Protect being broken.

Allocating from this PerClass free list returns a chunk over-
lapping the free list. The attacker thus gains control over the
free list and can control the addresses of future allocations.

In order to create the fake linked list, the attacker needs
more powerful memory corruption primitives. Besides be-
ing able to forge a secondary chunk, the attacker is also
able to trigger two frees at address fake secondary chunk
header +0x10. An example of such a primitive is a con-
trolled free in which the attacker can corrupt a pointer and
then have that pointer freed. Furthermore, the attacker can
trigger the memory corruption primitive multiple times, i.e.,
overwriting the fake secondary header three times.

Figure 6 shows the steps needed to set up the fake linked
list. At 1 the attacker writes a primary chunk header with a
chosen ClassId and allocated state to the address where
the fake secondary header starts. This fake primary chunk
header overlaps with the Next field of the fake secondary
header. The fake primary chunk is then freed at 2 . Effec-
tively, the address of the fake secondary’s CommitBase en-
try (fake secondary chunk header + 0x10) is passed to
free. Consequently, the address of the fake secondary chunk
header is placed into the PerClass structure for the chosen
ClassId. (Note that Scudo tracks chunks in the PerClass
free list by the address of the chunk’s header.) The attacker
then repeats the previous steps ( 3 and 4 ). Now the address
of the fake secondary chunk header is twice at consecutive
positions in the PerClass free list. Finally at 5 , the attacker
sets up the fake secondary chunk header to complete the
fake linked list. Both Next and Prev are modified to point to
the first instance of the fake secondary chunk address in the
PerClass structure. With this the fake linked list, as seen in
Figure 5, has been set up. The attacker knows the location

&CHUNK

Prev: ...
Next: ...
ClassId: 2

Prev: Fake Chunk Header
Next: 0x0
ClassId: ...

Prev: Fake Chunk Header
Next: 0x0
ClassId: ...

Prev: &PERCLASS+0x8
Next: &PERCLASS+0x8
ClassId: 0

1

3

5

&PERCLASS

Count: 2
MaxCount: ...
Chunk 0: &CHUNK+0x0
Chunk 1: &CHUNK+0x0

Count: 1
MaxCount: ...
Chunk 0: &CHUNK+0x0

Count: 0
MaxCount: ...

2

4

2

4

Figure 6: The steps to forge a fake linked list between the
secondary chunk header and the PerClass free list. &CHUNK
is the address of the fake secondary chunk header. &PERCLASS
is the address of the PerClass free list.

of the PerClass structure because of measures Randomize
and Protect being broken. The CommitBase, CommitSize,
MapBase, and MapBase fields of the chunk header are not
relevant to this exploit. Only the chunk header needs to be
overwritten to have ClassId 0.

After the secondary chunk is freed, the attacker can allo-
cate a chunk overlapping the PerClass structure, effectively
allowing the attacker to insert any addresses into the free list,
breaking the Isolate mitigation.

Security measure Isolate can be bypassed by manipu-
lating the Prev and Next fields of a secondary chunk
header along with cleverly freeing fake chunks into a
PerClass free list.

6 Exploitation Case Study

We demonstrate our findings by reintroducing an n-day vul-
nerability and exploiting the system server on an Android
Virtual Device running Android 14 using our techniques.

The Android system server is the first process forked from
the Zygote process. It starts all system services, either start-
ing the service in a separate process or starting a new thread
running the service inside the system server. The system
server is an interesting target for escalating privileges from
an app. Firstly, each service running inside the system server
is exposed over Binder IPC to normal apps. Binder is the
Android-specific IPC mechanism, which facilitates communi-
cation between Android apps and Android services. In total,
the system server exposes around 42 services [18]. Secondly,
the system server runs as the high-privileged system user,
just slightly less powerful than root. Third, the system server



restarts after crashing giving the attacker multiple exploitation
attempts. Finally, the system server is forked from Zygote,
and thus Scudo’s security measures Randomize and Protect
are ineffective in our attack scenario as described in Section 4.

To provide the attacker app with a memory corruption
primitive to defeat security measures Isolate and Separate,
we backport CVE-2015-1528 [39] to Android 14. CVE-
2015-1528 is a heap underflow or overflow in the Binder
data deserialization due to missing sanity checks. Listing 5
shows the relevant code and the code changes reintroducing
the vulnerability. The native_handle_create function al-
locates the native_handle object whose size depends on
the numFds and numInts arguments. Both of these argu-
ments are read from the attacker-controlled Binder data. Since
the sanity check on the arguments is removed, an attacker
can trigger a heap underflow by setting numFds to a neg-
ative number, which will cause the first argument of read
in readNativeHandle to point behind the allocated chunk.
Likewise, by setting numInts to a negative number, a heap
overflow is triggered in the loop which reads file descriptors
from the Binder data. The change in the loop removes an
early exit if reading the file descriptor from the Binder data
fails.

At Black Hat USA 2015, Gong [27] used this vulnerability
to exploit the system server. In the exploit, Gong coerced
jemalloc to allocate a chunk on the stack. Almost ten years
and one secure allocator later we will show how the same
vulnerability remains exploitable in Scudo.

6.1 SensorService

Unlike Gong, who targeted the WindowsManagerService in
the system server, we will target the SensorService. Listing 6
shows the relevant code in the SensorService’s onTransact
function. The onTransact function is the service’s call-
back to handle incoming Binder requests. Both the data
and code argument to the function are fully under the
attacker’s control. By setting the code of the Binder re-
quest to CREATE_SENSOR_DIRECT_CONNECTION, the attacker
can trigger the vulnerable readNativeHandle function. Af-
ter the vulnerable function, the descriptors in the newly
created native_handle object are tagged with fdsan. Fd-
san is a file descriptor sanitizer implemented to detect
use-after-close or double-closes [4]. Since Android 11, fd-
san aborts the process if an issue is discovered. Con-
cretely, if we pass numFds greater than zero, we need to
ensure no duplicate integers are present as otherwise fd-
san will abort in native_handle_close_with_tag. The
createSensorDirectConnection function contains the ac-
tual implementation to handle the binder request, we can exit
early from this function by setting the format variable, read
from the Binder data to an invalid value. Finally, the allocated
native_handle object is freed.

—/libcutils/native_handle.c

native_handle_t∗ native_handle_create(int numFds, int numInts)
{
- if (numFds < 0 || numInts < 0 || numFds > kMaxNativeFds
- || numInts > kMaxNativeInts){return NULL;}

native_handle_t∗ h = malloc(
sizeof(native_handle_t) + sizeof(int)∗(numFds+numInts));

if (h) {
h−>version = sizeof(native_handle_t);
h−>numFds = numFds;
h−>numInts = numInts;

}
return h;

}

—/libs/binder/Parcel.cpp

native_handle∗ Parcel::readNativeHandle() const
{

int numFds, numInts; status_t err;
err = readInt32(&numFds);
if (err = NO_ERROR) return 0;
err = readInt32(&numInts);
if (err = NO_ERROR) return 0;

native_handle∗ h = native_handle_create(numFds, numInts);
//may lead to a buffer overflow if numInts is negative
for (int i=0 ; err==NO_ERROR && i<numFds ; i++) {

h−>data[i] = dup(readFileDescriptor());
- if (h->data[i] < 0) {
- for (int j = 0; j < i; j++) {
- close(h->data[j])}
- native_handle_delete(h);
- return nullptr;}
+ if (h->data[i] < 0) err = BAD_VALUE;

}
//may lead to a buffer underflow if numFds is negative
err = read(h−>data + numFds, sizeof(int)∗numInts);
if (err = NO_ERROR) {

native_handle_close(h);
native_handle_delete(h);
h = 0;

}
return h;

}

Listing 5: The code changes to reintroduce CVE-2015-1528.

In summary, we can get a chunk of any size allocated,
trigger a controlled heap underflow or overflow orig-
inating from that chunk, and have the chunk freed
right afterward. Finally, all of these primitives are
accessible via Binder by an unprivileged app.

6.2 Exploitation Over Binder
To gain code execution in the system server context, our ma-
licious app sends two Binder requests to the SensorService.
The first Binder request leverages the heap underflow to place
a stack address into the secondary chunk-free list as described
in Section 5.1. The second Binder request allocates this sec-
ondary chunk and writes a ROP chain to the stack.

Forging a secondary chunk Table 3 shows the data
sent in the first Binder request. The first five fields



status_t BnSensorServer::onTransact(uint32_t code,
const Parcel& data, Parcel∗ reply, uint32_t flags)

{
switch(code) {

case CREATE_SENSOR_DIRECT_CONNECTION: {
CHECK_INTERFACE(ISensorServer, data, reply);
String16& opPackageName = data.readString16();
const int deviceId = data.readInt32();
uint32_t size = data.readUint32();
int32_t type = data.readInt32();
int32_t format = data.readInt32();
native_handle_t *resource = data.readNativeHandle();
if (resource == nullptr) {

return BAD_VALUE;
}
native_handle_set_fdsan_tag(resource);
sp<ISensorEventConnection> ch =

createSensorDirectConnection(...);
native_handle_close_with_tag(resource);
native_handle_delete(resource);
reply−>writeStrongBinder(IInterface::asBinder(ch));
return NO_ERROR;

}
...

}

Listing 6: The relevant parts of the SensorService’s
onTransact function [17]. Marked in red is the function
call that will trigger the heap memory corruption.

read by the system server from the Binder request are
not relevant to our exploit and only serve to make
the createSensorDirectConnection function exit early
(opPackageName until format). NrFds is set to -5-9*2
(-23). -5 moves the underflow start just before the allocated
chunk header and -9*2 moves the underflow start to the begin-
ning of the faked secondary chunk header. The remaining data
is then written to the heap in readNativeHandle (Occurs in
the read function, which reads sizeof(int)*numInts to
the heap). The remaining data contains the secondary chunk
header (Prev until MapSize), the chunk header to overwrite
the original header (FakeHeader and zeros) and filler data
(filler) such that the chunk is allocated from a specific
primary chunk class.

Both Next and Prev are set to zero to avoid unlinking.
The CommitBase is set to the target stack address and the
CommitSize is set to the size of a secondary chunk, we use
0x20000. To correctly craft the overwritten chunk header
(FakeHeader) with ClassId 0, we need both the address of
the chunk and the cookie. The cookie can be directly read
from the memory of our own app. Although we know ex-
actly at which addresses Scudo will allocate chunks, using
the allocator of our own app as an oracle, predicting the
native_handle’s allocated address is complicated by the
non-determinism of the system server (at least 40 threads
each handling Binder requests). We found that allocating a
primary chunk of ClassId 32 (the largest class for primary

Type Value Name

String "wow" opPackageName
int 20 deviceId
int 20 size
int 20 type
int 20 format
int -23 nrFds
int 0x3f56 numInts
long 0x0 Prev
long 0x0 Next
long 0x7ffdd0b564a8 CommitBase
long 0x20000 CommitSize
long 0x7ffdd0b564a8 MapBase
long 0x20000 MapSize
long 0x507a000000008100 FakeHeader
long 0x0 zeros
char* 0xfd00 * "A" filler

Table 3: Example of the first Binder request sent to exploit the
system server. 0x7ffdd0b564a8 is the target stack address.

chunks) allowed us to correctly predict the chunk’s address
around one out of ten times. Both numInts and filler serve
to set the size of the allocated native_handle object.

The CommitBase in our fake secondary chunk header
points to the main thread’s stack. The main thread in the
system server runs in an infinite loop polling for messages.
When writing to the stack, we will overwrite the stored return
address of the android:Looper:pollOnce function. Our tar-
get stack address is around 0x20000 (our CommitSize) below
where the return address is stored. Note that we do not directly
point our chunk at the return address. Doing so would cause
ReadNativeHandle to inadvertently write over the stack’s
maximum address causing a segfault.

For the first Binder request, we do not need to worry
about fdsan because nrFds will be negative and the loop
which reads file descriptors from the Binder data in
readNativeHandle iterates zero times.

After receiving this Binder request, the
BnSensorServer::onTransact function is called. Then,
the readNativeHanlde function is called, which in turn
calls native_handle_create. Our native_handle chunk
is allocated, and the heap underflow is triggered, replacing the
original primary chunk with our fake secondary chunk. Right
afterward, this chunk is freed and the target stack address is
placed into the secondary free list. The details of creating the
fake secondary chunk and placing the stack address into the
secondary chunk free list can be found in Section 5.1.

Writing to the stack Table 4 shows the second Binder
request sent to the system server. numInts is set to the
size of the ROP chain divided by four. nrFds is set to



Type Value Name

String "wow" opPackageName
int 20 deviceId
int 20 size
int 20 type
int 20 format
int 0x7fe2 nrFds
int 30 numInts
long[15] ... ROPChain

Table 4: Example of the second Binder request sent to exploit
the system server.

the difference between the allocation size 0x20000 and
the size of the ROP chain divided by four. When allocat-
ing memory in native_handle_create for this 0x20000-
sized native_handle object, the chunk is allocated from
the secondary free list and placed on the main thread’s
stack. In readNativeHandle, the ROP chain (ROPChain)
is written to the stack starting at the stored return ad-
dress of the android:Looper:pollOnce function. Af-
ter the ROP chain has been written to the stack, there
is a race between the main thread returning from the
android:Looper:pollOnce function and the SensorService
calling native_handle_close_with_tag. If the SensorSer-
vice wins, the process is aborted by fdsan, due to duplicate
integers being passed as file descriptors to fdsan. Instead, if
the main thread wins, the first gadget of the ROP chain clob-
bers the nrFds field of the stack-allocated native_handle,
setting it to a negative number and thus avoiding fdsan at-
tempting to close any file descriptors. After clobbering nrFds,
the ROP chain simply prints to logcat. Figure 7 shows the log-
cat output after successful exploitation. The exploit succeeds
after around ten attempts.

7 Discussion

In this section, we discuss our presented exploitation tech-
niques focusing on mitigations, generalization, and trade-offs.

Mitigations Independent from our research, the safe unlink
exploitation technique as described in Section 5.2 has been
fixed in Android 14. The fix changes the PerClass free list
to store offsets, relative to the primary chunk heap region,
instead of pointers. This makes building the fake linked list
impossible by freeing chunks. Note that it is still possible to
try and construct a safe unlink exploit by targeting application-
specific objects to build the linked list. However, we did not
find a suitable target inside of Scudo that could be used to
build the fake linked list after this fix.

To prevent attackers from creating fake inlined secondary
chunks, as described in Section 5, we propose an extension to

Scudo which tracks allocated secondary chunks in an isolated
memory region. Any time a secondary chunk is freed, our
mitigation would check that a secondary chunk was allocated
before at the address to be freed. We opened a pull request on
the LLVM repository (where the Scudo source is hosted) to
add the proposed mitigation to Scudo [11]. However, the re-
quest was not merged due to performance concerns. Without
fundamentally changing how secondary chunks are handled
or accepting the performance penalty, Scudo will remain vul-
nerable to these types of attacks.

Generalizing our Exploitation Techniques Our exploita-
tion techniques presented in Section 5 apply to any program
using Scudo. Both our techniques require the attacker to know
the exact address of the victim chunk, whose class ID will be
changed.

In Section 4, we show how the typical threat model on
Android renders the security measures Randomize and Protect
ineffective. With Randomize broken the attacker knows the
addresses and order of allocations for all chunks. However,
this may not be enough for a sufficiently complex program to
exactly predict the address of the victim chunk. Chunks may
be freed and reallocated in a non-deterministic matter. For
example for our case study in Section 6, we can only predict
the address of our victim chunk one out of ten times. Thus,
to apply our techniques to complex targets, either the target
program restarts after crashing or the attacker has another way
to probe the heap state, such as a program-specific memory
leak vulnerability.

In a generic scenario, the attacker needs a powerful memory
leak primitive akin to an arbitrary read to break both security
measures Randomize and Protect. To break Randomize, the
attacker needs to use this primitive to read the seed used to
shuffle the TransferBatch or directly leak chunk addresses.
To break Protect, the attacker needs to either read the cookie
directly or leak both a chunk’s header and its address. Using
this header and address, the attacker can brute force a valid
cookie using the code in Listing 3. The brute force attack
is viable since the cookie is only 16 bits long. After obtain-
ing a valid cookie, the attacker can forge valid Scudo chunk
headers.

Required Memory Corruption Primitives Both our pre-
sented exploits (Forged CommitBase and Safe Unlink) require
a memory corruption primitive that allows forging a fake sec-
ondary chunk. The fake secondary chunk can be forged either
by overwriting an existing chunk’s header or by passing a
controlled pointer to free, pointing to a fake secondary chunk.

Both a heap underflow and overflow are examples of prim-
itives that can overwrite an existing chunk’s header. For our
case study, we choose a heap underflow primitive. When tar-
geting the system server’s SensorService, we are only able
to control one chunk. The heap underflow allows us to reli-
ably overwrite only what is needed, i.e., that chunk’s header.



...
30963 31252 E SensorService: Ashmem direct channel requires a memory region to be supplied
30963 30981 D CompatibilityChangeReporter: Compat change id reported: 218533173; UID 10142; state: ENABLED
30963 30981 D CompatibilityChangeReporter: Compat change id reported: 262645982; UID 10142; state: DISABLED
30963 31379 W Parcel : Attempt to read object from Parcel 0x7ebd2a8acaa0 at offset 104 that is not in the object list
30963 30963 I H3Ll0 : FR0m_5y5T3M_53rV3r

Listing 7: The logcat output of the system server after successful exploitation, marked in orange is the logcat print triggered by
the ROP chain.

Instead, if we used a heap overflow, we would have needed
to overwrite chunks used by other Binder threads, increasing
the complexity and reducing the reliability of our exploit.

An alternative to overwriting existing chunks is freeing
fake attacker-created chunks. For this primitive the attacker
needs to be able to control a pointer passed to free, which
points to an attacker-controlled memory location. In glibc
heap exploitation, the “House of Spirit” [46] leverages this
primitive to insert the modified pointer into the free list, as-
suming the attacker was previously able to write a chunk
header at that pointer’s location. The “House of Spirit” is
only feasible if the attacker can already write to the start and
end of the target memory address. However, in Scudo, the
primitive can be used to achieve an arbitrary write primitive.
This primitive becomes even more appealing for Scudo ex-
ploitation because it is not influenced by random allocations,
as the attacker chooses the location of the chunks.

In summary, the ideal memory corruption primitive to ex-
ploit Scudo is an attacker-controlled free. For the heap un-
derflow or overflow, the preference heavily depends on how
the target application handles the underflown or overflown
chunk.

Manipulating Scudo Chunk Header Fields The Scudo
chunk header has six fields, see Table 1. In Section 5 we dis-
cussed how manipulating header fields is only possible if the
Checksum field is set properly and how the State field can
be manipulated to induce double frees and use-after-frees. For
our exploitation techniques, we overwrite the ClassId field
to create a fake secondary chunk. However, for exploitation
scenarios where our techniques are not applicable, there ex-
ists an alternative way of manipulating the ClassId field to
achieve a heap overflow. Instead of changing the ClassId to
0, which transforms the primary chunk to a secondary chunk,
an attacker can change the primary chunk’s size by replacing
the original class ID with a larger one. Once that chunk is
freed, it is placed into the PerClass free list of that larger
primary chunk class ID. After said chunk is allocated from
the free list, the chunk will overlap other smaller chunks, lead-
ing to a heap overflow in the Scudo memory region of the
original chunk’s class ID. For the remaining header fields,
OriginWasZeroed, SizeOrUnusedBytes, and Offset, we
did find a way to manipulate them in a useful manner.

ARM MTE ARM MTE (Memory Tagging Extension) [16]
is a hardware security feature. Scudo has added support for
MTE early on and in October 2023 the first Android devices
supporting MTE running Scudo were released [13].

MTE uses the top bits of pointers to tag memory regions.
A new instruction allows assigning a tag to a memory region.
After a memory region has been tagged, the region can only
be accessed with pointers whose top bits match the assigned
tag. Tag mismatches result in a segmentation fault.

Allocators can leverage MTE to detect illegal memory ac-
cesses to the heap. By assigning tags to the body of allocated
chunks, allocators can probabilistically prevent heap over-
flows or use-after-frees.

If enabled, Scudo tags the body of primary chunks on allo-
cation and deallocation. The body of secondary chunks is not
tagged. The chunk headers are assigned predictable tags (0
and 2 for the chunk headers of primary and secondary chunks
respectively, 1 for the secondary chunk header).

With these tagged headers our exploitation techniques are
mostly mitigated. Bypassing the Separate security measure, as
described in Section 5, without crashing due to a tag mismatch
is now limited to two specific scenarios. Overwriting the
header of an existing primary chunk to create a fake secondary
chunk is only possible if there is a chunk just before the
overwritten chunk header and that chunk has tag 1, matching
the tag assigned to the secondary chunk header. Alternatively,
a fake secondary chunk may be forged by creating it on the
border between two memory regions tagged with 1 and 2. The
secondary chunk header is written to the lower memory region
tagged with 1 and the chunk header to the region tagged with
2. Then an arbitrary free, freeing the address just after the
forged chunk header passes MTE checks.

Bypassing security measure Isolate is only possible with
the forged CommitBase technique as the safe unlink technique
requires overlaying primary chunk headers (tagged with 0)
over the fake secondary chunk header (tagged with 1). The
forged CommitBase technique is further hampered by the fact
that it needs to point to an address, whose first 0x30 bytes
are tagged 1. Otherwise, Scudo crashes as it tries to write the
secondary chunk header to the target address with a pointer
tagged 1.

In conclusion, ARM MTE almost completely mitigates our
exploitation techniques.



Zygote Forking To the best of our knowledge, Android
is the only significant production deployment of Scudo. As
discussed in Section 4, both security measures Randomize
and Protect are rendered useless for Android userspace pro-
cesses that are forked from Zygote. Without these security
measures, Scudo’s security becomes similar to that of the
standard glibc allocator (predictable allocations and inline
metadata that may be manipulated), while still incurring a
performance overhead (calculating the checksum). This issue
affects any Android userspace memory allocator and can only
be solved by moving away from Zygote-forked userspace
processes. Table 7 in the Appendix shows the userspace pro-
cesses running on our stock emulator. 33 userspace processes
are Zygote-forked (around 30% of all userspace processes),
out of which seven processes run as a higher-privileged user.
Note that the remaining processes are system apps, which are
usually assigned special privileges.

Quarantine An optional Scudo feature is the quarantine
which delays freed chunks from being allocated again right
away. This can make Use-After-Frees harder to exploit but
incurs a heavy performance penalty [34]. Related work has
shown how the additional complexity and metadata intro-
duced by the quarantine can be exploited for an arbitrary
write primitive [24, 50]. Since the quarantine is disabled by
default and disabled on Android, we omit it from this work.

Scudo deployment Although Scudo is the default allocator
in Android’s libc, vendors may choose to utilize jemalloc or
implement their allocator. To understand if vendors choose to
deploy Scudo we analyzed the firmware of recently released
phones. We picked 15 devices, whose firmware is easily avail-
able, and analyzed the symbols in the shipped libc binary.
Table 6 in the Appendix lists the analyzed devices. Overall
out of the 15 devices, 6 devices use Scudo. Of the remain-
ing 9 use jemalloc. From this sample of firmware, it is clear
that Scudo is deployed in production but has not replaced
jemalloc.

Case Study We backported and exploited the system server
on the Android emulator running an x86 image1. Most An-
droid production devices are ARM-based, however, we de-
signed a data-only exploit. The only part of the exploit that
needs to be changed for an ARM device is the ROP chain. Fur-
thermore, the emulator provides high fidelity for the Android
userspace [22].

8 Related Work

The security community has recently started showing an in-
terest in Scudo. Un1fuzz [50] gives an overview of Scudo
internals and presents two exploits against Scudo quarantine.

1Android emulator image: system-images;android-34;google_apis;x86_64

Cesare demonstrates how to compute the cookie with z3 after
leaking the chunk header and the chunk header’s address [15].
More recently multiple blogs have been published detailing
the inner workings of Scudo [7, 12, 20]. Concurrently to us,
Ecob discovered the forged CommitBase exploit and pre-
sented his findings at Bsides Canberra [24]. In this work, we
systematize Scudo’s security mechanisms, put these mecha-
nisms in the context of the Android userspace, present two
exploits and demonstrate our findings against a real target.

Besides Scudo, allocators have long been a target. Re-
searchers have demonstrated exploits against the glibc al-
locator [5, 9, 29, 31, 43] and jemalloc [6, 44]. These works
serve as an inspiration to us and we hope to extend the com-
munity’s compendium of exploitation techniques with our
Scudo specific techniques.

HeapHopper [23] and ArchHeap [54] are systems to au-
tomatically discover heap exploitation primitives. These sys-
tems mainly focus on dlmalloc or ptmalloc. ArchHeap in-
cluded Scudo in its evaluation but failed to discover any ex-
ploitation primitives.

Other works have focussed on manipulating the heap’s
layout [28, 33, 51]. The systems proposed by these works
analyze the target program to identify heap manipulation
primitives. In our work we focus solely on Scudo and leave
identifying the heap manipulation primitives out of scope.

There has been a large body of work on building secure
allocators [2, 8, 19, 35, 38, 47, 48] or securing existing allo-
cators [1, 26, 37, 52, 53]. Unlike these works, we focus on
dissecting the security measures of an existing, widely de-
ployed allocator.

9 Conclusion

We investigated the security of Scudo, Android’s hardened
memory allocator. We have found that a large part of Scudo’s
security measures are rendered ineffective by Android’s
userspace architecture in the context of our attacker model.
Given a memory corruption vulnerability, we demonstrate
two exploits which manipulate Scudo into allocating a chunk
at an attacker’s chosen address.

To demonstrate that our findings are indeed practical, we
backported an n-day memory corruption vulnerability to An-
droid 14 and exploited the highly privileged system server
from the context of an unprivileged app, achieving a privilege
escalation.

In the process of researching Scudo we have developed
a gdb plugin, which allows inspecting Scudo chunks and
free lists, and a python library to forge Scudo chunk head-
ers. We open-source all these tools along with the code and
artifacts of our exploitation case study at https://github.
com/HexHive/scudo-exploitation.

https://github.com/HexHive/scudo-exploitation
https://github.com/HexHive/scudo-exploitation
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Appendix

ClassId Size Start Size End

1 0x0 0x10
2 0x11 0x20
3 0x21 0x30
4 0x31 0x40
5 0x41 0x50
6 0x51 0x60
7 0x61 0x80
8 0x81 0xa0
9 0xa1 0xb0
10 0xb1 0xd0
11 0xd1 0x110
12 0x111 0x150
13 0x151 0x1b0
14 0x1b1 0x240
15 0x241 0x310
16 0x311 0x440
17 0x441 0x660
18 0x661 0x820
19 0x821 0xa00
20 0xa01 0xc20
21 0xc21 0x1000
22 0x1001 0x1200
23 0x1201 0x1bc0
24 0x1bc1 0x2200
25 0x2201 0x2d80
26 0x2d81 0x3780
27 0x3781 0x4000
28 0x4001 0x4800
29 0x4801 0x5a00
30 0x5a01 0x7300
31 0x7301 0x8200
32 0x8201 0x10000
0 0x10001 ...

Table 5: Chunk sizes and the corresponding class ID on An-
droid 14.
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void remove(T ∗X) {
T ∗Prev = X−>Prev;
T ∗Next = X−>Next;
if (Prev) {

CHECK_EQ(Prev−>Next, X);
Prev−>Next = Next;

}
if (Next) {

CHECK_EQ(Next−>Prev, X);
Next−>Prev = Prev;

}
Size = Size −1;

}

Listing 8: Excerpt from the Scudo source code, which un-
links the secondary chunk from the linked list of allocated
secondary chunks. Scudo checks the integrity of the linked
list with the CHECK_EQ macro. The CHECK_EQ macro aborts if
the arguments are not equal.

Device Date Allocator

Samsung S24 2/2024 Scudo
Samsung S23 Ultra 1/2024 jemalloc
Samsung M14 5G 12/2023 jemalloc
Samsung A34 5G 10/2023 Scudo
Samsung Galaxy Z Fold 5 2/2024 jemalloc
Google Pixel 8 2/2024 Scudo
Google Pixel Fold 2/2024 Scudo
Xiaomi Redmi Note 13 5G 2/2024 jemalloc
Xiaomi Redmi 12 5G 12/2023 jemalloc
Xiaomi Redmi 13C 5G 1/2024 jemalloc
Xiaomi Redmi Note 12 4G 11/2023 jemalloc
Vivo y35 1/2024 Scudo
Vivo y73 1/2024 Scudo
Oppo A96 5G 6/2023 jemalloc
Oppo Reno 8 Pro 1/2024 jemalloc

Table 6: The analyzed firmware to understand if vendors de-
ploy Scudo. The Date column denotes the firmware’s release
date. Out of the 15 devices, 6 use the Scudo allocator. The
remaining 9 use jemalloc.



User Name

system system_server
u0_a160 com.android.systemui
webview_zygote webview_zygote
network_stack com.android.networkstack.process
bluetooth com.google.android.bluetooth
secure_element com.android.se
radio com.android.phone
u0_a172 com.google.android.ext.services
u0_a158 com.google.android.apps.nexuslauncher
u0_a169 com.google.android.permissioncontroller
u0_a129 com.google.android.gms.persistent
u0_a142 com.google.android.inputmethod.latin
u0_a129 com.google.android.gms
u0_a127 com.google.android.as
u0_a131 com.google.android.googlequicksearchbox:interactor
u0_a130 com.google.android.apps.messaging:rcs
system com.android.emulator.multidisplay
u0_a131 com.google.android.googlequicksearchbox:search
u0_a130 com.google.android.apps.messaging
u0_a129 com.google.android.gms.unstable
u0_a185 com.google.android.providers.media.module
u0_a129 com.google.process.gservices
u0_a92 android.process.media
u0_a154 com.google.android.gm
u0_a184 com.google.android.rkpdapp
u0_a175 com.google.android.adservices.api
u0_a129 com.google.process.gapps
u0_a81 android.process.acore
u0_a144 com.google.android.apps.photos
u0_a173 com.google.android.devicelockcontroller
u0_a124 com.google.android.settings.intelligence
u0_a151 com.google.android.contacts
u0_a162 com.google.android.apps.wallpaper

Table 7: The 33 userspace processes which are forked from Zygote on the Android 14 emulator
(system-images;android-34;google_apis;x86_64). Overall there are 107 userspace processes out of which 33
(30%) are Zygote-forked. 7 (6%) Zygote-forked processes are running as higher-privileged users. Note that the remaining
processes are mostly privileged system apps. Compromising such an app from a normal app still escalates the attacker’s
privileges. Any additional, user-installed app will also be Zyote-forked.
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