
EL3XIR: Fuzzing COTS Secure Monitors

Christian Lindenmeier

FAU Erlangen-Nürnberg

Mathias Payer

EPFL

Marcel Busch

EPFL

Abstract
ARM TrustZone forms the security backbone of mobile
devices. TrustZone-based Trusted Execution Environments
(TEEs) facilitate security-sensitive tasks like user authentica-
tion, disk encryption, and digital rights management (DRM).
As such, bugs in the TEE software stack may compromise the
entire system’s integrity.

EL3XIR introduces a framework to effectively rehost
and fuzz the secure monitor firmware layer of proprietary
TrustZone-based TEEs. While other approaches have focused
on naively rehosting or fuzzing Trusted Applications (EL0) or
the TEE OS (EL1), EL3XIR targets the highly-privileged but
unexplored secure monitor (EL3) and its unique challenges.
Secure monitors expose complex functionality dependent on
multiple peripherals through diverse secure monitor calls.

In our evaluation, we demonstrate that state-of-the-art
fuzzing approaches are insufficient to effectively fuzz COTS
secure monitors. While naive fuzzing appears to achieve rea-
sonable coverage it fails to overcome coverage walls due to
missing peripheral emulation and is limited in the capability
to trigger bugs due to the large input space and low quality
of inputs. We followed responsible disclosure procedures and
reported a total of 34 bugs, out of which 17 were classified
as security critical. Affected vendors confirmed 14 of these
bugs, and as a result, EL3XIR was assigned six CVEs.

1 Introduction

Mobile devices provide critical sensitive services, including
authentication [55], mobile payment [49], and DRM [28].
These services depend on hardware-based Trusted Execution
Environments (TEE) (such as ARM TrustZone [2]) to protect
sensitive data. The TEE enforces the integrity and confiden-
tiality of its software components through hardware features.
By shifting security-critical operations from the Rich Execu-
tion Environment (REE) into the TEE, users are protected
from various application- and kernel-level exploits [3]. The
smaller code base of TEEs aspires to have a small attack sur-
face and, consequently, protect devices from full compromise.

However, fueled by market needs and recent research [31,
36, 46], the amount and size of software running inside the
TEE continuously increases. Vendors are extending the TEE
with more functionality such as device integrity monitor-
ing [10], remote attestation, or secure network communica-
tion [51] – all built upon the premise of trusted software.
Consequently, the trusted computing base (i.e., the code run-
ning as part of the TEE) is growing, leading to a increased
risk of bugs. Moreover, regardless of this fact, TEE-based vul-
nerabilities significantly impact device security, as successful
attacks put the entire platform’s security at risk [17, 18].

Most mobile devices such as smartphones or tablets are
based on the ARMv8-A architecture [1], and as such, ARM
TrustZone [2] provides the dominant foundation for TEE im-
plementations on billions of devices. TrustZone logically
separates the device into two isolated execution environ-
ments; the non-trusted normal world and the trusted secure
world [48]. The normal world on a typical Android device
hosts conventional user space applications and a Linux kernel.
The secure world exclusively runs vendor-authenticated code
consisting of Trusted Applications (TAs), a Trusted Operat-
ing System (TEE OS), and the secure monitor. While the
security of TAs and TEE OSes have been previously stud-
ied [17,18,52,53], the security of the secure monitor remains
unexplored. It has been primarily seen as a means to request
services and exchange data between the worlds [5]. Indeed, all
communication to the TEE and vice versa must pass through
the secure monitor, which is the highest privileged component
(EL3) on the platform [1].

Surprisingly, the mediation between the normal and se-
cure world is not the only service the secure monitor offers.
Additional tasks include the interaction with silicon provider-
specific hardware [9], management of system power levels [8],
and firmware updates [7]. Furthermore, vendors tailor the se-
cure monitor firmware to the specific needs of their devices by
adding drivers for secure peripherals (e.g., eFuses and crypto-
graphic elements), custom TEE OS interfaces, and proprietary
bootloader features. Code running in the normal world can re-
quest these services by issuing a Secure Monitor Call (SMC)

which switches to the secure monitor context. When the nor-
mal world requests such a service, it is directly handled by
the secure monitor and not forwarded to the TEE OS. Unsur-
prisingly, this complexity results in severe bugs potentially
leading to full-system compromise [4, 43].

The secure monitor is part of the secure world (Figure 1);
thus, vendors do not permit introspection during runtime. This
is enforced by memory controllers (e.g., the TrustZone Ad-
dress Space Controller) that prevent normal world compo-
nents from accessing code or data of the secure world. Conse-
quently, modern dynamic analyses, such as coverage-guided
fuzzing, are infeasible on production devices.

Rehosting offers a remedy for the limitations of on-device
approaches. In the context of small embedded systems, we
have recently seen significant advancements in full-system re-
hosting [21, 24, 25, 33, 34, 38, 50]. However, these approaches
focus on comparatively tiny firmware samples for simple
CPUs (e.g., Cortex-M). Cortex-A software stacks (e.g., all
components running on the application processor of a mobile
device, including the bootloader, secure monitor, TEE OS,
TAs, REE OS, and REE applications) are orders of magni-
tudes more complex and have significantly more hardware
dependencies, rendering full-system rehosting approaches
infeasible. A trade-off to full-system emulation is partial
rehosting. The essential idea is to only rehost the targeted
relevant logical component and trade hardware dependencies
for software dependencies. For example, Harrison et al. [32]
focus on rehosting TEE OSes and TAs. Hence, they do not
include irrelevant components in their rehosting efforts, ex-
cluding the secure monitor or the REE OS. By mimicking
hardware behavior with software emulation, partial rehosting
approaches avoid requiring complete hardware models.

We discover two limitations of prior work, making them
unfit for effectively fuzzing hardware-dependent proprietary
firmware components (e.g., secure monitors) with loosely de-
fined interfaces. First, the generic and vast interface of secure
monitors is challenging for general-purpose fuzzers to explore
due to its large input space. Second, secure monitors in partic-
ular depend on vendor-specific hardware interactions. Public
emulators lack support for these peripherals and correspond-
ing data sheets are unavailable, thus posing a roadblock for
dynamic analysis. Manually implementing simplified hard-
ware models reduces the fidelity of rehosting environments
and is not a scalable solution.

EL3XIR solves these two key challenges. First, we perform
static value-flow analysis on the REE OS (e.g., Linux ker-
nel) to collect instances of SMC interface usage. Further, we
achieve interface awareness by probing the existing handlers
of a given secure monitor. Then, we combine this knowledge
with a set of domain-specific mutations in a fuzzing harness
capable of generating high-quality inputs. Second, EL3XIR
overcomes coverage roadblocks originating from hardware
interactions using reflected peripheral modeling. This tech-
nique repurposes fuzzing inputs to probe Memory-Mapped

I/O (MMIO) behavior and leverages coverage feedback as an
oracle for appropriate peripheral behavior.

In our evaluation, we targeted seven different secure moni-
tor binaries scattered across six vendors. Our dataset includes
three proprietary implementations deployed on popular mo-
bile devices from Samsung and Huawei. Additionally, we
leverage EL3XIR to fuzz four open-source secure monitor
implementations running on edge devices from Intel, NXP,
Xilinx, and Nvidia showing EL3XIR’s scalability. EL3XIR
finds crashes in all of the targets, with a total of 34 unique
bugs. After triaging and responsible disclosure, a total of
17 are security-critical with six CVEs assigned. Our evalua-
tion shows that interface awareness and reflected peripheral
modeling lead to higher code coverage than state-of-the-art
fuzzing approaches. Furthermore, EL3XIR triggered 15 more
crashes compared to approaches of prior work.

In summary, our main contributions are:

• The design and implementation of an end-to-end
rehosting-based fuzzing framework for proprietary se-
cure monitor implementations.

• Two essential techniques, static analysis-based interface
awareness and reflected peripheral modeling, enabling
target-specific fuzzing harness synthesis.

• A comprehensive evaluation of EL3XIR against existing
state-of-the-art TEE fuzzing approaches.

2 Background

This section provides the necessary background on the
ARMv8-A architecture, the role of the secure monitor, and
the threat model of ARM TrustZone.

ARMv8-A Architecture. The 64-bit ARMv8-A architec-
ture [1] dominates the System-on-Chip (SoC) market for em-
bedded devices like smartphones. This architecture supports
up to four privilege levels called exception levels (ELs). Fur-
ther, ARMv8-A features ARM TrustZone [2, 48], a hardware
extension capable of partitioning the SoC into two isolated
execution environments. Figure 1 shows the separation of the
execution into the non-trusted normal world which hosts a
REE OS at EL1 (e.g., a Linux kernel) and user space appli-
cations at EL0 (e.g., an Android App) and the secure world
which is comprised of vendor-specific software like the TEE
OS at EL1 and Trusted Applications at EL0. Software run-
ning in the secure world is integrity protected by a secure
boot mechanism executing only vendor-signed code. EL3 is
the highest privilege level and any context switch between the
worlds has to go through this exception level using an SMC.

Secure Monitor. The secure monitor is the runtime soft-
ware located at EL3, and it has unrestricted access to all device
resources. The bootloader authenticates the secure monitor’s
image during secure boot. As a standard for secure monitor
interactions, ARM defined the Secure Monitor Call Calling

EL0

EL1

EL2

EL3

Client
Applications

Rich OS

Hypervisor

Trusted
Applications

Trusted OS

Secure Monitor

Normal World Secure World
IPC

SVC SVC

SMC SMC

Figure 1: ARMv8-A platforms support up to four privilege
levels (EL3 to EL0). On COTS devices, vendors often grant
users access to the normal world (green components) but the
secure world (red components) is off limits. The dashed lines
indicate the security boundary between the two execution
environments. The IPC interface provides a conceptual call
between the worlds that needs to pass through all layers of
the software stack.

Convention [5] (SMCCC). This convention defines the param-
eter registers (x0-x17) and the result registers (x0-x3) to be
used when interacting with secure monitor services. Besides
its role as a relay to the TEE OS, the secure monitor includes
services like access to the power state coordination interface
or silicon provider service calls intended for chip-specific
drivers implemented by each vendor on a per-platform basis.
This results in multiple scattered runtime services, each re-
quested by another function identifier (via register x0) and a
different interface.

ARM provides the ARM Trusted Firmware [6] (ATF) as
an open-source reference implementation. Most device ven-
dors use the ATF as a foundation for their TEE architecture
and modify or extend the implementation according to the
specific needs of their platform. The ATF is designed to be
extendable and vendors will usually register runtime services
in the silicon provider service call categories to enable the
trusted interaction with proprietary secure peripherals. As a
result, the ATF includes device drivers directly interacting
with hardware components via MMIO. Whereas the ATF’s
core implementation is open-source, vendors usually keep
their extensions private.

TrustZone’s Threat Model. ARM TrustZone is designed
to provide a secure execution environment for sensitive soft-
ware and data even if the REE is compromised. This includes
attackers taking complete control over the REE OS and send-
ing arbitrary payload to the secure monitor when executing an
SMC. Therefore, in our attack scenario, we assume root-level
access to our target device to execute arbitrary code in the
normal world. Yet, a kernel-level attacker should not be able
to violate the integrity and confidentiality of software running
inside the TEE.

3 Challenges

Effective fuzzing requires dynamic analysis of the execution
to extract coverage information or crash details. We discuss
challenges regarding dynamic analysis capabilities in the con-
text of on-device approaches and rehosting approaches. We
conclude that for COTS secure monitor implementations the
balance shifts in the direction of favoring rehosting solutions
as the locked-down nature of production devices and their
TEE firmware increases the burden for on-device approaches.

On-Device Approach. Feedback-guided fuzzing is incom-
patible with COTS secure monitors on production devices.
Missing or inaccessible debug interfaces prohibit instrumen-
tation of firmware for coverage collection. Additionally, the
secure monitor belongs to the secure world (Figure 1), thus
vendors prohibit static modifications through the secure boot
mechanism. Dynamic modification is prohibited by mem-
ory controller restrictions (e.g., the TrustZone Address Space
Controller) which prevent normal world components from
accessing code or data of the secure world during runtime.

Consequently, dynamic analysis approaches requiring in-
trospection capabilities (e.g., coverage-guided fuzzing) are
infeasible on production devices. Although there have been
some successful black-box fuzzers in terms of discovered
bugs, their effectiveness and usability are limited [16, 40].
The lack of extensive feedback makes it difficult to mutate
potent test cases and the non-determinism of real-world hard-
ware hinders the reproduction and triaging of bugs.

Rehosting Approach. Different from on-device ap-
proaches, the target may be run in an emulator. This has
multiple benefits: (1) the extended introspection allows for
coverage collection enabling feedback-guided fuzzing, (2) the
absence of non-determinism improves reproduction of test
cases and eases bug triaging, and (3) the performance and
scalability can be improved by snapshot-based fuzzing.

Unfortunately, public emulators do not support peripherals
for SoCs found on production devices running COTS secure
monitor implementations. Furthermore, data sheets for these
proprietary SoCs are unavailable which renders the imple-
mentation of accurate emulators infeasible [24]. While some
industry research teams have implemented precise emulators
for their devices [32], their emulator is not publicly available
and building such emulators requires considerable manual
engineering efforts. Nevertheless, the superiority of emulator-
based fuzzing approaches urges to address the challenges
emerging when trying to design a rehosting-based fuzzing
solution for COTS secure monitor implementations.

C1: Interdependencies of Logical Components

Because of the high complexity and size of software stacks
deployed on modern devices, a full rehosting approach would
require the emulation of multiple intertwined software com-
ponents. For example, when targeting the secure monitor im-

plementation running on an Android smartphone, this would
require building a full-system emulator capable of running
a customized version of Android (REE OS), the proprietary
TEE OS, and the bootloader because all of those components
interact with the secure monitor at some point (Figure 1). The
size and complexity of the software stack on modern mobile
devices makes this task practically infeasible.

Consequently, to enable rehosting-based fuzzing of COTS
secure monitor implementations, we need a partial-rehosting
approach that can run the target binary in a standalone way
while maintaining the minimal necessary functionality of
dependent relevant logical components. Harrison et al. [32]
introduced the idea of a partial-rehosting approach. The key
concept is to either reuse (i.e., executing the binary) or emulate
(i.e., reimplementing the functionality) dependent software
components. Partial-rehosting approaches exist for the TEE
OS and some standalone TAs [40], while we focus on the
secure monitor binary for which there is currently no solu-
tion. Ultimately, this challenging rehosting problem entails
handling the secure monitor’s dependencies to the REE OS,
the TEE OS, and the bootloader.

C2: Infeasibility of Manual MMIO Modeling
In addition to solving dependencies on logical components, a
rehosting environment capable of running COTS secure mon-
itor implementations must emulate the original production
device’s hardware sufficiently precise [24]. Thus, mimick-
ing interactions with hardware (e.g., via reading and writ-
ing MMIO regions) that would otherwise block the fuzzer
from making progress as, there is no replying peripheral. We
provide an indicative example for coverage walls caused by
missing MMIO behavior in Appendix A.

Recent work [32] tried to manually reverse-engineer and
emulate peripheral models, resulting in multiple limitations:
(1) the resulting hardware models will be specific to a sin-
gle SoC, limiting scalability, (2) proprietary peripherals may
not be modeled extensively, (3) manual emulation requires
extensive work by an expert for each SoC. In contrast, our
work focuses on finding a scalable solution for fuzzing se-
cure monitor implementations that heavily rely on hardware
interactions.

C3: Complex and Diverse Input Formats
Finding meaningful inputs is a challenging task for fuzzers.
This is because of non-standardized and complex input for-
mats found at unexplored interfaces of low-level firmware like
the secure monitor. The SMC interface is defined in the ARM
SMCCC [5] (Section 2), but the discovery of valid inputs and,
thus, the exploration of the secure monitor remains an open
challenge.

Test inputs need to comply to custom protocol formats
as expected by runtime services. Non-compliant inputs

will fail in the parsing logic, generating no new coverage.
Listing 1 in Appendix A demonstrates this challenge at
the beginning of the function in the form of validation
logic checking for alignment and memory pointer validation
(addr_in_nw_range()). While this is a relatively simple ex-
ample, manufacturers may include complex validation logic
depending on the offered service and the necessary proto-
cols to follow for the interaction with underlying peripherals.
Naive fuzzers will struggle to create valid inputs, resulting in
coverage walls and bad performance.

Another reason is the broad nature of the SMCCC used to
communicate with runtime services. On modern ARMv8-A
systems, up to 18 input registers are passed to the secure mon-
itor. All lower 32 bits of x0 are used as a function identifier
and the remaining registers x1-x17 as arguments. Those can
either be a value or a memory reference, whose contents hold
runtime service-specific data. This calling convention leads
to a large input space since the function identifier, the number
of parameters, their types, and valid parameter contents are
unknown a priori. As we are dealing with proprietary binaries,
manual reverse-engineering to derive the interface of regis-
tered runtime services is a tedious effort. Therefore, we need
an approach to automatically discover the interface of secure
monitors and subsequently equip a fuzzer with this additional
knowledge to achieve efficient interface exploration.

4 EL3XIR’s Approach

EL3XIR is an extensible rehosting and feedback-guided
fuzzing framework for secure monitors. Figure 2 provides an
overview of EL3XIR’s design.

The initial step to fuzz a new secure monitor requires cre-
ating a rehosting environment to boot the secure monitor
and taking a snapshot at the desired fuzzing location (1).
This location is typically the first transition to the untrusted
normal world. EL3XIR comes with an extensible rehosting
framework that facilitates partial rehosting of secure monitor
binaries, addressing C1 (Section 3). After completing the one-
time effort rehosting, EL3XIR takes a snapshot of the booted
secure monitor used for the subsequent automatic fuzzing
campaign enabling high execution speed due to fast resets.

To address the lack of peripheral models (C2 in Section 3),
EL3XIR monitors the SoC’s MMIO regions in the physical
address space and employs reflected peripheral modeling to
populate MMIO read registers with raw fuzzing input. This
technique mimics peripheral behavior and enables EL3XIR
to explore error and success control-flow paths succeeding
peripheral interactions and, thus, increases the target’s code
coverage without any manual intervention.

To deal with the challenge of diverse and complex in-
put formats expected by runtime services (C3 in Section 3),
EL3XIR statically analyzes the source code of the REE OS
(e.g., a Linux kernel) that interacts with the secure moni-
tor interface to recover target-specific and interface-aware

seeds (2). Then, EL3XIR probes the 32-bit function identi-
fier (x0 register) used to select the requested runtime service,
using coverage-feedback as an oracle to determine if a ser-
vice backs a given identifier. This process allows EL3XIR to
explore unseen services while filtering out false positives that
originated from static analysis. Ultimately, this knowledge is
used to synthesize an interface-aware harness equipped with
domain-specific mutators to generate high-quality inputs to
fuzz the secure monitor (3).

Bootloader

TEE OS

REE OS

Target
Secure Monitor

Refined
Fuzzing Harness

Reflected Peripheral Modeling

Fuzz SMC

MMIO Access

REE OS
Source Code

3

1

Snapshot

Probing

High-Value
Seeds

2

raw
fuzz input

Figure 2: An overview of EL3XIR’s design. Software depen-
dencies for partial-rehosting are shown in light gray, while the
dark gray components are part of EL3XIR’s fuzzing frame-
work. EL3XIR fuzzes a snapshot of the secure monitor by
combining an interface-aware refined harness and on-the-fly
generated peripheral models leveraging their synergetic ef-
fects for extensive code coverage and bug triggering.

4.1 Partial-Rehosting of Secure Monitors
EL3XIR provides a rehosting framework that enables fast and
straight-forward partial-rehosting of COTS secure monitor
binaries in a pure emulation fashion (i.e., no physical device
is required). The framework is designed to drastically reduce
the manual effort required to initialize a targeted secure mon-
itor properly. Our partial-rehosting approach addresses C1
(Section 3) by replacing missing software components with
manually crafted stubs and the ability for precise injection of
necessary hardware interactions into MMIO registers during
boot. We evaluate the manual steps required in Section 6.1.

Our rehosting approach follows an iterative refinement pro-
cess [24] as illustrated in Figure 3. We start by running the
unmodified secure monitor binary in a minimal rehosting en-
vironment (e.g., matching CPU architecture and TrustZone
extensions) and refine the environment step by step through
repeating fidelity evaluations and root cause analysis of mis-
behavior (e.g., unhandled exceptions or aborts). This process

Snapshot

Rehosting Environment

Secure Monitor
booted?

Fidelity
Evaluation

Root Cause
Analysis

Refinement

Emulated
Hardware

Emulated
TEE OS

Emulated
REE OS

Emulated
Bootloader

Secure Monitor
Binary

Figure 3: EL3XIR’s rehosting framework is designed to
help rehost unmodified and proprietary closed-source secure
monitor binaries in an iterative refinement process.

continues until the secure monitor successfully boots. Then,
EL3XIR takes a snapshot (1 in Figure 2), making the manual
part a one-time per-target effort. This snapshot is further used
for automated fuzzing campaigns.

Our core insight for partial-rehosting is that the secure
monitor initialization requires only a small set of emulated
software and hardware dependencies. Thus, using a handful
of MMIO emulations and less than 20 lines of assembly for
the stubs (REE OS, TEE OS, and bootloader), it is feasible
to bring the system up until the point where an adversary
would take control (EL1 in the normal world), marking our
snapshot and fuzzing location (Section 4.3). We decided for
manually rehosting the secure monitor boot process because
customized boot procedures are challenging to generalize. We
discuss this limitation in Section 7. Nevertheless, most of the
hardware rehosting effort arises at runtime when the REE OS
requests services from the secure monitor and not during the
boot process when hardware is only initialized (we solve this
problem in Section 4.2).

Our rehosting framework addresses the following chal-
lenges when booting a COTS secure monitor in an emulator.
First, we describe a systematic way to identify the physical
memory layout required to place the secure monitor binary at
the correct location in memory. Second, we provide small and
adaptable software stubs to easily emulate dependent logical
components (i.e., bootloader, TEE OS, and REE OS), directly
addressing C1 (Section 3). Third, our framework allows for
precise injection of hardware interactions via breakpoints that
are required during boot. Especially MMIO reads of status
bits indicating success after the initialization and configura-
tion of peripherals need to be emulated.

Physical Memory Layout. The targeted firmware binary
must be appropriately loaded in memory to run correctly [57].
Fortunately, the secure monitor sets up its own virtual ad-
dress space. For ARMv8-A binaries, the base address of
the first level translation table is held in the system regis-
ter TTBR0_EL3. By systematically searching for accesses to
this register in the secure monitor binary, we can identify its
physical address space.

The necessary steps boil down to (1) finding the access
to the register holding the translation table base address and
(2) traversing the valid descriptors to locate used physical
address ranges. From the permissions in the descriptors, we
can pinpoint the executable range (usually only one), thus
the physical base address of the secure monitor’s executable
code. In our experiments, the code parts of the secure monitor
where the MMU is enabled (first bit of SCTLR_EL3 is set)
turned out to be a vital oracle to check if the secure monitor
is placed correctly.

Software Dependencies. Solving dependencies on other
logical software components is one of the challenges faced
during partial-rehosting of intertwined software stacks (C1 in
Section 3). The secure monitor directly interacts with three
software components: the bootloader, the TEE OS, and the
REE OS. We managed to emulate these dependencies across
our dataset of seven secure monitors with three small stubs
per target comprising no more than 16 AArch64 assembly
instructions, demonstrating this task’s feasibility. Moreover,
most of the stubs are similar and only needed slight adjustment
for target-specific values.

The stubs set general purpose registers to pass parameters
or return values (e.g., the TEE OS stub indicates a success-
ful boot to the secure monitor) and initiate exception level
switches. These stubs are designed to be adaptable and even
allow us to influence the secure monitor’s behavior. For ex-
ample, the bootloader passes a boot information structure to
the secure monitor, including the TEE and REE OS entry
addresses, allowing us to specify these locations in our emu-
lated bootloader stub. Lastly, when the secure monitor gives
control to the normal world (e.g., switch to the REE OS), we
place a simple REE OS stub just executing SMCs and take a
snapshot. From that point on, EL3XIR’s fuzzing engine takes
over and injects test inputs into the SMC interface, described
in more detail in Section 5.3.

Hardware Dependencies. During the boot process, the
secure monitor encounters MMIO accesses (e.g., polling of
status registers) of peripherals not emulated in the rehosting
environment in the first place. To locate these accesses, we
can watch for endless loops or unhandled exceptions in the
emulator during root cause analysis. By reverse-engineering
small code parts around these loops, we can derive reasonable
behavior for the concerning MMIO register and refine the
emulation with these manually crafted MMIO return values.
Note that this is a manual step of peripheral modeling which
we evaluate in Section 6.1. Because hardware interactions are
intertwined with software dependencies (i.e., they may appear
alternatingly during the iterative refinement process), fully
automating the boot process is out of scope for EL3XIR. How-
ever, during the subsequent fuzzing campaign, we leverage
reflected peripheral modeling (Section 4.2) to handle MMIO
interactions automatically.

SMC Request Reflected Peripheral Modeling

Fuzzing Input

1st
param

2nd
param

... n-th
param

meta
data

1st
MMIO
access

2nd
MMIO
access

... n-th
MMIO
access

Figure 4: EL3XIR partitions the fuzzing input stream. First,
all parameters for the SMC request are populated, then the re-
maining bytes emulate peripheral behavior in MMIO regions.

4.2 Reflected Peripheral Modeling

After a snapshot of the booted secure monitor is taken,
EL3XIR’s automated fuzzing campaign can start. One of
the challenges during the fuzzing of the secure monitor is to
handle hardware interactions in a meaningful way without
manual intervention to overcome coverage walls (C2 in Sec-
tion 3). In contrast to the boot process, the runtime services
exposed by the secure monitor have a more comprehensive
range of hardware dependencies making a manual emulation
approach infeasible given the diversity of hardware platforms.

To overcome these obstacles, EL3XIR repurposes parts of
the fuzzing input to induce reflected peripheral modeling (Fig-
ure 2). When a memory read operation occurs from defined
MMIO regions, EL3XIR captures this event and populates the
corresponding MMIO region with fuzzing input simulating
the peripheral’s behavior.

Figure 4 gives an overview of how EL3XIR partitions the
fuzzing input stream. After all parameters for the SMC request
are populated, the remaining input is used on a per-MMIO
access basis. This technique enables EL3XIR to emulate
highly flexible and realistic peripheral behavior.

Our approach ensures that the secure monitor eventually
receives meaningful values when reading from MMIO reg-
isters. Even better, because EL3XIR has complete control
over the MMIO behavior, it can generate values that exercise
both success and error conditions resulting in extensive code
coverage.

4.3 Interface-aware Fuzzing

While Section 4.1 and Section 4.2 describe approaches that
increase the fidelity of the rehosting environment, EL3XIR
also tackles the orthogonal challenge C3 (Section 3) of deal-
ing with complex and diverse input formats by generating
an interface-aware fuzzing harness. EL3XIR’s fuzzing ap-
proach is interface-aware because it knows how to interact
with the SMC interface using valid function identifiers and
respective expected arguments. For an effective exploration
of the secure monitor’s attack surface, EL3XIR leverages the
REE OS’s knowledge about the structure and semantics of

REE OS
Source Code

SMC Callsite
Localization

Interface-Aware
Types

smc param

store

constant

Type
Extraction

Compile
&

Partition

Backward
Value-Flow
Analysis

... ...

alloc

gep

load

...

Figure 5: EL3XIR’s interface inference is based on a back-
ward value-flow analysis on a manually-picked REE OS
source code partition. EL3XIR automatically identifies SMC
call sites, localizes corresponding parameters in the value-
flow graph, and recovers type-aware function prototypes for
the SMC interface.

the SMC interface to generate and mutate highly targeted and
meaningful test cases. However, the REE OS is not the only
software component interacting with the SMC interface (e.g.,
bootloader and TEE OS). Thus, results may be incomplete
(Section 7). To tackle this problem, EL3XIR performs an ad-
ditional probing phase to identify all function IDs backed by a
corresponding runtime service. The complete list of function
IDs and the partially recovered interfaces (2 in Figure 2)
are combined with domain-specific mutators to generate an
interface-aware fuzzing harness (3 in Figure 2).

Step 1: Interface Recovery

EL3XIR utilizes static analysis on relevant parts of the REE
OS’s code to extract function signatures and parameter values
that correspond to the interfaces exposed by runtime services
(Figure 5). The intuition is that the REE OS possesses the
knowledge required to communicate effectively with the run-
time services provided by the secure monitor. By analyzing
hand-picked partitions of the REE OS code, EL3XIR can au-
tomatically retrieve the arity and semantic type of arguments
involved in calls that utilize the SMC interface. We provide
an excerpt of REE OS code that prepares and sends an SMC
and the corresponding successfully recovered interface by
EL3XIR in Appendix B (Listing 2 and Listing 3).

SMC Call Site Localization. The REE OS invokes the
secure monitor using the SMC instruction. To identify all call
sites, we employ an over-approximating heuristic due to the
SMC instruction often being concealed behind indirect func-
tion calls (e.g., wrapper functions) that require sophisticated
techniques to resolve [41]. Instead, EL3XIR automatically
scans all function calls included in the REE OS partition and
adds those closely matching the SMCCC to the list of poten-
tial SMC call sites. After empirical analysis, we implemented
our heuristic to focus on calls with at least five arguments or
a scalar value as their first argument. This simple approach
ensures that we primarily consider more complex function sig-
natures while filtering out incorrect candidates. The resulting
false positives will later be pruned, leaving only high-quality

SMC interface descriptions. We provide an overview of recov-
ered interfaces and evaluation of our heuristic in Section 6.2.

SMC Parameter Type Identification. Given potential
SMC call sites, EL3XIR performs a backward depth-first
search along the value-flow graph to recover type information
and scalar values of arguments, starting with each argument
node of a call site as a sink. For each source node, we identify
scalar values passed directly (i.e., as a constant) or indirectly
(i.e., as a variable) to SMC call site locations. We retrieve
semantic type information by extracting associated compiler
metadata from memory locations whose values are propa-
gated to arguments for SMC call sites.

Function Identifier Probing and Pruning. The static anal-
ysis of the open-source REE OS produces a list of potential
function identifiers along with their corresponding param-
eters (number of arguments, types, and possibly constants).
However, this list may be incomplete and might contain false
positives. For instance, the secure monitor could implement
runtime services that the REE OS does not use (e.g., the TEE
OS could have exclusive access to some services) or our pre-
vious heuristics could simply miss edge cases.

To resolve these cases, EL3XIR performs a “probing and
pruning” phase. We probe all 232 function identifiers (passed
via x0) and leverage the coverage as an oracle to determine if
a function identifier is backed by a service. For instance, the
coverage map will be the same for the default cases whereas
entering an existing service will lead to distinct coverage
profiles. Additionally, we prune the list of known function
identifiers if it contains function identifiers not backed by
services.

Step 2: Harness Synthesis

By utilizing the comprehensive collection of function identi-
fiers and recovered interfaces supported by the secure monitor,
we generate a refined fuzzing harness (3 in Figure 2) that
leverages this target-specific knowledge and incorporates ad-
ditional domain-specific mutators for the effective exploration
of the secure monitor’s interface.

Interface-aware Input Injection. As depicted in Figure 4,
the fuzzing harness starts to decode the raw bytes of the
fuzzing stream to generate secure monitor requests. To this
end, the initial bytes represent metadata that defines the struc-
ture of the SMC request (e.g., function arity and type of pa-
rameters). At the same time, the harness maps the subsequent
raw bytes to the SMC interface by filling registers and mem-
ory regions with values according to their inferred type. For
example, the first parameter is a four-byte scalar value copied
into the x0 register to define the function identifier (first entry
in Listing 3). When the SMC request is injected (all recovered
parameters are filled with values), all remaining bytes are held
for reflected peripheral modeling (Section 4.2).

Domain-specific Mutators. EL3XIR incorporates three
domain-specific mutators into its fuzzing harness, enabling

targeted mutations of fuzzing inputs to generate high-quality
test cases. It is important to note that these mutators are tai-
lored explicitly for secure monitor implementations. However,
since EL3XIR’s harness is a standalone component, the muta-
tors can be customized per-target.

The first mutator ensures that memory references primarily
fall within the memory range of the REE OS. This approach
is rooted in the expectation that secure monitors implement
validation logic to verify that parameter addresses point to
memory within the REE OS (Listing 1). If EL3XIR suc-
cessfully recovered memory reference type information for a
parameter (e.g., register x2 with type phys_addr_t in List-
ing 3), our mutator ensures this parameter primarily holds
valid addresses while intentionally introducing occasional in-
valid ones to identify potential unsanitized memory pointers.

The second mutator addresses the alignment of size val-
ues for memory buffers in communication with peripherals
via MMIO. Hardware devices often have specific alignment
requirements for accessing data, and failing to meet these
requirements can lead to hardware errors. As a result, secure
monitors incorporate alignment checks to ensure accurate
communication with these peripherals that can act as cover-
age walls (Listing 1). If a size parameter is recovered (e.g.,
register x3 with type size_t in Listing 3), our mutator strives
to satisfy these alignment checks in most cases while still
allowing for the rare possibility of sending misaligned data to
ensure extensive code coverage.

Lastly, the third mutator aims to reuse known interfaces for
runtime services whose interface has not been recovered. The
underlying idea is that low-level firmware interfaces that ad-
here to the same calling convention, such as the SMCCC [5],
often share identical function signatures.

5 Implementation Details

As a framework that enables effective end-to-end fuzzing of
COTS secure monitors, we designed EL3XIR with expand-
ability and adaptability in mind. In this section, we describe
implementation details of EL3XIR’s three main components
(Section 4). This includes the partial-rehosting framework
(Section 5.1), reflected peripheral modeling (Section 5.2), and
interface-aware fuzzing (Section 5.3).

5.1 Secure Monitor Rehosting Framework

EL3XIR’s rehosting framework (Section 4.1) extends
avatar2 (version 1.3.1) [45] and its configurable machine
which is integrated into QEMU [13]. We choose QEMU as
our core emulator because it has direct support for ARMv8-A
CPUs and the TrustZone extensions. By leveraging avatar2’s
flexible physical memory description, we can adjust the mem-
ory layout to align with the requirements of the targeted secure
monitor and directly write software stub code into memory

during setup. EL3XIR comes with prototypes for the boot-
loader, REE OS, and TEE OS which can be easily adjusted
during the iterative refinement rehosting process. We solve
the injection of precise hardware emulation during boot by
setting breakpoints at the location of failing MMIO read op-
erations and implementing handler functions that allow to
directly write expected values into destination registers of the
load instruction.

5.2 Reflected Peripheral Modeling
EL3XIR repurposes fuzzing data to dynamically emulate
MMIO interactions (Section 4.2). This enables EL3XIR to
overcome coverage walls caused by MMIO reads by provid-
ing fuzzing input at the location of MMIO memory regions
mimicking peripheral behavior. For this feature, we modi-
fied avatar2’s remote memory peripheral to request fuzz data
when a read operation occurs. Consequently, we replaced all
physical memory regions belonging to MMIO regions with
our modified memory peripheral that will return fuzzing data
to our target. We ignore MMIO write operations because
they only result in internal hardware state changes and our
fuzzer sends the expected peripheral output to the target on
subsequent MMIO reads.

5.3 Interface-Aware Fuzzing
Interface Recovery. EL3XIR’s static analysis is based on
LLVM (version 14.0.0) and SVF (version 2.5) [54]. We gen-
erate LLVM-bitcode by compiling the REE OS source code
without any optimizations to retain metadata. Furthermore,
EL3XIR only analyzes a smaller hand-picked partition as
building the value-flow graph for the entire kernel is infea-
sible [37]. Picking a REE OS partition can be as simple as
including the driver files that communicate with the targeted
vendor’s secure monitor. Finding these via keywords in the
source code is manageable manual effort as the partitions only
comprise of a couple of files (Section 6.2).

EL3XIR performs a depth-first search on the value-flow
graph for each argument of a potential SMC call site, pre-
viously identified by scanning all call instructions. The exe-
cution of an SMC instruction is usually written in assembly
code and wrapped in a function that consumes the correspond-
ing register values as parameters. Because the kernel makes
heavy usage of indirect calls for these wrappers, statically
identifying SMC call sites is non-trivial as function point-
ers may only be resolved at runtime. While there exist more
holistic solutions for this problem [41], we employed an over-
approximating heuristic (Section 4.3), that was sufficient for
this task in combination with the fact that REE OS partitions
remained relatively small.

During backward tracing of the value-flow graph, we search
for LLVM instructions that load, store or calculate pointer
addresses to trigger EL3XIR’s extraction routine (example

in Appendix B). While the extraction of scalar values from
the value-flow graph was trivial, extracting semantic C-types
required more effort. EL3XIR does this by traversing LLVM
intrinsic function calls and matching parameters to find LLVM
metadata using the source code line as an indicator. We hold
the results in a list with the basic block being an identifier.
Clustering function prototypes purely by the function iden-
tifier (x0) is not possible because there might be multiple
interfaces for one function identifier. For example, a runtime
service might implement a sub-service that uses x1 as a com-
mand identifier. Every recovered interface is saved as a CVS
file in which each tuple represents the associated register, a
C-Type, and an optionally recovered constant (e.g., Listing 3).

Fuzzing Framework. We implemented EL3XIR’s fuzzing
approach by extending qemuafl, the QEMU user-mode of
AFL++ (version 3.15a) [26] to support full-system emulation.
We achieve this by integrating avatar2’s configurable machine
and a forkserver capable of executing copies of the entire VM
as child processes. Because QEMU is a multi-threaded pro-
cess, forking complete VMs turned out to be a non-trivial task.
Our solution is inspired by TriforceAFL [30]. We shut down
the CPU thread on reaching the initial fuzzing location (e.g.,
the first instruction in the REE OS) and spin up the forkserver
that creates a new CPU thread for each child. By loading the
snapshot of the targeted secure monitor beforehand, each new
child is initially in a reset state.

Unlike TriforceAFL, our fuzzing harness is implemented as
a shared object, thus being part of the QEMU process which
saves the effort to run an agent in the VM. Instead, the harness
is triggered when a defined address is hit during emulation
(e.g., the first instruction in the REE OS stub). EL3XIR’s
harness takes AFL++’s input via shared memory and writes
test cases directly into the VM’s registers and memory. For
the detection of crashes, we modified the CPU thread to abort
if it encounters an exception raised by the MMU (e.g., data or
prefetch abort) and forward the signal to AFL++ indicating a
crash. Coverage information is fed back to AFL++ through a
bitmap in shared memory which is filled by the CPU thread
during the translation of instructions.

6 Evaluation

Our evaluation of EL3XIR answers these research questions:

RQ1 Are the manual steps of EL3XIR’s partial-rehosting
approach feasible? (Section 6.1)

RQ2 Is EL3XIR’s interface recovery effective in prototyping
function signatures of runtime services? (Section 6.2)

RQ3 Does the reflected peripheral modeling technique im-
prove EL3XIR’s exploration capability? (Section 6.3)

RQ4 How does EL3XIR compare against existing methods
to fuzz TEE firmware? (Section 6.3 and Section 6.4)

RQ5 Can EL3XIR be used to uncover previously unknown
bugs in real-world secure monitors? (Section 6.4)

To answer these questions, we conduct several experiments
targeting the secure monitors of different platforms (Table 1).
We use a diverse set of platforms from several reputable ven-
dors. EL3XIR enables fuzzing proprietary secure monitors.
For the open-source targets, we compiled the secure monitors
according to the available platform-specific instructions and
only used the binaries. Moreover, we obtained proprietary
secure monitors from COTS devices or firmware updates.

Table 1: Dataset of secure monitors used for EL3XIR’s evalu-
ation. Proprietary (Prop.) indicates if the implementation is
closed-source.

Vendor SoC Prop. Size

Intel Stratix 10 SoC FPGA 45 KB
NXP i.MX 8 Series 37 KB
Xilinx Zynq MPSoC 49 KB
Nvidia Tegra X2 T186 75 KB
Huawei Kirin 659 ✓ 112 KB
Samsung Exynos 7420 Octa ✓ 192 KB
Samsung Exynos 8890 Octa ✓ 144 KB

6.1 Manual Effort for Rehosting

We now quantify the manual effort required to build an initial
rehosting environment that can be used to properly boot the
targeted secure monitor (RQ1). Naturally, we were required
to carry out some reverse engineering efforts to implement
target-specific software stubs and hardware interactions. How-
ever, while rehosting the first secure monitor did take multiple
weeks, we iteratively improved EL3XIR’s rehosting frame-
work which cut this time down to only some days.

Software Stubs. To solve software dependencies, we re-
place logical dependent components with software stubs im-
plemented in assembly (Section 4.1). We create the bootloader
stub by identifying the entry point in the secure monitor binary
and reverse-engineer expected arguments (e.g., boot informa-
tion structure for the TEE OS and REE OS). For each target,
we implemented bootloader stubs with around five lines of
assembly, that fill registers with expected values and execute
a return instruction to jump to the secure monitor’s entry
address. We replace the TEE OS with a four-line assembly
stub that populates the register x0 with a value indicating
the successful initialization of the TEE OS and executes an
SMC, handing control back to the secure monitor. We replace
the REE OS with two assembly instructions executing the
exception level switch to EL3. EL3XIR provides skeletons
for each software stub thus the effort to extend it with a new

secure monitor boils down to changing a handful of values in
the boot information structures and register parameters.

Hardware Interactions. To boot the secure monitor, we
need to place manually crafted hooks, that emulate successful
peripheral behavior to keep the target running (Section 4.1).
In most scenarios, we can allow the secure monitor to execute
from its entrypoint and observe any instances when it gets
stuck (e.g., enters an infinite loop) or an exception is thrown.
This behavior often indicates the polling of MMIO status
registers. We briefly analyze the assembly code at the error
location and then insert a hook that sets the relevant destina-
tion registers to the expected values to satisfy the control flow
graph constraints validating successful peripheral initializa-
tion. One exception for MMIO polling were the Exynos-based
secure monitors. Depending on MMIO registers, these secure
monitors would enable the MMU at different locations, result-
ing in a crash if the translation tables were not properly set up
yet. By investigating the crash location, we identify involved
registers, and guide the control flow to boot the secure moni-
tor. In total, we needed one (Kirin 659), two (i.MX 8), three
(Stratix 10), three (Tegra T186), seven (Zynqmp MPSoC),
eight (Exynos 8890), and ten (Exynos 7420) of these MMIO
hooks for the respective chipset.

As detailed in this section, partially rehosting the diverse
set of open- and closed-source secure monitors from Table 1
to the point where the REE OS is booted, is feasible (RQ1).

6.2 Interface Recovery

In this section, we evaluate EL3XIR’s interface recovery
(Section 4.3). EL3XIR operates on REE OS partitions hand-
picked for each target. In total, the partitions consisted of four,
eleven, five, and four REE OS files for the Stratix 10, i.MX 8
Series, Zynq MPSoC, and Tegra X2 T186 respectively. The
size of partitions ranged from around 400KB to 1.4MB with
EL3XIR’s analysis time remaining within minutes per tar-
get. To answer RQ2 we compare the number of successfully
recovered interfaces Σrec

rt to the total number of offered run-
time services by the targeted secure monitor Σrt , as depicted
in Table 2. As we do not have a reliable ground truth for
the closed-source targets, we only focus on the open-source
ones. Overall EL3XIR recovers between 36% and 61% of
all runtime services for our targets. After closer analysis, we
found that nearly all of the remaining runtime services were
not exercised by the REE OS but rather previous bootloader
stages running in the REE which are not part of EL3XIR’s
analyzed set as there is usually no source code available (Sec-
tion 7). For example, EL3XIR only recovered 36% of runtime
services for the Nvidia Tegra target which is rooted in the fact
that our analyzed REE OS did not support all functionality
offered by the secure monitor (e.g., the Linux kernel did not
support the Software Delegated Exception Interface).

False Positives. In order to evaluate the accuracy of
EL3XIR’s interface recovery heuristic (Section 4.3), we count

the rate of falsely recovered interfaces during static analysis
of the REE OS partitions. In column Σcand

rt of Table 2 we
count the total number of interface candidates after EL3XIR’s
static value-flow analysis. After analyzing the results we iden-
tified duplicate candidates with the same function identifier
Σ

dup
rt . EL3XIR included these because it successfully recov-

ered multiple scalar values for other registers (e.g., register
x1 is used as a command identifier for a sub-service). Further-
more, EL3XIR recovered interfaces that were not offered by
the targeted secure monitor but are still part of the REE OS
code ΣREE

rt , because SoCs often share REE OS drivers. If we
consider candidates that have no or no valid function identi-
fier (Σno f id

rt and Σ
wrong f id
rt) we reach between 57 and 96 false

positives, with percentage rates 30% and 54%, respectively.
After sorting out candidates without any function identifier
we can narrow this down to 0% and 12%, resulting in false
positive rates between zero and twelve percent. In the end,
EL3XIR’s probing phase will also sort out candidates with
no valid function identifier as they will all result in the same
coverage profile.

6.3 Coverage
We provide a comparative evaluation of EL3XIR’s achieved
coverage (RQ4) and investigate the effect of reflected periph-
eral modeling on the exploration capability (RQ3).

To establish a coverage baseline, we repurpose the fuzzing
harness originally developed for PartEmu [32]. While
PartEmu is the closest work to ours, it does not include evalu-
ation of secure monitors due to their heavy reliance on hard-
ware interactions (C2 in Section 3). Although the PartEmu
prototype was not publicly released, we reimplemented their
fuzzing harness based on their publication. To promote repro-
ducibility and support future research, we will make all of our
artifacts publicly available.

The PartEmu harness is not interface-aware, meaning that it
does not employ any knowledge about the function signatures
of runtime services. Thus, we dubbed this approach adhering
to the generic SMCCC interface-unaware. Additionally, we
introduce a naive MMIO modeling approach where all MMIO
ranges are backed with zeroed rw memory always returning
the last stored value. EL3XIR is designed such that both
interface awareness and reflected peripheral modeling can be
turned on or off before starting a fuzzing campaign.

In total, we compare the following four different fuzzing
configurations of EL3XIR targeting the seven targets from Ta-
ble 1:

i f ace−/mmio−: Iface-unaware + naive MMIO (PartEmu [32])

i f ace+/mmio−: Iface-aware + naive MMIO

i f ace−/mmio+: Iface-unaware + reflected peripheral modeling

i f ace+/mmio+: Iface-aware + reflected peripheral modeling

Table 2: Σrt states the number of runtime services we found in each target binary (ground truth), while Σrec
rt counts all successfully

recovered ones by EL3XIR (percentage share in parentheses). EL3XIR’s static analysis grants Σcand
rt interface candidates

with Σ
dup
rt duplicates. We filter out candidates only present in the REE OS partition (ΣREE

rt), those without (Σno f id
rt) or a wrong

(Σwrong f id
rt) function identifier. The false positive rates are given in percentage in parentheses with respect to Σcand

rt .

SoC Σrt Σcand
rt Σ

dup
rt ΣREE

rt Σ
no f id
rt Σ

wrong f id
rt Σrec

rt

Stratix 10 SoC FPGA 122 177 2 (1%) 0 (0%) 96 (54%) 5 (3%) 74 (61%)
i.MX 8 Series 68 89 0 (0%) 9 (10%) 42 (47%) 8 (9%) 30 (44%)
Zynq MPSoC 91 188 24 (13%) 31 (17%) 57 (30%) 23 (12%) 53 (58%)
Tegra X2 T186 78 55 2 (4%) 2 (4%) 23 (42%) 0 (0%) 28 (36%)

Figure 6 illustrates the accumulated edge coverage over
time for all four fuzzing configurations. For each target, we
run each fuzzer eight times for 24 hours, and plot the average
coverage and the min/max coverage (shaded area). We run
these experiments on a 16-core Intel Xeon Gold 5218 proces-
sor (hyperthreading disabled) with 64GB of RAM and limit
each 24-hour run to one core.

Reflected Peripheral Modeling. One of EL3XIR’s tech-
nical contributions is reflected peripheral modeling (Sec-
tion 4.2). In contrast to the naive approaches i f ace−/mmio− and
i f ace+/mmio−, we leverage the fuzzing input to populate read ac-
cesses to MMIO registers. We hypothesize that this technique
contributes to code exploration (RQ3) as naive approaches are
not able to overcome MMIO coverage walls (C2 in Section 3).
If we compare the reflected peripheral modeling configura-
tions (i f ace−/mmio+ and i f ace+/mmio+) to their naive counterparts,
we can see a robust gap in edge coverage across all seven
targets (Figure 6).

For a deeper evaluation, we identify coverage walls in
the four open-source target’s runtime services and check if
EL3XIR overcomes them through successful MMIO read
operations provided by reflected peripheral modeling. We
present the results in Table 3 showcasing that EL3XIR’s
reflected peripheral modeling is used in up to 87% of run-
time services Σwall

rt at least once. In all affected ones, re-
flected peripheral modeling leads to an increase in code cov-
erage. By rerunning all resulting inputs after the fuzzing cam-
paign and counting MMIO access addresses, we identify all
unique MMIO addresses across all runtime services in column
ΣMMIO. EL3XIR successfully models several unique MMIO
register accesses across all targets. Additionally, we count the
total number of uniquely returned MMIO values for these reg-
isters which resulted in 7742, 8815, 1802, and 1866 different
values returned for the Stratix 10, i.MX 8 Series, Zynq MP-
SoC, and Tegra X2 T186 chipsets, respectively. In summary,
EL3XIR’s reflected peripheral modeling automatically emu-
lates the behavior of several peripherals (with multiple MMIO
registers being involved ΣMMIO) by providing thousands of
different return values during fuzzing, exercising both success
and failure states of MMIO handling routines. Therefore, re-

cent approaches trying to manually emulate these peripheral
interactions [32] can not be considered scalable solutions.

Comparison with the State-of-the-Art. By comparing
the achieved coverage of i f ace−/mmio− against i f ace+/mmio− (Fig-
ure 6), we can reason about RQ4. Taking i f ace−/mmio− as an
optimistic baseline to represent prior work on fuzzing TEE
firmware, we can see that EL3XIR using its contributions
i f ace+/mmio+, outperforms the state-of-the-art in terms of cov-
erage in every single experiment. Furthermore, we observe
that i f ace−/mmio+ and i f ace+/mmio− reach coverage levels between
the base line and EL3XIR. This indicates that EL3XIR’s
technical contributions (Section 4.2 and Section 4.3) indeed
complement each other. Additionally, when comparing the
maximum edge coverage reached (Table 4) by EL3XIR’s full
configuration (i f ace+/mmio+) and our adaption of PartEmu [32]
(i f ace−/mmio−), we can see that EL3XIR increases the reached
coverage by up to 51%.

Table 3: Total number and percentage of runtime services
affected by MMIO coverage walls Σwall

rt . ΣMMIO states the
number of unique MMIO read registers successfully modeled
by EL3XIR across all affected runtime services.

SoC Σrt Σwall
rt ΣMMIO

Stratix 10 122 51 (42%) 37
i.MX 8 Series 68 6 (9%) 58
Zynq MPSoC 91 79 (87%) 5
Tegra X2 T186 78 24 (31%) 158

6.4 Finding Bugs
Our fuzzing campaigns resulted in a variety of crashes across
all seven targets. After deduplication and root cause analysis,
we identified 34 bugs with 17 being security relevant.

We compare the number of unique bugs found by the base-
line fuzzer and full-featured EL3XIR to reason about RQ4.
In total, EL3XIR found 34 and i f ace−/mmio− found 19 unique
bugs. EL3XIR triggered significantly more crashes, and the

00:00 6:00 12:00 18:00 24:00
Time (hh:mm)

0

250

500

750

1000

1250

1500

1750

Ed
ge

 C
ov

er
ag

e

HUAWEI KIRIN659

00:00 6:00 12:00 18:00 24:00
Time (hh:mm)

Ed
ge

 C
ov

er
ag

e

INTEL STRATIX 10

00:00 6:00 12:00 18:00 24:00
Time (hh:mm)

Ed
ge

 C
ov

er
ag

e

NVIDIA TEGRA X2 T186

00:00 6:00 12:00 18:00 24:00
Time (hh:mm)

Ed
ge

 C
ov

er
ag

e

NXP IMX8 SERIES

00:00 6:00 12:00 18:00 24:00
Time (hh:mm)

0

250

500

750

1000

1250

1500

1750

Ed
ge

 C
ov

er
ag

e

SAMSUNG EXYNOS 7420

00:00 6:00 12:00 18:00 24:00
Time (hh:mm)

Ed
ge

 C
ov

er
ag

e
SAMSUNG EXYNOS 8890

00:00 6:00 12:00 18:00 24:00
Time (hh:mm)

Ed
ge

 C
ov

er
ag

e

XILINX ZYNQ MPSOC

iface − /mmio −

iface + /mmio −

iface − /mmio +

iface + /mmio +

Figure 6: Coverage plots for our seven targets with all four fuzzing configurations. In its full configuration (i f ace+/mmio+) EL3XIR
achieves the most coverage for every target, while the state-of-the-art fuzzing approach (i f ace−/mmio−) finds the least coverage.
This shows that EL3XIR’s contributions and their interplay are effective in better exercising the secure monitor’s interface and
overcoming coverage walls through MMIO modeling.

ones found by i f ace−/mmio− are a strict subset of the crashes
found by i f ace+/mmio+. EL3XIR’s crashes contain 17 security-
critical bugs whereas the i f ace−/mmio− mode’s set of bugs only
contains 10. These bugs are distributed over five out of the
seven targets, and contain arbitrary read and write primitives
that can be leveraged to breach the confidentiality and in-
tegrity of the secure monitor and therefore TEE. We present
a detailed overview of affected targets and descriptions for
security-relevant bugs in Table 5.

To answer RQ5, we manually triaged all vulnerabilities and
responsibly disclosed them to the respective vendors. While
we selectively tested and reproduced some crashes on produc-
tion devices as well, we did not have access to all devices in
question, thus by including the vendor we can verify the re-
producibility of bugs found by EL3XIR. In summary, vendors
assigned six CVEs and six additional crashes were confirmed
with patches already rolled out.
Case Study I: 0-day bugs in Intel’s Stratix 10 SoC FPGA
EL3XIR uncovered seven previously unknown vulnerabili-
ties in the secure monitor implementation running on Intel’s
Stratix 10 SoC FPGA for which four CVEs were assigned.
The secure monitor implements functionality to interact with
a Field Programmable Gate Array (FPGA) for the accelerated
and protected calculation of cryptographic actions (e.g., AES).
The production device is running a Linux kernel driver that
sends a payload to runtime services via shared kernel space

memory. The secure monitor receives the physical address
and copies the payload to secure memory in order to prepare
the request for the FPGA which is only accessible in the TEE.

We identified that the bugs cause bounds validations for
memcpy calls resulting in out-of-bound writes, corrupting se-
cure memory. Thus, an attacker can overwrite the secure mon-
itor’s memory with an arbitrary payload. Due to the lack of
stack canaries or ASLR, developing an exploit to gain code
execution with this primitive is straightforward. For example,
an attacker can overwrite the page tables to map additional
memory on behalf of the secure monitor and inject executable
payload. As a result, a privilege escalation to the highest
privilege level (EL3) is possible, demolishing any security
guarantees provided by ARM TrustZone.
Case Study II: N-day bugs in Huawei’s Kirin 659 To val-
idate that EL3XIR can also find bugs in proprietary secure
monitor implementations, we verified that EL3XIR can repro-
duce already known bugs in TEE firmware running on Huawei
P20lite devices based on the Kirin 659 SoC. Huawei decided
to implement multiple runtime services on top of ARM’s ref-
erence implementation, including drivers for replay-protected
memory blocks (RPMB). A statically shared memory loca-
tion is used to exchange data between the non-trusted kernel
drivers and secure runtime services.

In total, EL3XIR found seven unique crashes scattered
across three different runtime services, of which three were

Table 4: Maximal edge coverage reached by EL3XIR for each target. We compare the percentage increase of each of EL3XIR’s
configuration to our baseline PartEmu adaptation (i f ace−/mmio−) in parentheses with the highest increase being marked in bold.

Total Edges Covered

SoC i f ace−/mmio− i f ace+/mmio− i f ace−/mmio+ i f ace+/mmio+

Huawei Kirin 659 1178 1388 (18%) 1300 (10%) 1507 (28%)
Intel Stratix 10 1485 1560 (5%) 1612 (9%) 1697 (14%)
Nvidia Tegra X2 T186 1088 1121 (3%) 1387 (27%) 1413 (30%)
NXP i.MX 8 Series 706 762 (8%) 864 (22%) 884 (25%)
Samsung Exynos 7420 Octa 513 569 (11%) 747 (46%) 773 (51%)
Samsung Exynos 8890 Octa 609 616 (1%) 834 (37%) 870 (43%)
Xilinx Zynq MPSoC 1303 1302 (0%) 1594 (22%) 1622 (24%)

in the RPMB runtime service. Two of those crash locations
turned out to be arbitrary write and read primitives respec-
tively. As found before [56], both crashes are exploitable
bugs that can lead to code execution at EL3. EL3XIR was
capable of pinpointing the exact crash locations used during
the privilege escalation exploit. In essence, an attacker can
map non-secure memory on behalf of the secure memory, fill
it with payload code, and by overwriting control flow data
execute the payload.

7 Discussion

In this section, we discuss design decisions and future re-
search directions of EL3XIR.

Encrypted Binaries. EL3XIR is a rehosting-based fuzzing
framework. Thus, similar to other rehosting approaches, we
need access to the plaintext target binaries. Obtaining these bi-
naries might be challenging for COTS devices that receive en-
crypted firmware updates. For instance, we observed that the
secure monitor is encrypted in recent updates for the newest
phones of Samsung and Huawei.

Manual Effort. Although EL3XIR reduces the manual
effort involved in rehosting COTS firmware binaries com-
pared to the state-of-the-art approach described by Harrison
et al. [32], we still require the implementation of software
stubs to emulate dependent components and smaller hardware
emulation during the boot process (Section 4.1). Automating
the initial rehosting process proved to be challenging due to
the intertwined and non-standardized sequences of the boot
flow. For example, Samsung’s secure monitor tried to boot
separate loadable firmware components before switching to
the REE OS. In our experiments, we manually bypassed these
loading sequences to focus our fuzzing efforts on the secure
monitor and to cut down on additional rehosting effort. There-
fore, while EL3XIR still requires some manual work from an
expert, we consider our design to be a significant advancement
toward achieving a more comprehensive automation solution
for rehosting highly-intertwined firmware components.

Modeling Direct Memory Access. Furthermore,
EL3XIR’s MMIO modeling approach (Section 4.2) cannot
deal with direct memory access (DMA). While we did not
encounter any DMA-capable peripherals in our dataset,
we note that these peripherals are currently out of scope.
Supporting DMA-capable peripherals would need dedicated
handling partially addressed by prior work [44].

Closed-source Consumers. EL3XIR’s approach to recov-
ering interfaces for unknown runtime services requires the
source code of corresponding consumers of the SMC inter-
face. In its current implementation EL3XIR only focuses on
open-source REE OS drivers to retrieve interfaces. While
we did not encounter any proprietary drivers communicating
with the secure monitor, vendors might deploy closed-source
drivers which would render EL3XIR’s current implementa-
tion ineffective. However, there is work trying to recover
interfaces from unknown function signatures on a binary-
level [19]. Beyond that, additional consumer components (e.g.
TEE OS or subsequent bootloader) could also be analyzed to
collect even more function prototypes for runtime services not
exercised by the REE OS. As interface awareness is only one
of EL3XIR’s components, we believe that these approaches
would complement our work.

Horizontal Extension. Since PartEmu [32] was severely
limited by the lack of interface- and state-awareness, reflected
by low coverage results, our future plans include the extension
of EL3XIR to fuzz proprietary TEE OSes and TAs. Further-
more, we believe that EL3XIR’s approach is applicable to
fuzz components of other highly-intertwined firmware bina-
ries like bootloader components (e.g., uboot or UEFI).

8 Related Work

Prior research on TrustZone-based systems focuses on static
analysis of TEE components [15, 17, 27, 42, 52, 53] with rel-
atively few researchers attacking the SMC interface to the
secure monitor [43]. Cerdeira et al. [18] give an overview of
vulnerabilities in TrustZone-based systems, including publicly

Table 5: Overview of bugs found by EL3XIR.

SoC Affected
Runtime Service Description Disclosure

Intel Stratix 10 intel_fcs_aes_crypt_init Buffer Overflow CVE-2022-38787,
CVE-2023-49614

Intel Stratix 10
intel_fcs_ecdsa_sha2_data_
sig_verify_update_finalize

Buffer Overflow CVE-2023-22327

Intel Stratix 10 intel_fcs_ecdh_request_finalize Buffer Overflow CVE-2023-22327

Intel Stratix 10
intel_fcs_ecdsa_hash

_sign_finalize
Buffer Overflow CVE-2023-22327

Intel Stratix 10
intel_fcs_ecdsa_hash
_sig_verify_finalize

Buffer Overflow CVE-2023-22327

Intel Stratix 10
intel_fcs_mac_verify

_update_finalize
Buffer Overflow CVE-2023-22327

Intel Stratix 10 intel_fcs_decryption Buffer Overflow CVE-2024-22390
NXP i.MX 8 Series imx_gpc_set_affinity Buffer Overflow Confirmed
NXP i.MX 8 Series imx_gpc_pm_domain_enable Buffer Overflow Confirmed
NXP i.MX 8 Series imx_gpc_hwirq_unmask Buffer Overflow Confirmed
NXP i.MX 8 Series imx_gpc_set_wake Buffer Overflow Confirmed
NXP i.MX 8 Series imx_gpc_hwirq_mask Buffer Overflow Confirmed
Xilinx Zynq MPSoC pm_api_clock_get_name Improper Input Validation CVE-2023-31339
Nvidia Tegra X2 T186 psci_affinity_info Improper Input Validation Confirmed by ARM
Nvidia Tegra X2 T186 sdei_interrupt_bind Improper Input Validation CVE-2023-49100
Huawei Kirin 659 SoC smc_rpmb_state Buffer Overflow Rediscovered [56]
Huawei Kirin 659 SoC smc_rpmb_state Buffer Overflow Rediscovered [56]

reported bugs in secure monitor implementations. EL3XIR is
the first automatic testing platform tailored for fuzzing exactly
this proprietary TEE firmware component.

Dynamically analyzing proprietary TEE components is
challenging. On-device approaches [14,16] lack the introspec-
tion capabilities to enable feedback-guided fuzzing. Harrison
et al. [32] report on the feasibility of enabling dynamic analy-
sis for TEE OSes and TAs by manually building emulators. In
contrast, EL3XIR addresses the unexplored secure monitor,
and advances approaches like PartEmu by adding interface
awareness and automated peripheral modeling.

EL3XIR relies on rehosting techniques [24] to enable dy-
namic analysis. The majority of rehosting work focuses on
small, standalone embedded firmware [21,25,38,50], whereas
EL3XIR addresses highly-intertwined components from a sig-
nificantly larger software stack. However, these approaches
share the problem of correct peripheral behavior modeling.
HALucinator [21] is based on manually crafted high-level
emulation hooks that are infeasible to build for the large num-
ber and variety of undocumented custom hardware encoun-
tered in secure monitor implementations. Another line of
research [25, 50, 58] aims to automate MMIO register be-
havior. These works have a heavy-weight static or dynamic

analysis phase in common. In comparison, EL3XIR uses cov-
erage feedback as an oracle to assess the quality of generated
MMIO behavior, and smoothly integrates its reflected periph-
eral modeling approach into the fuzzing process.

Interface-aware fuzzing has been previously employed for
various targets [12, 16, 22, 23, 47]. TEEzz [16] is the first to
target ARM TrustZone firmware by trying to recover TEE
interface-aware seeds on production devices via recording
interactions between the Client Application and TA. Instead
EL3XIR automatically derives interface-aware information
by statically analyzing the REE OS, eliminating the depen-
dency on real-world devices and enhancing scalability. Sev-
eral works [23, 37] apply static analysis to the Linux kernel
source code to improve fuzzing campaigns. In comparison,
EL3XIR does not analyze the closed-source secure monitor
(i.e., the target) itself but rather its open-source consumers.

EL3XIR derives function prototypes by analyzing the con-
sumer of the SMC interface (REE OS driver) which is similar
to work addressing automated test driver generation from
library source code [11, 29, 35]. Moreover, there exist ap-
proaches that try to derive interfaces from closed-source bi-
naries [20, 39]. As described in Section 7, we believe that
EL3XIR might benefit from statically analyzing additional

closed-source consumers (e.g., TEE OS and bootloader) to
uncover even more interfaces of runtime services. However,
it is worth noting that even by solely analyzing the REE OS,
EL3XIR can already identify the majority of function signa-
tures, leaving the additional tasks for future research.

9 Conclusions

EL3XIR presents the first end-to-end rehosting and fuzzing
framework targeting proprietary secure monitor implementa-
tions. The secure monitor is part of the TEE and runs on the
highest privilege level on ARM-based devices. Because its
complex interface is directly exposed to untrusted components
(REE OS at EL1), security-critical bugs pose a single point
of failure and can annihilate the entire platform’s security.

Our evaluation covered seven different platforms, and
EL3XIR found 17 security-critical bugs. We systematically
evaluated EL3XIR with experiments providing evidence that
our interface-awareness approach and peripheral modeling
contribute during fuzzing to explored code coverage and the
number of bugs found. In contrast, naive fuzzing approaches
are ineffective for fuzzing secure monitors.

Acknowledgments

We thank our anonymous reviewers for their valuable feed-
back and comments. Additionally, we would like to thank
our shepherd for guiding us during the major revision pro-
cess. This work was supported, in part, by the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation program (grant agree-
ment No. 850868), SNSF PCEGP2_186974, and DARPA
HR001119S0089-AMP-FP-034.

Availability

EL3XIR’s source code and artifacts are openly accessible at
https://github.com/HexHive/EL3XIR.

References

[1] Arm Architecture Reference Manual Armv8.
https://documentation-service.arm.com/
static/60119835773bb020e3de6fee?token=.

[2] ARM TrustZone. https://developer.arm.com/ip-
products/security-ip/trustzone.

[3] Google Android Security Vulnerabilities.
https://www.cvedetails.com/vulnerability-
list/vendor_id-1224/product_id-19997/
Google-Android.htm, 2023.

[4] A. Adamski and M. Peterlin. Huawei Secure Monitor
Vulnerabilities, 2022. https://blog.impalabs.com/
2212_advisory_huawei-secure-monitor.html.

[5] ARM. SMC Calling Convention for ARMv8-
A. https://documentation-service.arm.com/
static/5f8ea482f86e16515cdbe3c6?token=.

[6] ARM. Trusted Firmware-A - Reference Secure
Firmware for Armv7-A, Armv8-A and Armv9-A
systems. https://developer.arm.com/tools-and-
software/open-source-software/firmware/
trusted-firmware/trusted-firmware-a.

[7] ARM. ARM Firmware Update, 2023.
https://trustedfirmware-a.readthedocs.io/
en/latest/components/firmware-update.html.

[8] ARM. ARM Power State Coordination Interface, 2023.
https://developer.arm.com/Architectures/
Power%20State%20Coordination%20Interface.

[9] ARM. ARM SiP Services, 2023. https:
//trustedfirmware-a.readthedocs.io/en/
latest/components/arm-sip-service.html.

[10] A. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar,
G. Ganesh, J. Ma, and W. Shen. Hypervision Across
Worlds: Real-time Kernel Protection from the ARM
TrustZone Secure World. In Proc. of the ACM CCS,
2014.

[11] D. Babic, S. Bucur, Y. Chen, F. Ivancic, T. King, M. Ku-
sano, C. Lemieux, L. Szekeres, and W. Wang. FUDGE:
Fuzz Driver Generation at Scale. In Proc. of the ACM
Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering, 2019.

[12] O. Bastani, R. Sharma, A. Aiken, and P. Liang. Syn-
thesizing Program Input Grammars. ACM SIGPLAN
Notices, 2017.

[13] F. Bellard. QEMU, a Fast and Portable Dynamic Trans-
lator. In Proc. of the USENIX Annual Technical Confer-
ence, 2005.

[14] G. Beniamini. FuzzZone, 2016. https:
//github.com/laginimaineb/fuzz_zone/tree/
master/FuzzZone.

[15] M. Busch and K. Dirsch. Finding 1-day Vulnerabili-
ties in Trusted Applications using Selective Symbolic
Execution. In Workshop on Binary Analysis Research
(BAR), 2020.

[16] M. Busch, A. Machiry, C. Spensky, G. Vigna,
C. Kruegel, and M. Payer. TEEzz: Fuzzing Trusted

https://github.com/HexHive/EL3XIR
https://documentation-service.arm.com/static/60119835773bb020e3de6fee?token=
https://documentation-service.arm.com/static/60119835773bb020e3de6fee?token=
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-19997/Google-Android.htm
https://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-19997/Google-Android.htm
https://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-19997/Google-Android.htm
https://blog.impalabs.com/2212_advisory_huawei-secure-monitor.html
https://blog.impalabs.com/2212_advisory_huawei-secure-monitor.html
https://documentation-service.arm.com/static/5f8ea482f86e16515cdbe3c6?token=
https://documentation-service.arm.com/static/5f8ea482f86e16515cdbe3c6?token=
https://developer.arm.com/tools-and-software/open-source-software/firmware/trusted-firmware/trusted-firmware-a
https://developer.arm.com/tools-and-software/open-source-software/firmware/trusted-firmware/trusted-firmware-a
https://developer.arm.com/tools-and-software/open-source-software/firmware/trusted-firmware/trusted-firmware-a
https://trustedfirmware-a.readthedocs.io/en/latest/components/firmware-update.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/firmware-update.html
https://developer.arm.com/Architectures/Power%20State%20Coordination%20Interface
https://developer.arm.com/Architectures/Power%20State%20Coordination%20Interface
https://trustedfirmware-a.readthedocs.io/en/latest/components/arm-sip-service.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/arm-sip-service.html
https://trustedfirmware-a.readthedocs.io/en/latest/components/arm-sip-service.html
https://github.com/laginimaineb/fuzz_zone/tree/master/FuzzZone
https://github.com/laginimaineb/fuzz_zone/tree/master/FuzzZone
https://github.com/laginimaineb/fuzz_zone/tree/master/FuzzZone

Applications on COTS Android Devices. In IEEE Sym-
posium on Security and Privacy, 2023.

[17] M. Busch, J. Westphal, and T. Müller. Unearthing the
TrustedCore: A Critical Review on Huawei’s Trusted
Execution Environment. In 14th USENIX Workshop on
Offensive Technologies, 2020.

[18] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto. SoK:
Understanding the Prevailing Security Vulnerabilities in
TrustZone-assisted TEE Systems. In IEEE Symposium
on Security and Privacy, 2020.

[19] W. Chen, Y. Wang, Z. Zhang, and Z. Qian. SyzGen: Au-
tomated Generation of Syscall Specification of Closed-
Source macOS Drivers. In Proc. of the ACM CCS, 2021.

[20] W. Chen, Y. Wang, Z. Zhang, and Z. Qian. SyzGen: Au-
tomated Generation of Syscall Specification of Closed-
Source macOS Drivers. In Proc. of the ACM CCS, 2021.

[21] A. Clements, E. Gustafson, T. Scharnowski, P. Grosen,
D. Fritz, C. Kruegel, G. Vigna, S. Bagchi, and M. Payer.
HALucinator: Firmware Re-hosting Through Abstrac-
tion Layer Emulation. In 29th USENIX Security Sympo-
sium, 2020.

[22] P. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda.
Prospex: Protocol Specification Extraction. In 30th
IEEE Symposium on Security and Privacy, 2009.

[23] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili,
S. Hao, C. Kruegel, and G. Vigna. Difuze: Interface
Aware Fuzzing for Kernel Drivers. In Proc. of the ACM
CCS, 2017.

[24] A. Fasano, T. Ballo, M. Muench, T. Leek, A. Bulekov,
B. Dolan-Gavitt, M. Egele, A. Francillon, L. Lu, N. Gre-
gory, D. Balzarotti, and W. Robertson. SoK: Enabling
Security Analyses of Embedded Systems via Rehosting.
In Proc. of the ASIA CCS, 2021.

[25] B. Feng, A. Mera, and L. Lu. P2IM: Scalable and
Hardware-independent Firmware Testing via Automatic
Peripheral Interface Modeling. In 29th USENIX Security
Symposium, 2020.

[26] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse.
AFL++: Combining Incremental Steps of Fuzzing Re-
search. In Proc. of the 14th USENIX Conference on
Offensive Technologies, 2020.

[27] F. Fleischer, M. Busch, and P. Kuhrt. Memory Cor-
ruption Attacks within Android TEEs: A Case Study
Based on OP-TEE. In 15th International Conference on
Availability, Reliability and Security, 2020.

[28] Google. DRM, 2022. https://source.android.com/
devices/drm.

[29] H. Green and T. Avgerinos. GraphFuzz: Library API
Fuzzing with Lifetime-aware Dataflow Graphs. In Proc.
of the 44th International Conference on Software Engi-
neering, 2022.

[30] N. Group. ProjectTriforce, 2016. https://
github.com/nccgroup/TriforceAFL.

[31] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and
T. Jaeger. TrustShadow: Secure Execution of Unmod-
ified Applications with ARM TrustZone. In Proc. of
the 15th Annual International Conference on Mobile
Systems, Applications, and Services, 2017.

[32] Lee H., Hayawardh V., Rohan P., Koushik S., and
Michael G. PARTEMU: Enabling Dynamic Analysis of
Real-World TrustZone Software Using Emulation. In
29th USENIX Security Symposium, 2020.

[33] G. Hernandez, M. Muench, D. Maier, A. Milburn,
S. Park, T. Scharnowski, T. Tucker, P. Traynor, and
K. Butler. FIRMWIRE: Transparent Dynamic Anal-
ysis for Cellular Baseband Firmware. In Proc. of the
NDSS, 2022.

[34] F. Hofhammer, M. Busch, Q. Wang, M. Egele, and
M. Payer. SURGEON: Performant, Flexible and Accu-
rate Re-Hosting via Transplantation. In Workshop on
Binary Analysis Research (BAR), 2024.

[35] K. Ispoglou, D. Austin, V. Mohan, and M. Payer. Fuz-
zGen: Automatic Fuzzer Generation. In 29th USENIX
Security Symposium, 2020.

[36] J. Jang, S. Kong, M. Kim, D. Kim, and B. Kang. Se-
CReT: Secure Channel between Rich Execution Envi-
ronment and Trusted Execution Environment. In Proc.
of the NDSS, 2015.

[37] D. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin.
Razzer: Finding Kernel Race Bugs through Fuzzing. In
IEEE Symposium on Security and Privacy, 2019.

[38] E. Johnson, M. Bland, Y. Zhu, J. Mason, S. Checkoway,
S. Savage, and K. Levchenko. Jetset: Targeted Firmware
Rehosting for Embedded Systems. In 30th USENIX
Security Symposium, 2021.

[39] J. Jung, S. Tong, H. Hu, J. Lim, Y. Jin, and T. Kim.
WINNIE : Fuzzing Windows Applications with Harness
Synthesis and Fast Cloning. In Proc. of the 28th NDSS,
2021.

[40] D. Komaromy. Unbox Your Phones, 2018.
https://medium.com/taszksec/unbox-your-
phone-part-i-331bbf44c30c.

https://source.android.com/devices/drm
https://source.android.com/devices/drm
https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://medium.com/taszksec/unbox-your-phone-part-i-331bbf44c30c
https://medium.com/taszksec/unbox-your-phone-part-i-331bbf44c30c

[41] K. Lu and H. Hu. Where Does It Go? Refining Indirect-
Call Targets with Multi-Layer Type Analysis. In Proc.
of the ACM CCS, 2019.

[42] A. Machiry, E. Gustafson, C. Spensky, C. Salls,
N. Stephens, R. Wang, A. Bianchi, Y. Ryn Choe,
C. Kruegel, and G. Vigna. BOOMERANG: Exploiting
the Semantic Gap in Trusted Execution Environments.
In Proc. of the NDSS, 2017.

[43] F. Menarini and M. Bogaard. Bug Hunting S21’s
10ADAB1E FW. OffensiveCon22, 2022.

[44] A. Mera, B. Feng, L. Lu, and E. Kirda. DICE: Auto-
matic Emulation of DMA Input Channels for Dynamic
Firmware Analysis. In 42nd IEEE Symposium on Secu-
rity and Privacy, 2021.

[45] M. Muench, D. Nisi, A. Francillon, and D. Balzarotti.
Avatar2: A Multi-target Orchestration Platform. In
Workshop on Binary Analysis Research (BAR), 2018.

[46] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and
S. Martin. TrustZone Explained: Architectural Fea-
tures and Use Cases. In Proc. of the Collaboration and
Internet Computing, 2016.

[47] G. Pan, X. Lin, X. Zhang, Y. Jia, S. Ji, C. Wu, X. Ying,
J. Wang, and Y. Wu. V-SHUTTLE: Scalable and
Semantics-Aware Hypervisor Virtual Device Fuzzing.
In Proc. of the ACM CCS, 2021.

[48] S. Pinto and N. Santos. Demystifying Arm TrustZone:
A Comprehensive Survey. ACM Comput. Surv., 2019.

[49] M. Pirker and D. Slamanig. A Framework for Privacy-
Preserving Mobile Payment on Security Enhanced ARM
TrustZone Platforms. In IEEE 11th International Con-
ference on Trust, Security and Privacy in Computing
and Communications, 2012.

[50] T. Scharnowski, N. Bars, M. Schloegel, E. Gustafson,
M. Muench, G. Vigna, C. Kruegel, T. Holz, and A. Ab-
basi. Fuzzware: Using Precise MMIO Modeling for
Effective Firmware Fuzzing. In 31st USENIX Security
Symposium, 2022.

[51] F. Schwarz. TrustedGateway: TEE-Assisted Routing
and Firewall Enforcement Using ARM TrustZone. In
25th International Symposium on Research in Attacks,
Intrusions and Defenses, 2022.

[52] A. Shakevsky, E. Ronen, and A. Wool. Trust Dies in
Darkness: Shedding Light on Samsung’s TrustZone Key-
master Design. In 31st USENIX Security Symposium,
2022.

[53] D. Suciu, S. McLaughlin, L. Simon, and R. Sion. Hori-
zontal Privilege Escalation in Trusted Applications. In
29th USENIX Security Symposium, 2020.

[54] Y. Sui and J. Xue. SVF: Interprocedural Static Value-
Flow Analysis in LLVM. In Proc. of the 25th interna-
tional conference on compiler construction, 2016.

[55] H. Sun, K. Sun, Y. Wang, and J. Jing. TrustOTP: Trans-
forming Smartphones into Secure One-Time Password
Tokens. In Proc. of the 22nd ACM CCS, 2015.

[56] Guanxing W. EL3 Tour: Get The Ultimate Privilege of
Android Phone, 2021. https://github.com/hhj4ck/
EL3Tour.

[57] C. Wright, W. Moeglein, S. Bagchi, M. Kulkarni, and
A. Clements. Challenges in Firmware Re-Hosting, Em-
ulation, and Analysis. ACM Computing Surveys, 2021.

[58] W. Zhou, L. Guan, P. Liu, and Y. Zhang. Automatic
Firmware Emulation through Invalidity-Guided Knowl-
edge Inference. In 30th USENIX Security Symposium,
2021.

A Appendix

Example for MMIO Coverage Wall. The problem of cov-
erage walls caused by missing MMIO behavior is illustrated
in Listing 1. Each mmio_read_32 function call to memory
regions associated with the underlying crypto engine (e.g.,
CRYPTO_CTRL_REG) will not yield a meaningful value without
a proper peripheral model behind the MMIO registers. Conse-
quently, a naive fuzzing approach would never execute the ex-
emplary sip_encryption function beyond interactions with
the crypto engine, as read operations from CRYPTO_CTRL_REG
would never return a valid status code to break out of the loop.

1 // parameters are passed via registers x1 - x4
2 int sip_encryption(u32 src_addr, u32 src_size, u32

dst_addr, u32 dst_size) {
3

4 // parsing and validation logic
5 if (dst_size == NULL || src_size == NULL)
6 return SIP_SMC_STATUS_REJECTED;
7

8 if (src_size % 4 != 0, dst_size % 4 != 0)
9 return SIP_SMC_STATUS_REJECTED;

10

11 // verify that source and destination memory is in
normal world

12 if (!addr_in_nw_range(src_addr, src_size) ||
13 !addr_in_nw_range(dst_addr, dst_size))
14 return SIP_SMC_STATUS_REJECTED;
15

16 for (u32 i = 0; i < dst_size; i += 4) {
17 // write payload chunk to mmio data register
18 mmio_write_32(CRYPTO_DATA_REG, *(src_addr + i));

https://github.com/hhj4ck/EL3Tour
https://github.com/hhj4ck/EL3Tour

19

20 // activate crypto engine with exemplary status
code

21 mmio_write_32(CRYPTO_CTRL_REG, 0x1);
22

23 // wait for crypto engine to finish or fail
24 do {
25 u32 status = mmio_read_32(MMIO_CTRL_REG);
26 if(status & 0x2) { break; }
27 else if (status & 0x1) { continue; }
28 else { return SIP_SMC_STATUS_REJECTED; }
29

30 } while (1);
31

32 // read encrypted payload chunk
33 *(dst_addr + i) = mmio_read_32(CRYPTO_DATA_REG);
34 }
35

36 return SIP_SMC_STATUS_OK;
37 }

Listing 1: Indicative encryption function of a silicon provider
runtime service using a cryptographic engine accessed via
MMIO.

B Appendix

Example for Successfully Recovered Interface.
EL3XIR’s recovers the SMC interface from the REE
OS source code. Our system localizes SMC call site
candidates and applies a backward-directed value-flow
analysis for each parameter of the interface. Listing 2 shows
a code snippet from the Linux kernel of the Stratix 10 SoC
FPGA by Intel. EL3XIR identifies line 24 as a potential SMC
callsite and follows the value-flow of each parameter a0 -
a7 backwards. EL3XIR recovers both scalars and data types
for each parameter (where possible) by scanning for store,
load, and gep LLVM instructions in the value-flow graph.

1 ...
2 struct stratix10_svc_data {
3 struct stratix10_svc_chan *chan;
4 phys_addr_t paddr;
5 size_t size;
6 phys_addr_t paddr_output;
7 size_t size_output;
8 u32 command;
9 u32 flag;

10 u64 arg[6];
11 };
12 ...
13 struct stratix10_svc_data *pdata = NULL;
14 pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
15 ...
16 case COMMAND_FCS_DATA_ENCRYPTION:
17 a0 = INTEL_SIP_SMC_FCS_CRYPTION;
18 a1 = 1;
19 a2 = (unsigned long)pdata->paddr;

20 a3 = (unsigned long)pdata->size;
21 a4 = (unsigned long)pdata->paddr_output;
22 a5 = (unsigned long)pdata->size_output;
23 ...
24 arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7);

Listing 2: Code snippet from the Linux kernel setting up and
executing an SMC call. The a0 parameter is the function ID
used to define the requested runtime service.

The successfully recovered interface is illustrated in List-
ing 3. EL3XIR recovers the function identifier for the x0 reg-
ister (INTEL_SIP_SMC_FCS_CRYPTION = 0x4200005B) and
type information or constants for the remaining parameters
(e.g., a2 holds a physical address and a1 can hold the constant
0x1). The interface is saved in a CVS file and used to refine
EL3XIR’s harness.

1 0, unsigned long, 0x4200005B
2 1, u64, 0x1
3 2, phys_addr_t,
4 3, size_t,
5 4, phys_addr_t,
6 5, size_t,

Listing 3: Recovered interface by EL3XIR with format:
register idx, C-type, constant (optional).

	Introduction
	Background
	Challenges
	EL3XIR's Approach
	Partial-Rehosting of Secure Monitors
	Reflected Peripheral Modeling
	Interface-aware Fuzzing

	Implementation Details
	Secure Monitor Rehosting Framework
	Reflected Peripheral Modeling
	Interface-Aware Fuzzing

	Evaluation
	Manual Effort for Rehosting
	Interface Recovery
	Coverage
	Finding Bugs

	Discussion
	Related Work
	Conclusions
	Appendix
	Appendix

