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Abstract—The trade-off between exploration and exploitation
stages poses a major challenge to Greybox fuzzing. TUNEFUZZ
addresses this challenge through a novel input prioritization
algorithm that maximizes the reached and triggered sanitizer
labels. Our multi-distance metric and dynamic target ranking
improve both exploration and exploitation. TUNEFUZZ found 56
new bugs (38 CVEs) in well-tested open source software.

Index Terms—fuzzing, sanitizer

I. INTRODUCTION

Greybox fuzzing has proven its efficacy in hunting real-
world bugs. Coverage-guided greybox fuzzers like AFL [1]
instrument the target programs and collect their edge coverage.
Based on the simplifying assumption that vulnerabilities are
evenly distributed among the whole program, AFL adopts
a seed selection strategy that treats each edge equally to
maximize the overall coverage, thus enhancing its bug-finding
capability according to the baseline assumption.

However, existing works point out that not all code regions
are equally vulnerable. Evidently, vulnerable areas deserve
more (or even most) of the fuzzing energy. Instead of evenly
fuzzing all code regions, an optimal greybox fuzzer should
assess the threat capability of each area to then prioritize
security-sensitive regions for bug finding. Several related
works have focused on this challenge. TortoiseFuzz [2] pro-
poses coverage accounting to estimate the memory corruption
threat from basic blocks, loop and function levels respectively,
further prioritizing seeds with estimated higher risk. While
coverage accounting cannot model non-memory error, Parme-
San [3] and SAVIOR [4] propose to use sanitizer labels [5] as
threat indicators. Compared to coverage accounting, sanitizer-
guided fuzzers can handle arbitrary types of bugs if there are
corresponding sanitizer, introducing significant portabilities.

A Sanitizer Directed Greybox Fuzzers (SDGF) should
balance between two phases: (1) exploration, i.e., fuzzers
should direct the exploration towards sanitizer targets; and (2)
exploitation, i.e., a fuzzer should repetitively test the reached
targets and try to satisfy the sanitizer conditions.

For existing SDGFs, we observe two core limitations that af-
fect both exploration and exploitation. First, existing SDGFs
calculate the distance from one seed to a target set. Regardless
of the target set size, the distance will be normalized to one
via harmonic average. For SDGFs that leverage sanitzer labels,
the target set may contain up to hundred thousand targets,
posing a great challenge for fuzzer to distinguish which target
is closer to a specific seed. Second, current SDGFs assign
a time-invariant priority to the target. By reachable analysis
or profiling, they remove less promising targets before the
fuzzing campaign, and treat the remaining targets equally at
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Fig. 1: Overview of TUNEFUZZ workflow.

runtime. Unfortunately, we observe that the target priority
changes during the fuzzing campaign. Therefore, a time-
invariant approach might misclassify the targets, thus missing
the real bugs or wasting energy in bug-free areas.

We propose TUNEFUZZ [6], which addresses the above
challenges through our three core contributions:

• A distance metric between seeds and targets that is
independent of the size of the target set and robust against
unresolved indirect jumps.

• A dynamic target ranking that automatically guides the
fuzzer’s energy towards promising locations, while dis-
carding thoroughly explored ones.

• TUNEFUZZ, a novel queue culling strategy that maxi-
mizes the number of explored and exploited targets.

II. DESIGN AND IMPLEMENTATION

Figure 1 depicts the overall workflow. During compilation,
TUNEFUZZ customizes the plug-in LLVM pass and collects
the static callgraph, control flow graph, and sanitizer labels
accordingly 3 . The instrumented programs 2 follow the
existing greybox fuzzing approach in which a forkserver
repeatedly executes during the life cycle via the pipelines 4 .
Meanwhile, TUNEFUZZ calculates the seed-to-target distance
according to its execution trace 7 , ranking the target 8 and
select corresponding seeds 6 . During execution 5 , runtime
feedback allows TUNEFUZZ to update the target priority map.

A. Distance Metric

To overcome the imprecision of current seed-target distance
metrics [3], [7], we propose to estimate the “closest” seed
for each target independently. However, tracing the distance
at basic block level would require an enormous amount of
information, which would slow down the fuzzing campaign. To
reduce the tracing overhead, we measure the minimal distance
between the seed and functions on the call graph.
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Fig. 2: Example of handling indirect calls.

We first pre-calculate a static distance map that contains
the minimum distance among functions. Then, we leverage the
static distance map to estimate the closest seed to a function
at runtime (i.e., the seed that visits the function closest to
the target). In the last part of the section, we discuss how
TUNEFUZZ handles indirect calls.

Static Distance Map: The static distance map is a look-
up table that contains the minimum distance for each function
pair. The distance is estimated over the control-flow-graph
(CFG) and the call-graph (CG), which we extract during
compilation from LLVM-IR. This initial analysis, for now, is
oblivious to indirect calls.

To calculate the static distance map, TUNEFUZZ assigns a
weight for each function pair (fi, f) such that f is a callee of
fi. The weight represents the minimum number of conditional
edges that a seed might traverse from the entry point of fi
to the callee function f , and is computed with the function
dbb(ma,mb) (i.e., distance from basic block ma to mb).

After computing the weights, TUNEFUZZ defines the dis-
tance between two functions as the sum of their weight
along the shortest path between two functions based on the
compilation-extracted CG.

Dynamic Seed to Function Distance: Having the static
distance map, we define a function dsf(s, f) that represents the
distance between the functions traversed by the seed s and a
function f , which iterate the fi in the path of seed s, then
take the minimum weight(fi, f) as the final dsf(s, f).

Figure 2 illustrates how we also handles indirect calls.

B. Dynamic Target Priority

One of the key features of TUNEFUZZ is to focus its
energy by selecting the most promising targets. Inspired by
ASOP [8], we notice that frequently hit targets are “already
well explored” and therefore less likely to be buggy. Less
explored targets should therefore be prioritized to uncover new
bugs. Thus, we record the hit frequency of each target during
the fuzzing campaign, then assign less frequently visited target
a higher priority and further prioritize corresponding seeds.

C. Queue Culling Algorithm

Our queue culling module relies on the Distance Mea-
surement (§ II-A), Target Ranking (§ II-B), and default al-
gorithm of the base fuzzer. These three components are
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Fig. 3: TUNEFUZZ queue culling model

used in inter-function exploration, exploitation, and intra-
function exploration, respectively – all pictured in Figure 3.
The purpose of the inter-function exploration is to reach
interesting functions (i.e., expanding the search scope). This
phase leverages the Distance Measurement (§ II-A) to select
seeds closer to functions containing untriggered targets. The
intra-function exploration focuses on testing internal functions
based on the original fuzzer algorithm, and tries to hit as many
targets as possible. Finally, the exploitation phase maximizes
the triggered targets (i.e., reaping the benefits) by using the
Dynamic Target Ranking (§ II-B).

CONCLUSION

Fuzzers find bugs by exploring new code regions and
repeatedly trying to exploit them. TUNEFUZZ’s novel input
prioritization mechanism balances these two phases explicitly.
For exploration, TUNEFUZZ precisely tracks ten thousands
of target locations through its multi-distance metric. For ex-
ploitation, TUNEFUZZ adaptively discards exhausted targets
for better energy distribution. So far, TUNEFUZZ discovered
56 new bugs (38 CVEs), two of which were acknowledged
by Apple and Huawei (EulerOS-SA-2022-2226, HT213340),
TUNEFUZZ will be released as open source and integrated
with FuzzBench.
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