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Abstract—Directed fuzzing demonstrates the potential to re-
produce bug reports, verify patches, and debug vulnerabilities.
State-of-the-art directed fuzzers prioritize inputs that are more
likely to trigger the target vulnerability or filter irrelevant
inputs unrelated to the targets. Despite these efforts, existing
approaches struggle to reproduce specific vulnerabilities as
most generated inputs are irrelevant. For instance, in the
Magma benchmark, more than 94% of generated inputs miss
the target vulnerability. We call this challenge the indirect input
generation problem.

We propose to increase the yield of inputs that reach
the target location by restraining input generation. Our key
insight is to infer likely invariants from both reachable and
unreachable executed inputs to constrain the search space of
the subsequent input generation and produce more reachable
inputs. Moreover, we propose two selection strategies to mini-
mize the fraction of unnecessary inputs for efficient invariant
inference and deprioritize imprecise invariants for effective
input generation. Halo, our prototype implementation, outper-
forms state-of-the-art directed fuzzers with a 15.3x speedup
in reproducing target vulnerabilities by generating 6.2x more
reachable inputs. During our evaluation, we also detected ten
previously unknown bugs involving seven incomplete fixes in
the latest versions of well-fuzzed targets.

1. Introduction

Fuzzing is arguably the most effective way of finding
vulnerabilities in today’s software systems. However, the
complexity of modern software architectures and the ever-
growing threat of cyber-attacks pose significant challenges
for developers to verify, analyze, and fix vulnerabilities. In
response to these challenges, directed fuzzing has emerged
as a powerful tool to target specific areas in software (com-
pared to general-purpose fuzzing). Building on conventional
fuzz testing, directed fuzzing allows developers to diagnose
specific program behaviors and uncover vulnerabilities that
other testing methods might overlook. It has many vital
applications, such as testing patches with regression [1],
[2], reproducing crashes [3], [4], validating static analysis
reports [5], [6], and generating proof-of-concept inputs for
various vulnerabilities [7].

The key to efficiently reproducing specific vulnerabilities
is to generate inputs that get close to the target areas as
early as possible. However, such directed input generation
requires solving path conditions, which suffer from path
explosion and expensive constraint-solving problems, to be
scalable. For example, KATCH [8], the directed version of
the most widely-used symbolic execution engine, KLEE [9],
cannot expose Heartbleed even in 24 hours, while directed
fuzzers AFLGo takes less than 20 minutes [10]. Therefore,
unlike conventional approaches that rely on heavyweight
symbolic execution to generate inputs [2], [8], [11], directed
fuzzers mitigate the scalability issue by designing various
fitness functions to have a higher priority in examining the
target vulnerabilities.

However, despite tremendous efforts made, the majority
of inputs generated by existing directed fuzzers still can not
reach the target areas, which we refer to as indirect input
generation problem. Specifically, the majority of existing
efforts [10], [12], [13], [14], [15], [16] merely generate
random inputs based on seed templates. Their intuition is
to prioritize a few seeds that are “closer” to the target
and, therefore, more likely to reach the target area. Since
most input generation methods rely on randomly mutating
the seed, existing fuzzers generate an enormous number
of unreachable inputs that entirely miss the targets. For
instance, over 95% of the generated inputs from directed
greybox fuzzing fail to reach the targets [17]. This low yield
puts a burden on the fuzzer as resources are unnecessarily
spent on unreachable paths. Alternatively, some state-of-the-
art approaches [17], [18], [19] propose to reject unreachable
inputs. Their intuition is to terminate the execution once it
reaches program points that cannot reach the targets. Even
though resources can be saved by terminating the execution
of irrelevant inputs in advance, these fuzzers still spend
substantial effort generating unreachable inputs.

This paper presents an effective directed greybox fuzzing
technique to address the indirect input generation problem
by efficiently generating more inputs aimed toward the
targets. Our key insight is that historically executed inputs,
either reachable or unreachable to the target, can be used
to approximate conditions for reaching the targets, thus
minimizing the search space of subsequent input generation.
With more inputs reaching the target, our fuzzer has a higher
chance of triggering the target vulnerabilities. Specifically,



executed inputs can be regarded as a sample distribution
from the search space described by path conditions. If
the exact distribution can be inferred, the fuzzer can only
generate inputs satisfying the conditions to reach the tar-
get. For example, if the fuzzer can infer the relation of
flag = 2a∧ flag < 20 when reaching Line 11 in Figure 1
based on observed values of a in various executed inputs, it
could enforce subsequent inputs to be constrained by a < 10
and only explore relevant branches toward the target at Line
14. Moreover, even with a less precise relation, e.g., a < 30,
fuzzers still filter unreachable inputs from a ≥ 30.

To accurately deduce the conditions required to reach the
desired targets, we dynamically utilize the executed inputs,
both reachable or unreachable toward the target, to infer
likely invariants approximating the condition. Invariants de-
rived from reachable inputs approximate the path condition
to the target. On complementary, invariants inferred from
unreachable inputs indicate the condition subsequent inputs
should not satisfy. To efficiently generate inputs that can sat-
isfy the target condition, we have devised two strategies that
optimize the deduction of the likely invariant: distance-based
input selection and similarity-based invariant selection. The
former strategy aims to reduce the number of inputs needed
for inferring the precise invariants efficiently, while the latter
eliminates imprecise invariants to enhance input generation
effectiveness.

We implement our design of this input-constraining
directed greybox fuzzer in Halo. Our evaluation uses the
Magma [20] benchmark to compare Halo against four state-
of-the-art directed fuzzers: AFLGo [10], Beacon [17], Win-
dRanger [15], and SelectFuzz [16]; and four state-of-the-
art non-directed fuzzers including AFL [21], AFL++ [22],
ParmeSan [23], and SymCC [24]. The results demonstrate
that Halo can generate 6.2x more reachable inputs during the
fuzzing process. Therefore, Halo significantly outperforms
existing efforts in reproducing specific vulnerabilities with a
15.3x speedup. Halo also triggers 18 more targets in Magma
that, so far, other evaluated fuzzers cannot detect. Moreover,
Halo also proves great practicality in real-world scenarios
by finding ten previously undiscovered bugs involving seven
incomplete fixes in the newest version of the projects, five
of which cannot be detected by existing fuzzers.

To sum up, we make the following key contributions:
1) We propose to utilize the executed inputs to dynam-

ically infer likely invariants for constraining input
search space, thus speeding up the vulnerability repro-
duction process in directed fuzzing.

2) We design two novel selection strategies to enhance the
input generation for efficiently reducing the proportion
of the irrelevant input generated.

3) We provide empirical evidence that our approach de-
signed is more efficient and effective than the state-of-
the-art (directed) fuzzers.

2. Motivation

To better demonstrate the problem and our motivation,
we first summarize the intuition of existing work and justify

1int foo(){
2 char* buf=input();
3 unsigned a,b,c,d=input();
4 int flag = 0;
5
6 for(int i=0;i<a;i++){
7 flag+=2;
8 b+=1;
9 }

10
11 if(flag<20){ //a<10
12 if(b>10){ //a+b>10
13 if(c<20){ //c<20
14 buf[b+c];//overflow when a+b+c>=sizeof(buf)
15 }
16 }
17 }
18 if(d>3){
19 ... //target-irrelevant
20 }
21}

Figure 1: Motivating example.

their weaknesses in Section 2.1. Subsequently, we outline
our motivation to address these issues in Section 2.2.

2.1. Existing Directed Fuzzers

The main intuition of directed fuzzing is only to examine
the program behaviors defined by the targets. To achieve
this purpose, there are two main trends in state-of-the-
art directed fuzzing. One is improving the directness by
selecting the most promising seeds close to the target. The
other is culling the infeasible execution for the inputs that
cannot reach the targets.

Sophisticated Seed Scheduling The majority of existing
efforts [10], [12], [13], [14] pursue selecting the seeds
with the highest probability of detecting the target behavior.
They propose different levels of granularity for the fitness
function to measure the likelihood of reaching the targets.
Specifically, the key intuition is to select the seed closest
to the targets, which requires precise distance measurement.
AFLGo [10] introduced the idea of prioritizing seeds with
minimal distance to the target in the control-flow graph.
Hawkeye [13] optimizes this distance metric by considering
the average “call-trace-distance” obtained from the crash
report. CAFL [12] further refines the call trace with the
necessary instructions to trigger the crash. WindRanger [15]
proposes to refine the fitness by only collecting the dis-
tance from the control-flow deviation blocks. Then, Select-
Fuzz [16] calculates distance only from the variables and
blocks through the data dependence. Meanwhile, another
intuition is to measure the difficulties of reaching the targets.
MC2 [14] transforms directed fuzzing into a Monte-Carlo
counting model, which uses the execution frequency of each
branch to approximate the difficulties in reaching the targets
and, thus, prioritizes seeds with the lowest difficulties.

Although various priority-based approaches can help
directed fuzzing reach the target faster, the majority of
the inputs generated still rely on random mutation, with
only a few prioritized seed inputs. Consequently, randomly



generated inputs may cause directed fuzzing to waste effort
executing them irrelevant to the target.

Culling Infeasible Executions Some fuzzer-created in-
puts may never reach the target area. To reduce the cost
of executions, fuzzers may stop execution as soon as it
becomes clear that the target can no longer be reached [17],
[18], [19]. Their intuition is to identify the execution that
cannot reach the targets and terminate them as early as
possible. To this end, FuzzGuard [18] utilizes a machine-
learning model to predict whether the inputs can reach
the targets. Beacon [17] infers the necessary preconditions
to reach the targets and terminate the execution once the
precondition is violated. SieveFuzz [19] proposes to refine
the unreachable paths that can be pruned adaptively accord-
ing to the dynamic feedback to overcome the indirect call
issues. While rejecting a vast number of infeasible inputs
can improve the efficiency of directed fuzzing, it is still
a compensatory measure since there is no indication to
generate inputs directly targeted toward the target.

2.2. Example and Key Challenges

Even though there are tremendous efforts committed to
directed fuzzing, the indirect input generation problem could
still hinder their effectiveness of reproducing the targets.

On the one hand, some targets could be challenging to
reach even if most seeds are prioritized by distance [10],
[12], [13], [14]. In Figure 1, suppose we have three seeds,
A(a, b, c, d): (15, 5, 10, 10), B(a, b, c, d): (5, 5, 10, 10), and
C(a, b, c, d): (15, 5, 10, 0). Even though existing fuzzers can
prioritize seed B over seeds A and C since B can reach
Line 12, which is closer than seeds A and C reaching Line
11, randomly mutating the seeds may not quickly satisfy
the tight path conditions for a, b, and c from Lines 11-
13, not to mention satisfying the overflow condition, a +
b + c > sizeof(buf). Although seed B is prioritized, the
fuzzer could still generate an enormous number of inputs
violating the path condition, leading to exploring irrelevant
programs, e.g., block at Line 18.

On the other hand, culling infeasible execution leading
to the targets does not help generate the input toward the
targets [17], [18]. For example, Beacon [17] could terminate
the execution based on reachability and path conditions.
Therefore, the fuzzer can stop executing inputs once the
execution reaches Line 18. Nevertheless, the fuzzer still
lacks the knowledge of how to generate input satisfying the
condition at Lines 11-14.

Motivation The key reason for the existing deficiency in
directed fuzzing is that input generation is oblivious to path
conditions to the target. Our observation is that, even though
existing approaches optimize seed selection with additional
feedback or cull unnecessary execution, we must special-
ize input generation for directed fuzzing. So far, existing
work has missed this optimization opportunity. Specifically,
existing directed fuzzers only retain little feedback from
executing the seeds for prioritization, accounting for a minor
part of the generated inputs. Most of the inputs are discarded

Table 1: The numbers of inputs and seeds by fuzzing the
Magma benchmark with a 24-hour budget using AFLGo.

Project NumExecution NumSeed
NumSeed

NumExecution

libpng 3.24E+07 676 2.09E-05
libsndfile 1.00E+08 2638 2.63E-05
libtiff 1.12E+08 3125 2.79E-05
libxml2 1.81E+07 5457 3.01E-04
lua 8.01E+06 2068 2.58E-04
openssl 5.60E+06 3279 5.86E-04
poppler 4.57E+06 10514 2.30E-03
sqlite3 8.45E+07 4679 5.54E-05
php 2.77E+08 2475 8.94E-06

Avg. 7.14E+07 3879 3.98E-04

after execution. For example, Table 1 shows that the state-
of-the-art directed fuzzer, AFLGo, retains feedback from
fewer than 0.01% of the executed inputs on the Magma
benchmark [20]. Consequently, AFLGo cannot effectively
reproduce most of the targets (19 out of 138 targets from
the benchmark), according to our evaluation in Section 4.1.
Therefore, our idea is to utilize the executed inputs for
approximating the target condition, which can constrain the
search space for subsequent input generation.

We use Figure 2 to illustrate our basic intuition. Inputs
can be regarded as samples from the distribution described
by various program paths, whose path conditions are bound-
aries that differentiate the paths. Benefiting from the efficient
input generation speed in fuzzing, we infer these boundaries
based on the significant number of samples. Thus, fuzzers
can generate new inputs constrained by the boundary, in-
creasing the probability of triggering crashes. For instance,
by observing the inputs generated by mutating the values
of a in seeds A, B, and C from the previous example, we
can approximate a condition to reach the target is a < 15
since it is the borderline value of negating the condition at
Line 11. Although this approximation is not as precise as
the original path condition, a < 10, the fuzzer does not
need to generate numerous infeasible inputs (a ≥ 15) that
cannot reach the target, which improves the effectiveness
of reproducing the target vulnerability. Moreover, we can
refine this approximation if a counterexample is found, i.e.,
a = 10, to further enhance practicalness.

However, there are two main challenges for efficiently
approximating conditions and generating inputs:

Challenge 1. How to infer conditions from executed in-
puts efficiently? To achieve high efficiency, the fuzzer must
infer the condition accurately with as few inputs as possible.
While fuzzers are capable of generating a large number
of inputs, recording execution feedback for each input can
introduce significant overhead. Therefore, an effective input
selection strategy is needed to choose only the necessary
inputs for condition inference, minimizing the burden on
the fuzzer’s resources.

Challenge 2. How to generate inputs constrained by
conditions efficiently? To reproduce the target effectively,
the fuzzer should generate the constrained inputs efficiently
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Figure 2: Motivation of Halo. The path condition approxi-
mated by the executed inputs can constrain the search space
of the subsequent input generation to reproduce the target
vulnerability efficiently.
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Figure 3: Workflow of Halo

with the condition inferred rather than continuously invoking
the expensive constraint solver. However, the conditions
could be various while not all of them are equally useful;
e.g., a condition, b > 1, may not significantly constrain the
search space for b compared to the condition, a < 10, for a
in Figure 1. Making the condition unnecessarily complex
could not only slow down the input generation but also
cause the generated inputs to miss the targets. Therefore, it
is essential to efficiently identify the usefulness of inferred
conditions to improve the quality of input generation.

3. Counterexample-guided Directed Fuzzing

Following the motivation in Section 2.2, we present
Halo, a directed fuzzer to effectively generate inputs leading
to the target guided by constraining the input generation us-
ing the approximated conditions. As illustrated in Figure 3,
our core functionality is to infer a series of likely invariants
to effectively approximate the path condition based on the
executed inputs generated by the fuzzers (Section 3.1). To
efficiently infer invariants (Challenge 1), we reduce the
number of inputs the inference engine needs by selecting the
representative inputs that can still precisely infer invariants
(Section 3.2). To efficiently generate the inputs satisfying the
likely invariant (Challenge 2), we deprioritize the invariant
that cannot precisely describe the path condition based on
the adaptive execution feedback from fuzzing to increase
the probability of generating feasible inputs (Section 3.3).

3.1. Intuition: Approximating the Condition with
Dynamic Likely-Invariant Inference

From a high-level view, our approach optimizes the
input generation phase for directed fuzzing with additional

Algorithm 1 Counterexample-guided Directed Fuzzing

Require: Seeds S, Target t
1: repeat
2: s, Iuse ← ChooseNext(S)
3: if Iuse = ∅ or Iuse is not effective then
4: Sreach, Sunreach ← InputSelect(s, t) (§3.2)
5: Ireach ← InvInfer(Sreach)
6: Iunreach ← InvInfer(Sunreach)
7: Iuse ← InvSelect(Ireach,¬Iunreach) (§3.3)
8: end if
9: Inputnew ← Sample(Iuse)

10: Tracing(Inputnew)
11: Havoc&Splice(s)
12: until Timeout is reached

execution feedback, as illustrated in Algorithm 1. When the
fuzzer starts to generate inputs with the selected seed (Line
2), Halo first approximates conditions leading to the targets
based on a set of inputs generated from the chosen seed
(Lines 3-8). Intuitively, the path condition can be regarded
as invariants that should be satisfied by multiple input bytes.
Therefore, our basic intuition is to find an invariant that
all the given inputs can satisfy as the approximation of the
target condition. An invariant is a property that holds at a
certain point or points in a program, which is represented
by the conditions among variables, e.g., being a constant,
a = 10, or linear relation, a + b > +10. To simplify the
computation, we only calculate invariants for input bytes,
which remains sufficient for input generation.

Drawing on this intuition, we propose a lightweight
method inspired by the dynamic likely invariant infer-
ence [25]. The invariants serve as the approximation of the
path condition to the target represented by input bytes, which
can constrain the subsequent input generation.

Preliminary of Invariant Inference. Formally, given
a series of inputs, S, the inference engine infers a set of
invariants, I , that ∀x ∈ S, x |= i, where i ∈ I . We use I to
approximate path conditions for reaching the target that the
input bytes b ∈ x should satisfy. Existing invariant inference
approaches [25], [26], [27] apply a divide-and-conquer-
style search to obtain precise likely invariants and guarantee
the termination of the algorithm. Specifically, the invariant
inference starts from the over-approximation in the form
of a range, [Min,Max], for a set of template invariants,
c1t1 + c2t2 + ... + cntn ≥ 0, representing conditions with
n coefficient, c, and relation, t, which consist of polynomi-
als over program variables to approximate path conditions
among them. Based on the given input, the inference engine
first checks whether the input can satisfy current invariants
during the execution. If so, nothing changes. Otherwise, the
algorithm minimizes the range based on the counter inputs.
Meanwhile, template invariants without valid ranges are
discarded. Therefore, the precision of the invariant inference
relies on the number of given inputs and template invariants.
With more inputs provided, the algorithm gradually refines
the invariants for better accuracy.



Example 3.1. Assumed the inference engine starts with
(−∞,+∞) for three template invariants, a, b, and a+ b, to
approximate the condition at Line 12 in Figure 1. Suppose
a given input, a = 5, b = 0. The inference engine finds
it cannot satisfy the condition with the execution feedback,
and thus shrinks the range of the invariants as: a ∈ (5,+∞),
b ∈ (0,+∞), and a + b ∈ (5,+∞) to increase precision.

The goal of this work is not to improve the invariant
inference algorithm but instead to explicitly apply invariant
inference to improve directed fuzzing. Specifically, we apply
the state-of-the-art invariant inference engine [26] to infer
invariants based on the set of given inputs (Lines 5-6 in
Algorithm 1), which indicates the potential relations among
input bytes. The initial template invariants we employed in-
clude constant checking, lower bound examination involving
a single variable, and linear inequation for co-dependency
among multiple variables, which is widely used as the de-
fault setting in existing invariant inference techniques [25],
[26], [28], [29]. It is worth noting that selecting the ideal
template invariant remains an unsolved optimization oppor-
tunity in dynamic invariant inference, which is not the main
problem we tackle in this paper. We present more details
about existing efforts in Section 5.

Input Collection. Taking advantage of the large number
of inputs generated in fuzzing, Halo infers such invariants to
improve further input generation. Specifically, Halo records
the input bytes and their values influencing reaching the
targets (Line 4 in Algorithm 1). We use the execution
feedback indicating whether the input reaches the targets to
cluster them as Sreach and Sunreach. Section 3.2 presents
details on collecting the values for the relevant input bytes.
Example 3.2. Considering the example in Figure 1
with five inputs not triggering the crashes, A(a, b, c, d):
(15, 5, 20, 10), B(a, b, c, d): (6, 8, 10, 10), C(a, b, c, d):
(12, 5, 30, 0), D(a, b, c, d): (6, 10, 12, 0), and E(a, b, c, d):
(6, 100, 12, 0). Halo only records the inputs bytes influenc-
ing the variables a, b, and c and its values as:

Sreach = B : (6, 8, 10), D : (6, 10, 12), E : (6, 100, 12)

Sunreach = A : (15, 5, 20), C : (12, 5, 30)

Invariant Inference. With the clustered inputs, we infer
the invariants, Ireach and Iunreach, from each cluster of
inputs (Lines 5-6 in Algorithm 1), respectively. Ireach indi-
cates the approximated conditions reaching the target. Com-
plementary, Iunreach measures the conditions that inputs
may not reach the target. Therefore, the newly generated
input should satisfy Ireach and the negation of Iunreach.
Example 3.3. Using the inputs from the previous example,
assume we may obtain the invariants as follows:

Ireach = a < 7, b > 7, c ≤ 10

Iunreach = a > 12, b < 6, c ≥ 20

Ireach could indicate the condition reachable inputs should
satisfy. Moreover, combining with the negation of invariants
generated from the unreachable inputs, Iunreach, we can
have more precise conditions that the inputs should satisfy

through refining invariants for c:

a < 7, a ≤ 12, b > 7, b ≥ 7, c ≤ 10, c ≤ 20

Overall, compared with random mutation, we can avoid
generating unreachable inputs from a > 12 and c > 20.

Remark 1. Instead of leveraging conventional symbolic
execution to precisely reason path conditions, inferred in-
variants are a lightweight approximation, though less precise
than actual path conditions. Still, they are sufficient for
effectively filtering unreachable input generation leveraging
invariants inferred by both reachable and unreachable inputs.
Utilizing only execution feedback and inputs also has better
scalability when tackling complex program behaviors such
as loops. Additionally, unlike existing dynamic invariant
inference approaches, which suffer from the scalability issue
of the significant runtime overhead introduced by recording
intermediate values during execution [26], we only infer the
relations among input bytes to address the indirect input
generation problem, thereby reducing overhead.

Despite the effectiveness of filtering unreachable inputs
with the inferred invariant, it can be prohibitively expensive
to use invariant inference in fuzzing when dealing with
large input spaces with 1) explosive inputs and 2) complex
relations. Therefore, we aim to minimize the dimension
explosion caused by these two primary factors in invariant
inference to improve its scalability for fuzzing.

3.2. Efficient Invariant Inference with Distance-
based Input Selection

While increasing the number of inputs can improve the
accuracy of the inferred likely invariant, inferring the invari-
ant with a significant number of inputs is time-consuming.
Moreover, the deficiency issue aggravates when generating
many random inputs, as most of them cannot help the fuzzer
reach the target.

To efficiently infer the precise invariant, our goal is to
use a minimized set of representative inputs that accurately
portray the target condition. Specifically, we observe that
inputs contribute differently to the precision of the invariant
inference, thus motivating us to minimize the number of
inputs needed for invariant inference.
Example 3.4. Considering the inputs in the previous Ex-
ample 3.2, we notice that the input E does not change
the inference results since it is subsumed by the input D.
Therefore, we do not need to include this input for invariant
inference.

However, quantifying the effectiveness of inputs for
invariant inference is challenging. To tackle this issue, we
regard it as a data clustering problem for the input dis-
tribution, where only inputs close to the boundary of the
condition can aid in inferring the invariant. Inputs that are
far from the boundary cannot effectively describe the target
condition; for example, inputs outside the red lines shown
in Figure 4 are less likely to produce a precise invariant than
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Figure 4: Intuition for distance-based input selection: Inputs
near the boundary approximate the precise invariant.

those inside the lines. Therefore, we can select inputs based
on their distance from the boundary of the condition.

How to Select Inputs. Based on this intuition, we design
a distance-based input selection strategy to choose the inputs
that could infer a more precise invariant. The distance metric
describes the closeness of each input to the boundary of the
condition. As shown in Figure 2, the path condition can be
regarded as a function f(x), where x is the vector of related
input bytes. The inputs making f(x) = 0 consist of the
boundary of the condition. The distance to the boundary can
be represented as |f(x)|. Therefore, the inputs with small
|f(x)| should be chosen for the invariant inference.

Specifically, before the first time mutating each seed, we
follow the procedure of inference-based taint analysis [30],
[31], [32], [33], [34] to obtain the input bytes that influence
reaching the targets by sequentially mutating each byte to
see whether it can change the values of the target points.
We leave potential customization and fine-tuning of taint
analysis as future work. During the analysis, we also record
the values of these related bytes and |f(x)|. To facilitate
the computation, we use the sum of values at all branch
conditions not in the loop that occurred in the execution.
Thus, Halo can preserve a set of inputs closer to the targets
with a small |f(x)|.
Example 3.5. Suppose we want to choose three inputs
from inputs used in Example 3.2, B(a, b, c, d): (6, 8, 10, 10),
D(a, b, c, d): (6, 10, 12, 0), and E(a, b, c, d): (6, 100, 12, 0)
for the program in Figure 1. We first calculate the |f(x)| as
the distance for each input based on the conditions at Lines
11-13:

|f(B)| = 20− 12 + 14− 10 + 20− 10 = 22

|f(D)| = 20− 12 + 16− 10 + 20− 12 = 22

|f(E)| = 20− 12 + 106− 10 + 20− 12 = 112

Since the distance indicates that input E is far from the
boundary of the condition, we only select B and D as the
representative inputs for the invariant inference.

Nevertheless, we cannot obtain the distance for inputs
that do not reach the targets since f(x) does not entirely
execute. Therefore, Halo separates the inputs for invariant
inference based on whether they are reachable to the targets.
Before the target is reached, Halo leverages only unreach-

able inputs to infer likely invariants for all input bytes,
which indicates the condition that reachable inputs should
not satisfy. By negating invariants inferred from unreachable
inputs, the fuzzer can still constrain the search space for
input generation.
Example 3.6. Suppose we only have the invariants,
Iunreach:{a > 12, b < 6, c > 20, d < 10}, inferred from the
unreachable inputs in Example 3.2. Even though we may not
filter the reachable inputs when a ∈ {10, 11, 12} utilizing
the negated invariant, a ≤ 12 from a > 12 in Iunreach as
a < 7 in Ireach does, the fuzzer could still effectively filter
inputs from a > 12 and c > 20.

How Many Input Selected. We determine the number
of reachable and unreachable inputs used in the invariant
inference based on the statistic theory [35], which measure
the minimum samples needed, n, to approximate the whole
distribution as: n = 4Z2

ε2 = 385 where Z is a constant Z-
score determine by the margin of error ε, which is 0.05 for
the 0.95 confidence level.

Remark 2. Unlike existing directed fuzzing approaches that
merely store intermediate states using seeds, Halo preserves
more execution feedback from executed inputs to constrain
the search space for subsequent input generation. On top of
this intuition, the input selection aims to strike a balance
between the additional time costs for data collection and
the precision of the inferred invariants. Moreover, utilizing
the invariants inferred from both reachable and unreachable
inputs not only enhances the scalability of the method, but
also helps improve precision by squeezing the approximate
search space from both directions.

3.3. Effective Input Generation with Similarity-
based Invariant Selection

Although likely invariants can help constrain the search
space for subsequent input generation, the inference en-
gine could provide multiple potential invariants with vary-
ing precision, which may not filter the unreachable input
equally. Invariants may be over-constrained based on the
given inputs, e.g., invariants inferred exclusively from the
unreachable inputs at an early stage. Consequently, using
all the invariants for input generation could introduce a
significant overhead without providing sufficient precision.
Example 3.7. Consider the invariant inferred in Example
3.3. Compared with the invariant, c < 10, c ≤ 20 could
describe the path condition, c < 20 at Line 13 more
precisely. Meanwhile, invariant a < 7 is over-constrained
since the reachable values of a ∈ {7, 8, 9} are filtered.

To efficiently generate inputs constrained by the invari-
ant, our basic intuition is to adaptively select and refine the
invariant based on new input generation, as shown in Fig-
ure 5. Ideally, inputs generated by the most precise invariant
should always satisfy the path condition. The precision loss
is represented by the counterexamples found in the approxi-
mated distribution. A more precise invariant should generate
fewer counterexamples. Therefore, we utilize the execution
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Figure 5: Intuition for similarity-based invariants selection:
Search space described by precise invariants should generate
more reachable inputs.

feedback of generated inputs to estimate which invariant
is more similar to the original path condition. The simi-
larity can be viewed as the probability of generating more
reachable inputs using inferred invariants. Halo prioritizes
inferred invariants based on the ratio of the counterexample
found in the subsequent input generation. Therefore, the
similar search space described by the selected invariants can
improve the effectiveness of generating reachable inputs.

How to Select Invariants. Specifically, we design a
similarity-based invariant selection approach to adaptively
choose the most effective invariants for reachable input
generation. The similarity of each invariant is served as
the probability of the invariant selected by the fuzzer. An
invariant with higher similarity should have a higher prob-
ability of being chosen by the fuzzers. Specifically, we use
the proportion of the reachable inputs generated using the
invariant, Φ, as its similarity:

Similarity(Φ) =
n

N

where n and N are the reachable and total input generated
from the invariant, Φ, respectively.
Example 3.8. Suppose we use the invariants obtained from
the previous Example 3.3 to generate new inputs. Halo
could rapidly find the condition, b ≥ 7, could be over-
constrained since the value of b in the subsequent inputs
generated should also depend on the value of a, according
to the condition at Line 12 in Figure 1. Therefore, Halo
decreases the priority of this invariant based on the new
counterexamples to avoid generating counterexample input
not reaching the target.

Input Generation with Adaptive Invariants. Once we
select the invariant, we sample inputs that satisfy the con-
ditions. Intuitively, since our inferred invariants are linear,
they can form a polytope that describes the search space of
reachable inputs. Therefore, we use the state-of-the-art sam-
pling approach, Vaidya walk [36], which efficiently samples
from a polytope to generate inputs within linear complexity
based on the number of selected invariants. Furthermore,
the similarities of each invariant are continuously updated
based on subsequent input generation during the fuzzing

process. If all inferred invariants could not effectively gen-
erate reachable inputs with low priorities, Halo collects
the discovered counterexamples and infers a new set of
invariants with better precision to maintain the effectiveness
in input generation.

Remark 3. We address input generation in directed fuzzing
from the perspective of the search space, which allows us to
efficiently sample reachable inputs without solving precise
path conditions. Meanwhile, this intuition motivates us to
refine the imprecise search space by utilizing the executed
inputs as a regression. Since invariants are approximations
of actual path conditions, the potential loss of precision
could imprecisely enlarge or shrink the approximated search
space and, thus, hinder their effectiveness in generating
reachable inputs. Moreover, instead of potential runtime
overhead caused by utilizing dynamic program analysis in
existing invariant inference [26], [28], [37], [38], we take
advantage of the tremendous inputs available in fuzzing,
which approximate the distribution of the search space, to
serve as a lightweight oracle for selecting the precise in-
variants. Therefore, we can reduce the number of imprecise
or redundant invariants selected to generate reachable inputs
more efficiently during the fuzzing process.

4. Evaluation

We implemented Halo, a greybox fuzzer with an adap-
tive condition inference engine to generate the inputs leading
to the target effectively. By default, we use AFL++ [22] as
the fuzzing engine. The condition inference engine is based
on existing work, DIG [26].

Based on the implementation, we design a series of
evaluations to demonstrate the effectiveness of Halo by
answering the following research questions:

• RQ1: Can Halo reproduce the target vulnerabilities
faster compared with state-of-the-art (directed) fuzzers?

• RQ2: Can Halo effectively tackle the indirect input
generation problem?

• RQ3: Can Halo practically detect incomplete fix and
new bugs?

• RQ4: Can selection strategies designed in Halo enable
invariant inference assist directed fuzzing effectively?

To answer RQ1, we evaluate the reproduction time of the tar-
get vulnerabilities compared with state-of-the-art (directed)
fuzzers in Section 4.1, which is the primary goal of directed
fuzzing. To answer RQ2, we evaluate the proportion of
reachable inputs generated during reproducing the target
vulnerabilities and the additional time cost brought by in-
variant inference in Section 4.2. To answer RQ3, we argue
the practicalness of our designed methods by demonstrating
the incomplete fix and new bugs found by the Halo in
Section 4.3. To answer RQ4, we provide ablation studies on
each component of our designed system, named distance-
based input selection and similarity-based invariant selec-
tion, to better understand the benefits of the two strategies
in Section 4.4.



Table 2: Compared fuzzers.

Fuzzer Category Description

AFLGo Directed Sophisticated seeds prioritization
Beacon Directed Rejecting infeasible execution
WindRanger Directed Seeds prioritization based on deviation blocks
SelectFuzz Directed Seeds prioritization based on data-dependent code

AFL Coverage Evolutionary mutation strategies
AFL++ Coverage AFL with multiple optimizations from the community
Parmesan Coverage Guide the fuzzer using the sanitizer labels
SymCC Coverage Integrated concolic execution with the fuzzer

Table 3: Magma benchmark

Project Version Size (CLOC) Input format Num. CVEs

libpng 1.6.38 95K PNG 7
libsndfile 1.2.0 83K Various 18

libtiff 4.1.0 95K TIFF 14
libxml2 2.9.10 320K XML 17
openssl 3.0.0 630K Binary 20
poppler 0.88.0 260K PDF 22
sqlite3 3.32.0 387K SQL 20

lua 5.4.0 31K LUA 4
php 8.0.0-dev 1.6M Various 16

Baseline. We compare Halo with the fuzzers mentioned
in Table 2. AFLGo [10], Beacon [17], Windranger [15],
and SelectFuzz [16] are four state-of-the-art directed grey-
box fuzzers. We set the last instruction where the crashes
occur as the targets for these two directed fuzzers. As their
prototype implementations are not publicly available, we,
unfortunately, cannot compare Halo to the directed fuzzers
FuzzGuard, Hawkeye, or CAFL. While we contacted the
authors, we did not receive feedback yet. Similarly, the
MC2 [14] prototype is restricted to the core algorithm
without an executable prototype, which will be released in
the future, as mentioned by the author through our email.
We also do not compare against the results in the MC2 paper
as we were unable to reproduce the baselines of the existing
fuzzers in our environment. Should the prototypes become
available, we will compare them against these other fuzzers.

Moreover, we also compared Halo with other coverage-
based approaches that optimize the input generation as our
baseline for a more reliable comparison. We pick AFL [21]
and AFL++ [22], the fundamental greybox fuzzer and its
updated versions, as the baseline. Parmesan [23] is a bug-
driven fuzzer that uses the program points labeled by the
sanitizers [39] as potential target points. Unlike existing
directed fuzzing, Parmesan cannot ensure whether the la-
beled targets can lead to crashes. Thus, it provides a gen-
eral exploring strategy similar to coverage-guided fuzzing.
SymCC [24] is a hybrid fuzzing approach integrated with
symbolic execution to generate the inputs for covering those
complex path conditions. Their technical details are men-
tioned in Section 6 for other related work discussions.

Benchmark. To answer our research questions, we use
the state-of-the-art fuzzing benchmark Magma [20]. Magma
consists of various CVEs chosen across nine benchmark
programs frequently evaluated in the state-of-the-art fuzzing
with diverse functionalities shown in Table 3. For each
vulnerability, we follow the instructions according to the
benchmark to set the last instruction where the crash is

triggered as the target. Meanwhile, ParmeSan does not work
with SQLite3 and PHP. WindRanger does not work with
Libxml2, lua, SQLite3, or PHP While we have reached
out to the developers, they deferred to future improvements
that could not be integrated into this evaluation. Therefore,
we exclude those targets from the benchmark to compare
against ParmeSan and WindRanger. For other projects, we
follow the instructions of the benchmark to configure each
fuzzer with the given seeds1 and set the crash point of each
CVE as the targets for directed fuzzers.

To demonstrate the practicality, we also evaluate the
effectiveness of Halo for efficiently reproducing real vul-
nerabilities and detecting incomplete fixes. Specifically, we
reproduce the CVEs in the newest version of the program
used in Magma.

Configuration. The initial seed corpus determines the
effectiveness of fuzzing [40]. To achieve the best perfor-
mance of related work, we use the seeds provided in the
Magma benchmark. In general, we conducted every experi-
ment 10 times. For each time, the experiment was run with
a time budget of 24 hours indicated by the benchmark [20].
We employ the Mann-Whitney U Test [41] to demonstrate
the statistical significance of the contribution made by our
framework. Some extra configuration details are mentioned
in the related experiments, respectively.

All experiments are conducted on an Intel Xeon(R)
computer with an E5-1620 v3 CPU and 64GB of memory
running Ubuntu 20.04 LTS.

4.1. Vulnerabilities Reproduction Ability

The primary goal of directed fuzzing is to efficiently
reach and trigger a given location, e.g., to reproduce spe-
cific vulnerabilities. Therefore, we compare the reproduction
speed of Halo with the state-of-the-art fuzzers using the
Magma benchmark. We utilize the average time cost of
reaching and reproducing the target by the fuzzer with 24-
hour time budgets for each run. For Halo, the results are the
accumulated time for both fuzzing and invariant inference.

Table 4 and Table 5 show our results across all targets
found by the evaluated fuzzers. The significant difference
(>1000x on average) between the reach and the trigger
time in both state-of-the-art (un)directed fuzzers reveals the
necessity of solving the indirect input generation problem.
Fortunately, Halo outperforms the existing efforts with an
average 3.4x and 15.3x speedup in reaching and reproducing
the target vulnerabilities, respectively. Overall, Halo requires
2.0x less time to reproduce the targets after they have
been reached compared with existing fuzzers, demonstrating
the effectiveness of mitigating the indirect input generation
problem. Moreover, Halo discovers all the targets that other
fuzzers achieve and detects an additional 18 targets on
average.

Compared with directed fuzzers, AFLGo, Beacon, Win-
dRanger, and SelectFuzz, Halo demonstrates a significant

1. https://github.com/HexHive/magma/tree/v1.2/fuzzers



Table 4: Reproduction time for each target in the Magma benchmark compared with directed fuzzers. R and T indicate
the reachable and the reproduction time (second) averaged over ten runs, respectively. T.O. indicates the fuzzer cannot
reproduce the targets within the given time budget, 24 hours. Ratio and p indicates the improvement ratio and p-value
compared with Halo. ∅ indicates that the fuzzer cannot deploy in the project.

Bug ID Halo AFLGo Beacon WindRanger SelectFuzz
R T R T Ratio p R T Ratio p R T Ratio p R T Ratio p

PNG003 10 15 10 15 1.0x - 10 20 1.3x 0.02 10 15 1.0x - 10 15 1.0x -
PNG006 10 72 15 T.O. N.A - 15 98 1.4x 0.02 15 T.O. N.A - 15 T.O. N.A -
PNG007 15 26350 15 68058 2.6x <0.01 15 57100 2.2x <0.01 15 74446 2.8x 0.01 15 44576 1.7x <0.01
SND001 345 815 55 T.O. N.A - 15 536 0.7x - 15 61594 91.3x <0.01 36 7509 9.2x <0.01
SND005 15 36 10 10357 287.7x <0.01 10 42 1.0x 0.04 15 3556 98.7x <0.01 10 T.O. N.A -
SND006 15 1711 55 T.O. N.A - T.O. T.O. N.A - 15 72742 42.5x <0.01 36 T.O. N.A -
SND007 183 1842 55 T.O. N.A - T.O. T.O. N.A - 15 73001 39.6x <0.01 36 T.O. N.A -
SND017 876 1053 257 8336 7.9x <0.01 1240 1352 1.3x 0.01 10 125 0.1x - 93 3040 2.9x 0.01
SND020 1757 1955 302 78007 39.9x <0.01 2475 3491 1.8x <0.01 61 4176 2.1x 0.02 95 T.O. N.A -
SND024 15 1703 55 T.O. N.A - T.O. T.O. N.A - 15 72743 42.7x <0.01 36 T.O. N.A -
TIF002 24050 48565 1104 T.O. N.A - 59791 T.O. N.A - 1497 T.O. N.A - 62886 84897 1.7x <0.01
TIF005 1249 1899 T.O. T.O. N.A - T.O. T.O. N.A - T.O. T.O. N.A - T.O. T.O. N.A -
TIF006 4695 5868 79175 82787 14.1x <0.01 38939 52149 8.9x <0.01 42325 47876 8.2x <0.01 T.O. T.O. N.A -
TIF007 18 159 77 18252 114.8x <0.01 47 250 1.6x 0.01 169 6839 43.0x <0.01 38 301 1.9x 0.02
TIF009 29399 32051 62564 74482 2.3x <0.01 41249 53560 1.7x <0.01 52361 59910 1.9x <0.01 52389 75960 2.4x <0.01
TIF012 10 2862 10 33250 11.6x <0.01 5 3686 1.3x <0.01 10 17396 6.1x 0.02 10 1568 0.5x -
TIF014 125 2074 840 57240 27.6x <0.01 47 4709 2.3x <0.01 169 68943 33.2x <0.01 10 74607 36.0x <0.01

XML001 21 2613 15 T.O. N.A - 15 T.O. N.A - ∅ 15 T.O. N.A -
XML003 15 22501 15 T.O. N.A - 15 75004 3.3x <0.01 ∅ 15 T.O. N.A -
XML009 10 4573 15 T.O. N.A - 15 6077 1.3x <0.01 ∅ 15 T.O. N.A -
XML017 15 21 10 22 1.0x 0.04 10 46 2.2x 0.01 ∅ 15 T.O. N.A -
SSL001 15 24237 T.O. T.O. N.A - 20 33937 1.4x <0.01 831 T.O. N.A - 20 T.O. N.A -
SSL003 15 153 T.O. T.O. N.A - 15 527 3.4x <0.01 15 211 1.4x 0.03 45 T.O. N.A -
SSL020 15 63109 T.O. T.O. N.A - 15 83335 1.3x <0.01 15 T.O. N.A - 15 21626 0.3x -
PDF003 15 49733 31 T.O. N.A - T.O. T.O. N.A - 15 52761 1.1x 0.02 20 T.O. N.A -
PDF010 20 5806 17 17536 3.0x <0.01 20 7836 1.3x 0.01 20 T.O. N.A - 15 2157 0.4x -
PDF014 20 84172 33 T.O. N.A - 28 T.O. N.A - 145 T.O. N.A - 30 T.O. N.A -
PDF016 10 37 10 258 7.0x 0.01 10 112 3.0x 0.03 10 3319 89.7x 0.01 10 167 4.5x 0.01
PDF018 27340 39561 T.O. T.O. N.A - T.O. T.O. N.A - T.O. T.O. N.A - T.O. T.O. N.A -
PDF021 15 64442 20 T.O. N.A - 20 83251 1.3x <0.01 20 T.O. N.A - 15 T.O. N.A -
SQL002 694 5446 36732 62739 11.5x <0.01 403 10209 1.9x <0.01 ∅ 3667 51191 9.4x <0.01
SQL014 17986 48253 68916 80432 1.67x <0.01 19079 75868 1.6x <0.01 ∅ T.O. T.O. N.A -
SQL018 5067 31595 56886 76433 2.4x <0.01 4003 45515 1.4x <0.01 ∅ 59283 72405 2.3x <0.01
LUA004 12741 16193 T.O. T.O. N.A - 198 T.O. N.A - ∅ T.O. T.O. N.A -
PHP004 10 121 15 1772 14.6x <0.01 15 3980 32.9x <0.01 ∅ 15 187 1.5x 0.02
PHP009 15 4862 15 11469 2.4x <0.01 15 5718 1.2x <0.01 ∅ 15 3349 0.7x -
PHP011 15 621 15 2087 3.4x <0.01 15 869 1.4x 0.02 ∅ 10 3004 4.8x 0.01

Avg. >3.9x >28.9x >1.3x >3.1x >4.1x >28.8x >1.6x >4.8x

improvement by reproducing the targets 28.9x, 3.1x, 28.8x,
and 3.8x faster on average, with 18, 10, 19, and 20 more
targets found, respectively, indicating the effectiveness of
our design in tackling the indirect input generation problem
using invariant inference. Meanwhile, Halo can reach the
targets faster compared with directed fuzzers with a 1.3x
9.0x speedup, demonstrating the effectiveness of reaching
the target based on invariants inferred exclusively using
unreachable inputs.

Furthermore, compared to non-directed fuzzing, Halo
achieves detecting 17 more targets with 14.3x faster repro-
duction speed averaged across ten runs. Compared to the
SymCC hybrid fuzzer, we notice that even though SymCC
rapidly triggers some targets based on its concolic execution,
e.g., SND017 and SSL020, its inherent scalability issues
limit its effectiveness in reproducing bugs in large programs,
such as PHP and SQLite. This deficiency underscores the
importance of leveraging a lightweight method, i.e., the
likely invariant inference used in Halo, to address the path
condition for generating inputs.

4.2. Effective Input Generation and Its Time Cost

We conducted further analysis to investigate the reason
for the significant improvement achieved by Halo by exam-
ining whether we successfully addressed the indirect input
generation problem. To this end, we evaluate the percentage
of the reachable input generation during the previous eval-
uation and compare our results with other directed fuzzers.
Since Beacon does not optimize the input generation and
follows the same setting as AFLGo, according to their paper,
its results should be the same as AFLGo.

Figure 6 illustrates the ratio of reachable input genera-
tion collected from various fuzzers. Our results show that
Halo generates over 43% reachable inputs that reach the
targets during the fuzzing process before triggering them,
while AFLGo, WindRanger, and SelectFuzz generated only
5.3%, 5.8%, and 14.6% reachable inputs, respectively. This
performance is 6.2x better than the state-of-the-art directed
fuzzers. The significant improvement suggests that Halo has
effectively mitigated the issue of indirect input generation
commonly encountered in directed fuzzing.

These findings also underscore the importance of not
only reaching the target but also triggering it effectively.



Table 5: Reproduction time for each target in the Magma benchmark compared with non-directed fuzzers. R and T indicate
the reachable and the reproduction time (second) averaged over ten runs, respectively. T.O. indicates the fuzzer cannot
reproduce the targets within the given time budget, 24 hours. Ratio and p indicates the improvement ratio and p-value
compared with Halo. ∅ indicates that the fuzzer cannot deploy in the project.

Bug ID Halo Parmesan AFL AFL++ SymCC
R T R T Ratio p R T Ratio p R T Ratio p R Time Ratio p

PNG003 10 15 10 44 2.9x <0.01 10 15 1.0x - 15 21 1.4x 0.02 10 96 6.4x <0.01
PNG006 10 72 15 87 1.2x 0.01 15 T.O. N.A - 10 162 2.3x <0.01 15 1538 21.4x <0.01
PNG007 15 26350 15 T.O. N.A - 15 69243 2.6x <0.01 15 46021 1.7x 0.01 15 T.O. N.A -
SND001 345 815 T.O. T.O. N.A - 88 84960 104.2x <0.01 21 1017 1.2x 0.02 32 5235 6.4x <0.01
SND005 15 36 10 T.O. N.A - 10 1633 44.1x <0.01 66 5105 138.0x <0.01 10 1818 49.1x <0.01
SND006 15 1711 T.O. T.O. N.A - 280 T.O. N.A - 17 15856 9.3x <0.01 32 T.O. N.A -
SND007 183 1842 T.O. T.O. N.A - 280 T.O. N.A - 17 4772 2.6x <0.01 32 T.O. N.A -
SND017 876 1053 T.O. T.O. N.A - 312 3148 3.0x <0.01 1079 1107 1.1x 0.03 130 140 0.1x -
SND020 1757 1955 T.O. T.O. N.A - 898 T.O. N.A - 2322 2585 1.3x 0.01 911 T.O. N.A -
SND024 15 1703 T.O. T.O. N.A - 88 T.O. N.A - 15 4392 2.6x <0.01 32 T.O. N.A -
TIF002 24050 48565 31286 T.O. N.A - 694 T.O. N.A - 72365 80966 1.7x <0.01 12503 T.O. N.A -
TIF005 1249 1899 35682 T.O. N.A - T.O. T.O. N.A - 19950 T.O. N.A - T.O. T.O. N.A -
TIF006 4695 5868 43630 79631 13.6x <0.01 78638 78942 13.5x <0.01 21715 21715 3.7x <0.01 70092 T.O. N.A -
TIF007 18 159 502 2003 12.6x <0.01 61 4176 26.3x <0.01 13 210 1.3x 0.02 328 12756 80.2x <0.01
TIF009 29399 32051 T.O. T.O. N.A - 59699 75359 2.4x <0.01 65557 65557 2.0x <0.01 29561 33773 1.1x <0.01
TIF012 10 2862 5 52250 18.3x <0.01 10 6842 2.4x <0.01 15 4282 1.5x <0.01 5 37607 13.1x <0.01
TIF014 125 2074 9049 T.O. N.A - 61 47372 22.8x <0.01 13 12648 6.1x <0.01 993 53888 26.0x <0.01

XML001 21 2613 55 T.O. N.A - 15 T.O. N.A - 22 6206 2.4x <0.01 15 T.O. N.A -
XML003 15 22501 15 65379 2.9x <0.01 15 T.O. N.A - 15 63381 2.8x <0.01 15 T.O. N.A -
XML009 10 4573 10 70335 15.4x <0.01 15 T.O. N.A - 10 4897 1.1x 0.02 15 T.O. N.A -
XML017 15 21 15 53 2.5x <0.01 10 22 1.0x 0.04 15 41 2.0x <0.01 10 21 1.0x 0.04
SSL001 15 24237 16 T.O. N.A - 15 T.O. N.A - 20 26207 1.1x 0.01 20 T.O. N.A -
SSL003 15 153 10 401 2.6x <0.01 12 393 2.6x <0.01 15 470 3.1x <0.01 15 437 2.9x <0.01
SSL020 15 63109 T.O. T.O. N.A - 15 T.O. N.A - 15 T.O. N.A - 15 55520 0.9x -
PDF003 15 49733 T.O. T.O. N.A - 20 T.O. N.A - 15 82152 1.7x <0.01 15 T.O. N.A -
PDF010 20 5806 T.O. T.O. N.A - 15 13259 2.3x <0.01 35 7512 1.3x <0.01 15 14752 2.5x <0.01
PDF014 20 84172 T.O. T.O. N.A - 27 T.O. N.A - 20 T.O. N.A - 25 T.O. N.A -
PDF016 10 37 15 312 8.4x <0.01 10 274 7.4x <0.01 10 85 2.3x <0.01 10 75 2.0x <0.01
PDF018 27340 39561 T.O. T.O. N.A - T.O. T.O. N.A - 25335 51783 1.3x <0.01 T.O. T.O. N.A -
PDF021 15 64442 T.O. T.O. N.A - 15 T.O. N.A - 15 73116 1.1x 0.01 15 T.O. N.A -
SQL002 694 5446 ∅ 4469 42315 7.8x <0.01 210 15601 2.9x <0.01 12465 T.O. N.A -
SQL014 17986 48253 ∅ 74680 T.O. N.A - 5517 63845 1.3x <0.01 T.O. T.O. N.A -
SQL018 5067 31595 ∅ 54367 74737 2.4x <0.01 1773 41364 1.3x <0.01 T.O. T.O. N.A -
LUA004 12741 16193 T.O. T.O. N.A - 75164 T.O. N.A - 30570 30580 1.9x <0.01 T.O. T.O. N.A -
PHP004 10 121 ∅ 15 136 1.1x <0.01 15 57470 475.0x <0.01 15 T.O. N.A -
PHP009 15 4862 ∅ 15 39842 8.2x <0.01 15 30599 6.3x <0.01 15 T.O. N.A -
PHP011 15 621 ∅ 15 860 1.4x <0.01 15 2949 4.7x <0.01 10 T.O. N.A -

Avg. >9.0x >8.0x >2.8x >13.5x >1.7x >20.3x >2.7x >15.2x

Figure 6: The average proportion of the unreachable input
generated in Halo compared with other directed fuzzers
when fuzzing the projects in the Magma benchmark. The
y-axis is the ratio of the unreachable input generated during
the evaluation.

Despite many inputs being capable of reaching the targets,
triggering them is not always straightforward, as evidenced
by the results in Table 1. Thus, the significant improvement
in reachable input generation provided by Halo enables it to
focus on triggering the targets effectively and ultimately re-
producing target vulnerabilities faster than existing directed

Table 6: The average proportion of the time costs for likely
invariant inference, input generation, and fuzzing engine in
the 24-hour evaluation of Halo in the Magma benchmark.

Project Inference Sample Fuzzing

libpng 8348 (9.7%) 398 (0.5%) 77654 (89.9%)
libsndfile 9799 (11.3%) 348 (0.4%) 76253 (88.3%)

libtiff 13329 (15.4%) 225 (0.3%) 72846 (84.3%)
libxml2 14868 (17.2%) 182 (0.2%) 71350 (82.6%)
openssl 12837 (14.9%) 659 (0.8%) 72904 (84.4%)
poppler 9963 (11.5%) 732 (0.8%) 75705 (87.6%)
sqlite3 15853 (18.3%) 537 (0.6%) 70010 (81.0%)

lua 14235 (16.5%) 549 (0.6%) 71616 (82.9%)
php 16234 (18.8%) 691 (0.8%) 69475 (80.4%)

Avg. 12829 (14.8%) 480 (0.6%) 73090 (84.6%)

fuzzers, as demonstrated in Section 4.1.
Furthermore, in Table 6, we investigate the trade-off

between the improvement in reachable input generation and
the additional time cost of invariant inference and input
generation sampling in Halo. Invariant inference and input
sampling account for 14.8% and 0.6% of the total fuzzing
time, respectively, which is no more than 5 hours across
all evaluation projects. This time cost demonstrates the
efficiency of the adapted invariant inference used in Halo.



Table 7: The number of bugs detected in the newest version
of the projects evaluated in the Magma benchmark. Nbug

represents the number of bugs detected by Halo. Category
represents whether the bug is a new one or an incomplete
fix of a previous bug or CVE.

Project Version Nbug NAFLGo NBeacon NWindRanger NSelectFuzz Category

libpng 1.6.39 1 1 1 1 1 New

libsndfile 1.2.0 2 0 1 0 1 New
1 0 0 0 0 Incomplete fix

libtiff 4.5.0 2 0 0 1 0 Incomplete fix
poppler 23.4.0 3 0 1 0 1 Incomplete fix

lua 5.4.4 1 0 0 0 0 Incomplete fix

These results highlight the potential of self-optimized
fuzzing with an evolutionary input generation. We also
observe that the time costs of invariant inference and sam-
pling do not increase significantly along with the size of
evaluated projects since we only infer the invariants for input
bytes, demonstrating the scalability of the adapted invariant
inference approaches in Halo.

4.3. Incomplete Fix Detection Ability

To demonstrate the practicalness of Halo, We also eval-
uate the effectiveness of whether the optimized directed
fuzzer, Halo, can find incomplete fixes in the newest version
of real-world projects to help developers thoroughly fix the
bugs. We collect the newest version of the programs in the
Magma benchmark to compare the detection ability. For
each program, we go through the issue list in its reposi-
tory or Bugzilla to obtain the target points of the related
vulnerabilities for directed fuzzers.

Table 7 shows the detected bugs across the compared
fuzzers. Notably, all evaluated projects are widely used in
the community and are continuously fuzzed through OSS-
fuzz [7], a large-scale cloud-fuzzing environment. Despite
the scrutiny, Halo has shown significant practicality by
detecting ten previously unknown bugs involving seven
incomplete fixes. This finding highlights the effectiveness
of directed fuzzing with optimized input generation for
identifying previously undiscovered bugs.

To ensure the transparency and reproducibility of our
study, we reported all detected issues to the respective
developers, and all issues were subsequently confirmed [42].

4.4. Ablation Study

Performance Variation of Reproducing Targets. After
demonstrating the effectiveness of Halo in outperforming
existing efforts, we proceed to investigate the reason for
its efficient generation of reachable inputs by examining
the specific design of our invariant inference engine, which
are the distance-based input selection and similarity-based
invariant selection. Specifically, to assess the importance of
these two features, we create two variants of Halo, Halo-
Similarity, and Halo-Distance, which disable the distance-
based input selection and similarity-based invariant selec-
tion, respectively. Furthermore, for Halo-Similarity, we no-
tice that it is impractical to record all inputs since the invari-
ant inference engine cannot process them before exhausting
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Figure 7: Reproduction time comparison of Halo, Halo-
Similarity, and Halo-Distance. We utilize the performance of
Halo as the baseline. The x-axis is the bug listed in Table 4.
The y-axis is the ratio of the time costs in Halo-Similarity
and Halo-Distance compared with Halo.

the server’s memory. We restrict the analysis to the first
2,000 fuzzer-generated inputs to facilitate the evaluation.

We first evaluate the high-level performance of the two
variants by measuring the difference in reproduction time
in the Magma benchmark, using the same settings as in
the previous evaluation. Our results, presented in Figure 7,
demonstrate that Halo outperforms both Halo-Similarity and
Halo-Distance, yielding an average speedup of 2.40x and
1.51x in reproducing the targets, respectively. These results
indicate that the combination of distance-based input and
similarity-based invariant selection is necessary to achieve
optimal performance in Halo.

Efficiency Enhancement. Subsequently, we analyzed
the underlying causes of the performance gap. To underscore
the significance of the efficiency enhancements introduced
by the selection strategies we developed, we assessed the
time required for invariant inference and input generation
when these optimizations are turned off.

Overall, the average proportion of the time costs used
for invariant inference and sampling without optimization
is 36.3%, compared to 15.4% in Halo, as shown in Fig-
ure 8. Surprisingly, we observe that leveraging the original
invariant inference approach suffers from severe scalability
issues in most evaluated projects, accounting for up to half
of the 24-hour evaluation time budget. Fortunately, armed
with our designed selection strategies, Halo significantly
improves the speed of invariant inference and sampling
with 56.6% and 73.6% time reduction, respectively. Thus,
the combination of strategies in Halo enables the efficient
generation of reachable input to reproduce the targets.

While the efficiency improvement could benefit fuzzing,
our designed strategies could also influence the precision
of likely invariants inferred. Therefore, we then study the
effectiveness influence caused by the strategies.

4.4.1. Influence of Distance-based Input Selection on
Input Generation. To examine the influence of input selec-
tion on the effectiveness of Halo, we evaluated the ratio of
unreachable input generation using invariants inferred with
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Figure 8: Time costs of invariant inference and sampling
in Halo, Halo-Similarity, and Halo-Distance. Figure 8a and
Figure 8b are the comparison of the time costs for the
invariant inference and sampling, respectively.

Table 8: The average ratio of the unreachable input gener-
ated using different input selection approaches in Halo. We
use the performance of Halo-Simiarity as the baseline.

Project Halo-Similarity Number of Input Selected in Halo
385 500 1000 2000

libpng 82.5% 62.1% 61.3% 61.0% 60.8%
libsndfile 71.2% 51.0% 50.4% 50.1% 49.9%

libtiff 76.4% 57.8% 56.9% 56.6% 56.4%
libxml2 73.0% 53.6% 53.0% 52.6% 52.3%
openssl 81.8% 55.2% 54.6% 54.2% 54.0%
poppler 79.5% 47.5% 47.2% 47.1% 46.9%
sqlite3 83.6% 64.2% 63.1% 62.5% 61.7%

lua 75.3% 62.6% 61.7% 61.1% 60.8%
php 83.7% 58.9% 58.3% 57.9% 57.6%

Avg. 78.6% 57.0% 56.3% 55.9% 55.6%

different numbers of selected inputs. We used the variant,
Halo-Similarity, which does not select inputs, as a baseline
for comparison. All the variant fuzzers generate inputs from
the inferred invariants using the same sampling approaches.

As shown in Table 8, the average ratio of reachable
input generated in Halo is 57.0%. Compared to the invariant
inferred without selecting inputs, Halo can generate 21.6%
more reachable inputs on average, demonstrating the effec-
tiveness of our distance-based input selection to enhance
invariant inference.

Moreover, the average ratios of reachable input gen-
erated are 56.3%, 55.9%, and 55.6% using 500, 1000,
and 2000 inputs, respectively. Overall, the ratio of reach-
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Figure 9: The average ratio of unreachable inputs generated
influenced by the invariants selection strategy.

able input generated does not improve significantly along
with more inputs selected by the inference engine. This
phenomenon indicates that it is unnecessary to utilize all
inputs for approximating the path condition, as the explosive
number of inputs can exacerbate the deficiency issues in
invariant inference and ultimately hinder the performance of
reproducing the targets, as shown in Figure 7 and Figure 8.

4.4.2. Influence of Similarity-based Invariant Selection
on Input Generation. To examine the influence brought
by the invariant selection, we evaluate the reachable input
generation ratio in Halo and Halo-Distance, which employ
all invariants provided by the inference engine to generate
new inputs.

Figure 9 shows the results. Overall, despite the fluc-
tuation of the performance of invariant inference without
selection in different evaluated projects (ranging from 59.2%
to 72.6%), Halo outperforms Halo-Distance in every project
by generating 9.2% more reachable inputs. These results
underscore the effectiveness of selecting likely invariants to
maintain the precision of approximating target conditions.
Furthermore, the fluctuation in the performance highlights
the necessity of selecting invariants, as dynamic invariant
inference cannot always provide precise invariants based
on the given inputs. Fortunately, similarity-based invariant
selection in Halo not only selects invariants that are more
likely to generate reachable inputs, but also refines the in-
variant if all invariants are not sufficiently precise to generate
reachable inputs effectively.

In summary, both distance-based input selection and
similarity-based invariant selection strategies contribute to
efficiently generating more reachable inputs in Halo. Addi-
tionally, we conclude the reasons that Halo-Distance could
outperform Halo-Similarity, as shown in Figure 7. First, in-
variant inference accounts for a larger proportion of the time
costs compared to sampling, as shown in Table 6, which
makes the similar efficiency optimization more significant
for directed fuzzing. Second, optimizing the input selection
can help generate more reachable inputs than the invariant
selection, according to Table 8 and Figure 9.



1int foo() {
2 int tag1,tag2,others=input();
3 int* buff=input();
4 int size; // real buffer size
5 int type_size; // standard format size
6
7 // initial correctness checks
8 if(tag1==5...){
9 // complex buff parsing

10 size=buff_parsing(buff);
11
12 if(tag2==6){
13 for(int i=0;i<type_size;i++){
14 // crash if real size < type size
15 buff[i] ....
16 }
17 }
18 }
19}

Figure 10: Case study for one incomplete fix in Libtiff

4.5. Case Study

To demonstrate the impact of Halo and its general
applicability, we study an incomplete fix discovered in
libtiff. This bug relates to parsing the format and types
with the values of tags. We demonstrate the simplified
version of the code and discuss its impact in Figure 10;

This bug is caused by trusting user-supplied size data in
format standards. Specifically, the program parses the input
file with preliminary type and correctness checking (Lines
8-12). However, the actual size of the input buffer can be
different from the predefined values according to the type
header, which can be manipulated by an adversary. In that
case, the program accesses invalid memory since it assumes
the given input is well-formatted (Line 15).

However, such cases are challenging for existing directed
fuzzers to detect. Scheduling-based approaches cannot help
fuzzers generate diverse inputs to satisfy the condition to
reach the target, not to mention satisfying the implicit
triggering condition to trigger the bug. For culling-based
approaches, as this parsing function is in the early stage
of the program, it cannot cull sufficiently many paths. The
scalability issues hinder the effectiveness of symbolic exe-
cution since it cannot efficiently handle the loop (Line 13)
and avoid state-explosion at the parsing function (Line 10).
Fortunately, Halo individually infers invariants for condi-
tions at Lines 8 and 12 to help the fuzzer generate inputs
that always satisfy tag1 == 5 ∧ tag2 == 6 to increase
the chance of triggering this bug. Moreover, detecting such
issues also helps the developer to increase the robustness of
their format design.

5. Discussion

After demonstrating the effectiveness of Halo through
the evaluation, we would like to discuss the potential of
techniques used in Halo beyond directed fuzzing and its
limitations that can be optimized in the future.

5.1. Potentials

Assisting Dynamic Analysis with Fuzzing. Dynamic
program analysis, which analyzes the target during execu-
tion, has been widely adopted in various application scenar-
ios, e.g., taint analysis [43], [44], program synthesis [45],
[46], and specification generation [47], [48]. Compared with
conventional static analysis, dynamic analysis can provide
precise results with fewer false positives based on the execu-
tion feedback. However, it is challenging for dynamic anal-
ysis to thoroughly analyze the programs without providing
a sufficient number of inputs [49]. Halo leverages state-of-
the-art fuzzing techniques to generate sufficient inputs for
dynamic analysis to approximate program semantics. More-
over, our input selection strategy can effectively restrain the
number of inputs to achieve better scalability. Apart from
path conditions approximated by the likely invariant in Halo
to handle memory safety issues, complex semantics such as
state machine model and partial order constraint can also
be considered to support detecting vulnerabilities involving
logical correctness.

Semantic Extraction from Inputs. While one of the
main trends in fuzzing is to extract target program semantics
at different granularities, such as using symbolic execution
to solve the path condition, the invariants inferred by the
executed inputs in Halo indicate another potential direction
for fuzzing: Utilizing the observed unreachable executions
to prevent fuzzers from continuously exploring irrelevant
program behaviors. In Halo, we also infer the invariant based
on the unreachable inputs to constrain the search space of
the subsequent input generation for efficiently approach-
ing the target vulnerabilities. Since fuzzers can generate a
tremendous number of inputs to examine the program, it is
possible to extract more semantics from the executed inputs
apart from the coverage to guide fuzzers in exploring the
programs.

5.2. Limitations

Scalability of the Invariant Inference. While dynamic
likely-invariant inference outperforms symbolic execution,
its effectiveness can still suffer from scalability issues, for
example, due to the excessive size of given inputs or unlim-
ited candidate invariants.

To mitigate these issues, Halo provides an empirical
optimization to select the proper samples for inference and
precise invariant to generate inputs. Nevertheless, we have
not optimized the quality of candidate invariants for im-
proving the precision of approximating the target condition,
Therefore, the performance of Halo may fluctuate in other
projects that have not yet been evaluated.

Nevertheless, we consider this problem to be orthogo-
nal to improving directed fuzzing, which remains an open
question for improving invariant inference (see Section 6.2
for a discussion of the existing literature). Halo may also
be further improved through optimizations from this related
but orthogonal research.



Solving Complex Path Conditions. The strength of
Halo comes from constraining the search space using invari-
ants inferred from both reachable and unreachable inputs.
Even though we have demonstrated the effectiveness of
invariants inferred exclusively from the unreachable inputs
in Table 4, it may be less effective against using inputs from
both categories, e.g., the improvement ratio of the reaching
time is smaller than the triggering time. To mitigate this
issue, it is possible to collaborate Halo with other input
generation techniques, such as hybrid fuzzing with concolic
execution, to reach the targets faster and collect inputs for
both categories. Meanwhile, the implementation of Halo
based on AFL++ also makes integrating with AFL-based
fuzzing frameworks feasible.

Support to Rich Semantics. Apart from complex path
conditions, vulnerabilities could involve various rich seman-
tics. For example, logic errors in network servers can require
programs to execute functions satisfying specific protocols.
However, since our main focus is the path condition in
this paper, Halo may not reproduce such kinds of target
vulnerability efficiently. Still, we would like to summarize
such issues as a different question to the one solved by
Halo, as discussed in Section 5.1, which may be addressed
in future work.

6. Related Work

Apart from the existing literature in directed greybox
fuzzing (Section 2.1), we survey other related techniques
that may help improve directed fuzzing to generate input
effectively (Section 6.1. Moreover, we also study the po-
tential optimization in invariant inference to make it more
practical for fuzzing (Section 6.2).

6.1. Sophisticated Input Generation

Mutating Relevant Bytes. One major trend of opti-
mizing mutation is to mutate the related input offsets to
satisfy the uncovered branch conditions. Other than random
mutation, Fairfuzz [50] identifies the input offsets where
the values are not necessary to change, Thus, minimizing
the input search space improves the efficiency of mutation.
Angora [51] adapts byte-level taint tracking to discover the
related input bytes of the target condition and then applies a
gradient-descent-based search strategy. Redqueen [32] pro-
poses to use the intermediate values as the feedback to
modify the values in the inputs. PATA [30] improves the
precision of the taint analysis by distinguishing different
paths and contexts. Parmesan [23] utilizes the labels ob-
tained from the santizers [39] to minimize the number of
branches needed to be analyzed by the taint analysis.

Nevertheless, these methods all require a specific branch
to find the related bytes. However, directed fuzzing cannot
choose the branches as coverage-guided fuzzing does since
it is challenging to determine which branch to cover that
can help reach the target faster. Some branches may not
even satisfy the path conditions of the targets. Therefore,

it is challenging to explicitly adapt these approaches for
directed fuzzing, which is also why Halo leverages invariant
inference only for the input bytes rather than analyzing the
whole program.

Leveraging the Constraint Solver. The second direc-
tion is to integrate fuzzers with concolic/symbolic execution,
a.k.a. hybrid fuzzing, for tackling complex and tight path
constraints. For example, QSYM [52] solves part of the path
constraint for a basis seed and leverages mutation for vali-
dated inputs satisfying the actual condition. Intriguer [53]
further replaces symbolic emulation with dynamic taint
analysis, which decreases the overhead of modeling a large
amount of mov-like instructions. Pangolin [54] proposes to
preserve the constraint as an abstraction and reuse it to guide
further input generation. To mitigate the scalability issues
of the symbolic execution engine for better practicalness,
DigFuzz [55] prioritizes solving the condition for branches
that could be difficult to be covered by the fuzzers. It
estimates the difficulties by the inverse proportion of the
path execution frequency. Savior [56] utilizes the number
of labels marked by the sanitizers to prioritize the paths
that SymCC [24] improves the scalability of concolic exe-
cution by instrumenting the whole functionality of symbolic
execution into the compiled binary and, thus, reducing the
overhead of dynamic interference from the conventional
concolic engine.

However, these approaches still suffer from the inher-
ent scalability issues from the symbolic execution, as we
demonstrated in the evaluation, which is challenging to
handle complex program behaviors, such as loop or nested
data structures. Instead, Halo approximates the conditions
solely based on values of input bytes and their execution
feedback, which mitigates the analysis overhead for the
whole program and achieves better efficiency of the vul-
nerability reproduction.

6.2. Efficient Invariant Inference

Invariant inference has emerged as a promising tech-
nique in program verification [57], [58], [59], [60], software
testing [38], [61], [62], [63], and property checking [25],
[26], [28], [29], [37], [64], [65], [66]. It is effective for
ensuring the correctness of software systems, as invariants
can serve as formal specifications of the expected behavior
of a program.

The primary objective of invariant inference is to effi-
ciently infer the precise invariants that hold for all program
behaviors. Conventional verification-based approaches aim
to detect the invariant precisely. The majority of the existing
efforts [29], [57], [58], [59], [60], [63] uses abstract interpre-
tation and symbolic execution to statically approximate the
fix points of the program behaviors as the properties. Despite
their theoretical accuracy, their efficiency is restricted by
the innate scalability issues in symbolic analysis. Therefore,
their approaches are typically designed for specific applica-
tion scenarios with limited assumptions.

Dynamic invariant inference approaches do not pursue
the accurate assumption for the whole program and in-



fer the invariant based on the given inputs. Starting with
Daikon [25], [64], the fundamental dynamic invariant infer-
ence engine, existing literature monitors the execution traces
to validate a set of candidate invariants and concretize the
coefficient and terms. DIDUCE [66] relaxes the hypothesis
of the invariant as violations may lead to anomaly program
behaviors and prioritizes the violations with confidence for
fault localization.

As the quality of the invariant inferred highly relies on
the given inputs and template invariants, existing efforts
utilize more program semantics extracted from the execution
to refine the accuracy of invariants. For example, DySy [37]
leverages concolic execution to reasoning the potential tem-
plate invariants. iDiscovery [28] utilizes the intermediate
symbolic states to conduct an incremental invariant infer-
ence to refine the accuracy of invariants. MRI [38] proposes
to model the inference process as a searching problem and
uses mining-based approaches to obtain precise invariants.
Dig [26] relies on the execution feedback from the coun-
terexample to prune the infeasible range of the invariants
and gradually refine the precision.

The invariant inference engine used in Halo leverages
the insights of the above-demonstrated techniques to achieve
better efficiency. So far, none of the existing efforts focuses
on optimizing the quality of given inputs [28], which is
one of the crucial factors influencing the effectiveness of
invariant inference. Instead, Halo leverages the fuzzer as an
input generator to improve the precision of the invariant and,
eventually, enhance the input generation for fuzzing itself.

7. Conclusion

We have presented Halo, a self-optimized directed
fuzzing guided by the dynamic likely invariant inferred from
the generated inputs, to significantly improve the effective-
ness of generating reachable inputs triggering the target
vulnerabilities. The likely invariants help Halo constrain the
search space of subsequent input generation. The empirical
results demonstrate the dramatic improvement brought by
our design methods: Halo outperforms existing directed
fuzzers with a 15.3x speedup in reproducing the target vul-
nerabilities by generating 6.2 times more reachable inputs.
Moreover, Halo also detects ten previously undiscovered
bugs involving seven incomplete fixes of the previous bugs
and CVEs from the newest patched version of the evaluated
projects in the Magma benchmark.
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symbolic execution toward unverified program executions,” in
Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 144–155. [Online]. Available:
https://doi.org/10.1145/2884781.2884843

[6] F. Brown, D. Stefan, and D. Engler, “Sys: A Static/Symbolic
tool for finding good bugs in good (browser) code,” in 29th
USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 199–216. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/brown

[7] “Oss-fuzz report,” https://security.googleblog.com/2018/11/
a-new-chapter-for-oss-fuzz.html, 2018, accessed: 2018-11-06.

[8] P. D. Marinescu and C. Cadar, “Katch: High-coverage testing of
software patches,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2013.
New York, NY, USA: Association for Computing Machinery, 2013,
p. 235–245. [Online]. Available: https://doi.org/10.1145/2491411.
2491438

[9] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and
automatic generation of high-coverage tests for complex systems
programs.” in OSDI, vol. 8, 2008, pp. 209–224.
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Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

Directed fuzzing is a technique designed to more effi-
ciently generate fuzzing inputs that lead to specific target
areas. The existing directed fuzzing solutions create fitness
functions that prioritize inputs close to the target areas, or
cull infeasible executions as early as possible. However,
these solutions still generate many inputs that fail to reach
the targets.

This paper presents a new approach to directed fuzzing.
Its core idea is to approximate path conditions for inputs
that can reach the target of analysis by inferring from the
inputs that have or have not reached the target. The authors
implemented this idea in a prototype called Halo. Compared
to other recent directed fuzzers against the Magma fuzzing
benchmark, Halo finds more reachable inputs and finds new,
previously undisclosed vulnerabilities in a number of newer
versions of the programs used by Magma.

A.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

• Addresses a Long-Known Issue
• Creates a New Tool to Enable Future Science

A.3. Reasons for Acceptance

1) The paper provides a valuable step forward in an
established field. The paper targets the problem of
directed fuzzing, which has been studied in several
papers already. The idea of inferring likely invariants
on past inputs and then using the invariants to guide
fuzzing towards targets is interesting. Evaluation also
shows that it can make inputs generation more efficient
in producing feasible inputs that can reach targets.

2) The paper addresses a long-known issue. It is a long-
known issue that existing directed fuzzing tools still
generate many inputs that do not reach the targets of
analysis. The proposed approach is able to substantially
generate more inputs that can reach the targets.

3) The paper creates a new tool to enable future science.
The authors implemented a new directed fuzzing tool
called Halo, which has been empirically demonstrated
to be more effective than the existing tools.

A.4. Noteworthy Concerns

1) Some reviewers felt certain technical details were not
discussed clearly and thoroughly.

2) Some reviewers also thought the evaluation could be
further strengthened by evaluating how the accuracy of
such identification affects the invariants inference and
thus fuzzing, discussing the impact of the vulnerabil-
ities found, and perhaps demonstrating larger applica-
bility by expanding the corpus of programs under test.

Appendix B.
Response to the Meta-Review

The major concern relates to details of invariant infer-
ence. Our paper does not claim any contribution to optimiz-
ing existing invariant inference techniques but merely reuses
and repurposes existing techniques. Meanwhile, it is an open
question for likely invariant inference to consider complex
conditions beyond linear form with type information and
increase precision. Incorporating and adjusting invariant
inference for this use case remains a question for future
work. Instead, our main contribution relates to leveraging
randomly mutated inputs to infer both over- and under-
approximating constraints. The above clarification also ad-
dresses, in part, the second concern related to the influence
of invariant inference with different precision. In future
work, we will explore further optimization opportunities
based on this direction.
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