S FEHEKXKE
== THE HONG KONG - -
llN) UNIVERSITY OF SCIENCE L. 3

AND TECHNOLOGY

T A TH K2
City University of Hong Kong

Everything is Good for Something:
Counterexample-Guided Directed Fuzzing

{heghuang} @cityu.edu.hk, {azhouad, charlesz}@cse.ust.hk, {mathias.payer}@nebelwelt.net

45th IEEE Symposium on Security and Privacy

May, 21st, 2024

Software bugs are prevalent and can cause severe consequences

- Wana DecryptOr 2.0 x|

Ooops, your files have been encrypted!

What Happened to My Computer?
Your important files are encrypted.
Many of your documents, photos, videos, databases and other files are no longer
accessible because they have been encrypted. Maybe you are busy looking for a way to
recover your files, but do not waste your time. Nobody can recover your files without
our decryption service.

Payment will be raised on B .0 I Recover My Files?

Sure. We guarantee that you can recover all your files safely and easily. But you have
not so enough time.

Time Left You can decrypt some of your files for free. Try now by clicking <Decrypt>.

But if you want to decrypt all your files, you need to pay.

You only have 3 days to submit the payment. After that the price will be doubled.
Also, if you don’t pay in 7 days, you won't be able to recover your files forever.

We will have free events for users who are so poor that they couldn't pay in 6 months.

V1672017 00:47:55

Your files will be lost on

How Do I Pay?

Payment is accepted in Bitcoin only. For more information, click <About bitcoin>.
Please check the current price of Bitcoin and buy some bitcoins. For more information,
click <How to buy bitcoins>,

And send the correct amount to the address specified in this window.

After your payment, click <Check Payment>. Best time to check: 9:00am - 11:00am

POUET S wis W e Dans e TNd I enn

572012017 00:47:55

Time Left

Send $300 worth of bitcoin to this address:

e 1219YDPgwueZ9NyMgw519p7AABisjr6 SMw
e ol | CheckPayment [Decypt |

MELTDOWN

Killer software: 4 lessons from the deadly 737 MAX crashes

by Matt Hamblen | Mar 2, 2020 1:23pm

1.7 TRILLION: FINANCIAL LOSSES CAUSED BY
SOFTWARE FAILURES IN 2017

Published March 25 2020

Da mch ot o poded 100 nds W ey

Explosive software code size

S t Linux Kernel: 17 Million Lines 27 lines/page
0.0lmm/page~370m

“ Google Chrome: 76 Million Lines

——,
' Autonomous vehicles: > 100 Million Lines

T=ESLA

Obstacles: Explosive paths and their complex conditions

TN S o
A \ ,ﬁv!f‘ !
[’{\3‘\\ \i"kﬁ WY

\

—EN———

=i wr P\ ‘n-‘é,/ e j

-‘v—_ - >
‘ \? ’-_,— _ - i -
N o e o e <

\ - _.‘~ vs-: =_ & Y - T - ' ' .

~— e - -) v O -
- S ! \ . a " - 1 k'.. T amt
: . | 3 ' ¥ 1 alhll

' 5 4

//— r ‘ '
| -. | "'} ‘ l
! ;
i

akak | Alicsa

' »
= -- ;
il
'_J -

1=

[P 28N
-l ra i)
538U I AT

7 files, over 13,000 lines
24348 files, over 1.5M lines

Generating inputs to satisfy the complex path condition is an NP-HARD problem!

Solution: Directed fuzzing!

pRe—r)
111, 110]s
/ 10@10 \
'\\ I '

t

4

Patch Verification 1-day POC Generation Debugging

Aim to detect specific bugs automatically

Directed fuzzing in a nutshell

Seed Prioritization Input Generation Execution Tracing Crash Reporting
Seed Input

Qi1=] %) g @
o v — 8~ B
@ Input (Seed)

Directed fuzzers use additional execution feedback to adjust the priority of the preserved input uniquely for the target

Key Intuition: Prioritize paths “closer” to the target

° Path 2

/ \ Closeness represents the possibility of reaching the target

Path 1

Path1l > Path?2

The majority of the inputs are still randomly generated

Problem observation: Deficient bug triggering

Directed fuzzing could spend much more time to trigger specific bugs after reaching it

Reach vs. Trigger Time in Magma

80000 75602
70421
70000
60289
60000
~ 350000
“E’ 40000 —
= 30000
20000
10000
12 15
0
libpng libxml poppler

® Reach mTrigger

24 hours experiments using AFLGo

Triggering the targets can be 1000 times longer than reaching it!

Root Cause: Majority of the generated inputs cannot even reach the bug

Unreachable Input Ratio vs. Filtration Ratio

libpng libxml poppler
®m Unreachable Input Ratio = Filtration Ratio

Percentage (%)
N — (=) e 2] = ro

The unreachable input accounts for almost 100% of the generated inputs

The filtration techniques by early termination can prune 80% of the generated inputs

Root Cause: Majority of the generated inputs cannot even reach the bug
Majority of the times are wasted on executing infeasible inputs

24 hours experiment in 45 open-source bugs with AFLGO

Project(ASAN version) Execution times(24h)

100.00% ‘ libjpeg 25,238,863
L . | /\ . ?'
E nm 10,926,018
= 75.00%
o
- objdump 5,119,023
3]
£ 50.00%
o readelf 9,294,909
°
.g 25.00% strip 8,090,507
&
tcpdump 5,828,969
0.00%
10 20 30 40 tiff2ps 12,232,064
libpng 27,032,654
bento 10,102,720

Executing these infeasible inputs accounts for 88% of the time in fuzzing process

10

Indirect Input Generation Problem:

Existing directed fuzzing does not directly generate inputs toward the targets

Crash Reporting

o v

@ Input (Seed)

Directed fuzzing proposes additional execution feedback to adjust the priority of the preserved input

11

Our Improvement

* Effective input generation

6.2x more test cases reaching the targets

O

Halo

*Efficiency contribution

15.3x speedup to detect the same bug

Counterexample-guided directed fuzzing

*Real-world practicalness

10 incomplete fixes of previous CVEs/bugs

12

Challenges: Directly generate inputs towards the targets is time-consuming

* Fuzzing needs to solve the path conditions

) = hCZ(n) => ﬂtq(n)

1) 2 h, (n)

) = 1.,(n)

(n) At,(n)) Path explosion + Expensive constraint solving
) < 1., (n) Vi, (n)

) &= tQ(n) A tc3(n)

n) > hﬁ(n) =D hc,(") — hq(n)) A (hCI(n) < hC;
n) 2 h, (n) = h, (n)=h,(n)ACh,(n)<h,
n)2d=h,(n)=(h,(n)—d))A(h,(n)<d
(n) < t,(m)Ah,(n)#0Ah,(n)%p=0)

NP-HARD!

13

Intuition:

Can we leverage such large proportions of unreachable inputs to guide input generation?

Project(ASAN version) | Execution times(24h)

Unreachable Input Ratio vs. Filtration Ratio

120 libjpeg 25,238,863
100 nm 10,926,018
9 |
< 80 objdump 5,119,023
@
o0
;g 60 readelf 9,294,909
5
§ 40 strip 8,090,507
=W
20 tcpdump 5,828,969
0 tiff2ps 12,232,064
libpng libxml poppler
. o . libpng 27,032,654
®m Unreachable Input Ratio = Filtration Ratio
bento 10,102,720

The unreachable input accounts for almost 100% of the generated inputs

The filtration can over prune 80% of the generated inputs

14

Problem Summarization:

With given input satisfying certain patterns (path condition),

can we generate more similar/contradict inputs following the same pattern?

1 void fun() {

2 int x, y, z = input();

3 if (x == 10) {

4 if (lib hash(y) > 30) {@

5 if(x+y<=40){®

6 //crash —
7 }

8 }

9 '}

10 }

The frequency of inputs towards target increases along with fuzzing

15

Key insight

Approximate the conditions using existing fuzzing I/O to improve further input generation

A Reachable input

Input Distribution = Unreachable input
Random

Inputs @

PoCs

Outputs < L

Reach the target or not

Condition Approximation

Fuzzer can adaptively optimize its input generation during the fuzzing process

16

Condition Approximation

Inputs A A Reachable input
+ Unreachable input

+ A New inputs

Unreachable Inputs A

&

Reachable Inputs B

@ A A

Solutions:

Dynamic likely invariant inference, Daikon[1], Dig[2]

Search space A Reachable input
: A . + Unreachable input

Approximation of the exact search space based on the given inputs

[1] Ernst, Michael D., et al. "The Daikon system for dynamic detection of likely invariants." Science of computer programming 69.1-3 (2007): 35-45.

[2] Clarke, Edmund, et al. "Counterexample-guided abstraction refinement." International Conference on Computer Aided Verification. Springer, Berlin, Heidelberg, 2000.

17

Condition Approximation

1 void fun() {

2 int x, y, 2 = input();
> 3 if (x == 10) {
4 if (1lib_hash(y) > 30) {
5 if (x + v <= 40) {
6 //crash
7 }
8 }
9 '}
10 }

Sample the inputs from the constrained search space described by the invariant

x==0 x==0 x==0 x==10
Byte 1 Byte2 | Byte3 | Byte4 | Byte 5

18

Key obstacle: Dimensional Curse

Challenge 1: How to infer conditions from executed inputs efficiently?

Challenge 2: How to generate inputs constrained by conditions efficiently?

A Reachable input
Unreachable Inputs A ++ + + Unreachable input

@ + + + A New inputs

+
Reachable Inputs B
© A AA”A

The restriction for the inputs consists of three dimensions

Input Bytes X Values X Relations

19

Reduced Dimension (Input Bytes): Taint Inference

Invariant inference is not scale for large input size, e.g., few Kb

x==0

x==0 x==0 x==10
Byte 1 Byte 2 | Byte 3 Byte 4 Byte5 |

The byte is relevant if it influences the variable values in the branch conditions reachable to the target

20

Reduced Dimension (Input Bytes): Taint Inference

The byte is relevant if it influences the variable values in the reachable branch conditions

void fun() {
char x, y, 2 = input();
if (x == 10) {
if (1ib_hash(y) >) {
if (x + vy <=) {

}
}
}

}

1
2
3
4
5
6
7
8
9
10

Byte 1 Byte2 | Byte3 | Byte4 Byte 5

Byte 1 is relevant since mutating byte 1 influences the value of x

21

Key obstacle: Dimensional Curse

Challenge 1: How to infer invariant from executed inputs efficiently?

Challenge 2: How to generate inputs constrained by conditions efficiently?

A Reachable input
Unreachable Inputs A ++ + + Unreachable input

@ + + + A New inputs

+
Reachable Inputs B
© A AA”A

The restriction for the inputs consists of three dimensions

Input Bytes X Values X Relations

22

Too many input (values) for approximating the conditions

Challenges: How many input is needed?

Intuition: Not all input contribute equally for the approximation

Unreachable Inputs A

&

Reachable Inputs B

&

Only the input close the boundary that helps

To approximate the condition x > 10:
Inputsfeasible = 11, 12 InputSinfeasible = 8, 9 —> x>10

23

Reduced Dimension (Values): Distance towards the boundary

A path condition can be transformed into:

fx, %, ..0,x,) >0

Choose the input prioritized by the closeness toward the boundary

Inputs A

Unreachable Inputs A + + + v"‘\‘

&

Reachable Inputs B

&

Distance: | f(x;, X, ...,X,)]

To approximate the condition x > 10: =% f(x):x-10>0

J Inputsteasible = 11, 12 InputSinfeasible = 8, 9 —p Distance: 1 and 2

24

Reduced Dimension (Values): Distance towards the boundary

A path condition can be transformed into:

fx, %, ..0,x,) >0

Choose the input prioritized by the closeness toward the boundary

Inputs A

Unreachable Inputs A + + + v"‘\‘

&

Reachable Inputs B

&

Distance: | f(x;, X, ...,X,)]

We then calculate the sample size based on the statistic to satisfy the confident interval where o > 0.95

25

Key obstacle: Dimensional Curse

Challenge 1: How to infer conditions from executed inputs efficiently?

Challenge 2: How to generate inputs constrained by conditions efficiently?

A Reachable input
Unreachable Inputs A ++ + + Unreachable input

@ + + + A New inputs

+
Reachable Inputs B
© A AA”A

The restriction for the inputs consists of three dimensions

Input Bytes X Values X Relations

20

Too many relations could exists for input generation

Challenge: efficiency tradeoff between approximation refining and input generation

With more relations, sampling is less efficient. O(n)

8 Infeasible instance ® feasible instance

G Gh 4

X € [a, D] kx+k,y<b kix +k,y <b

y € [c,d] k.e {0,x1} k.€ Z

Interval Octagon Polyhedra
Efficiency < > Precision

27

Reduced Dimension (Relations): Importance Sampling

For each relation, we assign an initial importance
Importance represents the likelihood of the feasible inputs containing in the regions

X >5
Inputs A

For counterexample, the confidence interval decreases

(x,y): (6, 100) W,

For correct sampling, the confidence interval increases

(x,y): (4,1) A

Inputs B

= x M\ Reachable input

+ Unreachable input

Fuzzer can adaptively use more reliable relations

28

Indirect Input Generation Problem:

Existing directed fuzzing does not directly generate inputs

Seed Prioritization - Input Generation | Execution Tracing Crash Reporting
Seed . Input

Directed fuzzing proposes additional execution feedback to adjust the priority of the preserved input

29

Conclusion: Everything is good for something ©

Halo
Make the input generation directed toward the target via likely invariant generation

F o T
/A

V\ Unreachable Inputs A
7 N\ G _
Reachable Inputs B
N\
*

The frequency of inputs towards target increases along with fuzzing

Inputs A

A Reachable input
+ Unreachable input

A New inputs

S FEREKXKSR
1 ¥ THE HONG KONG l- I-
uMJ UNIVERSITY OF SCIENCE | 0
EBHTKE AND TECHNOLOGY

City University of Hong Kong

30

