
Everything is Good for Something:
Counterexample-Guided Directed Fuzzing

Heqing Huang, Anshunkang Zhou, Mathias Payer, Charles Zhang

May, 21st, 2024

45th IEEE Symposium on Security and Privacy

Software bugs are prevalent and can cause severe consequences

2

3

Explosive software code size

Linux Kernel: 17 Million Lines

Google Chrome: 76 Million Lines

27 lines/page
0.01mm/page 370m≈

Autonomous vehicles: > 100 Million Lines

4

Obstacles: Explosive paths and their complex conditions

7 files, over 13,000 lines

24348 files, over 1.5M lines

Generating inputs to satisfy the complex path condition is an NP-HARD problem!

5

Solution: Directed fuzzing!

Patch VerificationPatch Verification 1-day POC Generation Debugging

Aim to detect specific bugs automatically

Seed Prioritization Input Generation Execution Tracing Crash Reporting

Execution Feedback

Seed Input

Input (Seed)

Directed fuzzers use additional execution feedback to adjust the priority of the preserved input uniquely for the target

6

Directed fuzzing in a nutshell

7

A

B

C D

E F

…

C

F

C HG …

Closeness represents the possibility of reaching the targetPath 1

Path 2

Path 1 Path 2>

The majority of the inputs are still randomly generated

Key Intuition: Prioritize paths “closer” to the target

Directed fuzzing could spend much more time to trigger specific bugs after reaching it

Problem observation: Deficient bug triggering

24 hours experiments using AFLGo

Triggering the targets can be 1000 times longer than reaching it!

8

The unreachable input accounts for almost 100% of the generated inputs

The filtration techniques by early termination can prune 80% of the generated inputs

9

Root Cause: Majority of the generated inputs cannot even reach the bug

Executing these infeasible inputs accounts for 88% of the time in fuzzing process

24 hours experiment in 45 open-source bugs with AFLGO

Project(ASAN version) Execution times(24h)

libjpeg 25,238,863

nm 10,926,018

objdump 5,119,023

readelf 9,294,909

strip 8,090,507

tcpdump 5,828,969

tiff2ps 12,232,064

libpng 27,032,654

bento 10,102,720

10

Majority of the times are wasted on executing infeasible inputs

Root Cause: Majority of the generated inputs cannot even reach the bug

Seed Prioritization Input Generation Execution Tracing Crash Reporting

Execution Feedback

Seed Input

Input (Seed)

Directed fuzzing proposes additional execution feedback to adjust the priority of the preserved input

Indirect Input Generation Problem:
Existing directed fuzzing does not directly generate inputs toward the targets

11

12

Our Improvement

Halo

Counterexample-guided directed fuzzing

•Real-world practicalness

•Efficiency contribution

10 incomplete fixes of previous CVEs/bugs

 6.2x more test cases reaching the targets

15.3x speedup to detect the same bug

•Effective input generation

Challenges: Directly generate inputs towards the targets is time-consuming

• Fuzzing needs to solve the path conditions

Path explosion + Expensive constraint solving

13

NP-HARD!

Can we leverage such large proportions of unreachable inputs to guide input generation?

Intuition:

The unreachable input accounts for almost 100% of the generated inputs

The filtration can over prune 80% of the generated inputs

14

Project(ASAN version) Execution times(24h)

libjpeg 25,238,863

nm 10,926,018

objdump 5,119,023

readelf 9,294,909

strip 8,090,507

tcpdump 5,828,969

tiff2ps 12,232,064

libpng 27,032,654

bento 10,102,720

1

2

3

 1 void fun() {
 2 int x, y, z = input();
 3 if (x == 10) {
 4 if (lib_hash(y) > 30) {
 5 if (x + y <= 40) {
 6 //crash
 7 }
 8 }
 9 }
 10 }

1

2

3

The frequency of inputs towards target increases along with fuzzing

With given input satisfying certain patterns (path condition),

can we generate more similar/contradict inputs following the same pattern?

Problem Summarization:

15

Approximate the conditions using existing fuzzing I/O to improve further input generation

Key insight

Random

Inputs

Outputs
PoCs

Condition Approximation

Fuzzer can adaptively optimize its input generation during the fuzzing process

New inputs

Input Distribution

Reach the target or not

Reachable input

Unreachable input

16

Condition Approximation

Solutions:

Dynamic likely invariant inference, Daikon[1], Dig[2]

[1] Ernst, Michael D., et al. "The Daikon system for dynamic detection of likely invariants." Science of computer programming 69.1-3 (2007): 35-45.

[2] Clarke, Edmund, et al. "Counterexample-guided abstraction refinement." International Conference on Computer Aided Verification. Springer, Berlin, Heidelberg, 2000.

Inputs A

Inputs B

Unreachable Inputs A

Reachable Inputs B

New inputs

Reachable input

Unreachable input

17

Reachable input

Unreachable input

Approximation of the exact search space based on the given inputs

Approximation

Search space

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

 1 void fun() {
 2 int x, y, z = input();
 3 if (x == 10) {
 4 if (lib_hash(y) > 30) {
 5 if (x + y <= 40) {
 6 //crash
 7 }
 8 }
 9 }
 10 }

x==0 x==0 x==0 x==10

18

Condition Approximation

Key obstacle: Dimensional Curse

Unreachable Inputs A

Reachable Inputs B

Input Bytes X Values X Relations

The restriction for the inputs consists of three dimensions

19

Challenge 1: How to infer conditions from executed inputs efficiently?

Challenge 2: How to generate inputs constrained by conditions efficiently?

Taint inference through execution to filter the irrelevant bytes

Invariant inference is not scale for large input size, e.g., few Kb

Reduced Dimension (Input Bytes): Taint Inference

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 …… Byte n

Byte 1

Byte 2

Byte 4

Byte 5

Byte 3

x==0 x==0 x==0 x==10

20

The byte is relevant if it influences the variable values in the branch conditions reachable to the target

A

B

x==10

y >5

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

 1 void fun() {
 2 char x, y, z = input();
 3 if (x == 10) {
 4 if (lib_hash(y) > 30) {
 5 if (x + y <= 40) {
 6 //crash
 7 }
 8 }
 9 }
 10 }

21

The byte is relevant if it influences the variable values in the reachable branch conditions

Byte 1 is relevant since mutating byte 1 influences the value of x

Reduced Dimension (Input Bytes): Taint Inference

Key obstacle: Dimensional Curse

22

Input Bytes X Values X Relations

The restriction for the inputs consists of three dimensions

Unreachable Inputs A

Reachable Inputs B

Challenge 1: How to infer invariant from executed inputs efficiently?

Challenge 2: How to generate inputs constrained by conditions efficiently?

Inputs A

Inputs B

Too many input (values) for approximating the conditions

Unreachable Inputs A

Reachable Inputs B

Challenges: How many input is needed?

Intuition: Not all input contribute equally for the approximation

Only the input close the boundary that helps

23

To approximate the condition x > 10:

Inputsfeasible = 11, 12 Inputsinfeasible = 8, 9

Inputsfeasible = 1000, 2000 Inputsinfeasible = -100, -200

x > 10

x > 500

Inputs A

Inputs B

Reduced Dimension (Values): Distance towards the boundary

Unreachable Inputs A

Reachable Inputs B

A path condition can be transformed into:

Choose the input prioritized by the closeness toward the boundary

f(x1, x2, …, xn) ≥ 0

f(x1, x2, …, xn) = 0

Distance: | f(x1, x2, …, xn) |

24

To approximate the condition x > 10:

Inputsfeasible = 11, 12 Inputsinfeasible = 8, 9

Inputsfeasible = 1000, 2000 Inputsinfeasible = -100, -200

Distance: 1 and 2

Distance: >100

 : x - 10 > 0f(x)

Inputs A

Inputs B

Reduced Dimension (Values): Distance towards the boundary

Unreachable Inputs A

Reachable Inputs B

A path condition can be transformed into:

Choose the input prioritized by the closeness toward the boundary

We then calculate the sample size based on the statistic to satisfy the confident interval where > 0.95α

f(x1, x2, …, xn) ≥ 0

f(x1, x2, …, xn) = 0

Distance: | f(x1, x2, …, xn) |

25

Key obstacle: Dimensional Curse

26

Input Bytes X Values X Relations

The restriction for the inputs consists of three dimensions

Unreachable Inputs A

Reachable Inputs B

Challenge 1: How to infer conditions from executed inputs efficiently?

Challenge 2: How to generate inputs constrained by conditions efficiently?

Too many relations could exists for input generation

With more relations, sampling is less efficient. O(n)

Precision
Efficiency

Challenge: efficiency tradeoff between approximation refining and input generation

27

Infeasible instance feasible instance

Efficiency Precision

Reduced Dimension (Relations): Importance Sampling

For each relation, we assign an initial importance

Importance represents the likelihood of the feasible inputs containing in the regions

Inputs A

Inputs B

Fuzzer can adaptively use more reliable relations

For counterexample, the confidence interval decreases

For correct sampling, the confidence interval increases

5 X

Y

28

(x,y): (6, 100)

4
(x,y): (4, 1)

x > 5

Reachable input

Unreachable input

Seed Prioritization Input Generation Execution Tracing Crash Reporting

Execution Feedback

Seed Input

Input (Seed)

Directed fuzzing proposes additional execution feedback to adjust the priority of the preserved input

Indirect Input Generation Problem:

Existing directed fuzzing does not directly generate inputs

29

1

2

3

The frequency of inputs towards target increases along with fuzzing

Make the input generation directed toward the target via likely invariant generation

Conclusion: Everything is good for something

30

TF

Inputs A

Inputs B

Unreachable Inputs A

Reachable Inputs B

New inputs

Reachable input

Unreachable input

Halo

