
SyzTrust: State-aware Fuzzing on
Trusted OS Designed for IoT Devices
Qinying Wang, Boyu Chang, Shouling Ji, Yuan Tian, Xuhong Zhang, Binbin Zhao,

Gaoning Pan, Chenyang Lyu, Mathias Payer, Wenhai Wang, Raheem Beyah

Trust Execution Environments (TEEs) are essential to IoT security.

Motivation

2

Smart Lock

FIDO Security Key Smart Locker

Drone

IEEE S&P 2024

Motivation

A TEE is an isolated and trusted environment shielded against local attacks.

3

Rich OS
(e.g., FreeRTOS) Trusted OS

Normal World Secure World

Switch
Instructions

Trusted Applications (TAs)

TA TA TA

Client Applications (CAs)

CA CA CA

TrustZone-M based TEE

Sensitive data is
stored, processed,
and protected.

IEEE S&P 2024

Motivation

4

Trusted OS is the primary component to enable the TEE to use security techniques.

TEE Client APIs

Rich OS
(e.g., FreeRTOS) Trusted OS

TEE Internal APIs

Normal World Secure World

Switch
Instructions

Trusted Applications (TAs)

TA TA TA

Client Applications (CAs)

CA CA CA

TrustZone-M based TEE

• Trusted storage APIs

• Cryptographic operations APIs

• Time APIs

• Peripheral and event APIs

IEEE S&P 2024

Motivation

5

The flaws in Trusted OS lead to severe results, which can be further utilized to
exploit other TAs and even the whole system.

TEE Client APIs

Rich OS
(e.g., FreeRTOS) Trusted OS

TEE Internal APIs

Normal World Secure World

Switch
Instructions

Trusted Applications (TAs)

TA TA TA

Client Applications (CAs)

CA CA CA

TrustZone-M based TEE

• Gaining control

• Extracting confidential data

• Causing system-wide crashes

IEEE S&P 2024

Challenges of Fuzzing Trusted OSes

6

Challenge 1: Inability of instrumentation and constraint resource

Minimal Fuzzer (466 KB)

RAM

96 KB

Cannot be loaded to the MCU!

MCU FLASH (512 KB)

TEE (448KB)

Normal World

Secure World

Close source and encrypted Resource limited

IEEE S&P 2024

Challenges of Fuzzing Trusted OSes

7

Challenge 2: Stateful workflow and complex structure

Operation
allocated

Operation
key set Cipher

initialized

Operation
freed

Cipher
updated

struct TEE_OperationHandle{
uint32_t algorithm,
uint32_t operationState,

TEE_ObjectHandle key…
}

Complex structure to control
the execution contexts

Stateful workflow

IEEE S&P 2024

ARM Coresight Embedded Trace Macrocell (ETM) provides real-time instruction
tracing, where we can obtain code coverage.

Key Observations towards a Solution

8

Challenge 1

Trace
cable

Computer Debug probe Trusted OS running
on an MCU

ETM packets

IEEE S&P 2024

We can decouple execution to offload heavy-weight tasks to our computer.

Key Observations towards a Solution

9

Challenge 1

Trace
cable

Computer Debug probe Trusted OS running
on an MCU

Heavy-weight tasks

IEEE S&P 2024

Loaded

Several variables in handle structures determine and store the Trusted OS’ state.

Key Observations towards a Solution

10

TEE_OperationHandle

algorithm: 0
operationState: 0
TEE_ObjectHandle: 0
…

TEE_OperationHandle

algorithm: ALG_AES_ECB
operationState: INITIALIZED
TEE_ObjectHandle:
0x2000000
…

TEE_OperationHandle

algorithm: ALG_AES_ECB
operationState: ACTIVE
TEE_ObjectHandle:
0x2000000
…

TEE_Allocate
Operation TEE_CipherUpdate

TEE_CipherDoFinal

Challenge 2

IEEE S&P 2024

We can stream the state variable values via a debug probe and calculate state
coverage.

Key Observations towards a Solution

11

Challenge 2

Trace
cable

Computer Debug probe Trusted OS running
on an MCU

New state values

IEEE S&P 2024

SyzTrust includes two modules, the fuzzing engine and execution engine.

SyzTrust End-to-End

12

Proxy CA & TA

Trusted OS

Hardware-
assisted

Controller

Execution Engine
(on MCU)

Fuzzing Engine (on PC)

Test Case
Generator

Trusted OS API
sequence

State and code
coverage

Trusted OS
API Execution

Debug probe

IEEE S&P 2024

Evaluation - Baseline Comparison

13

SyzTrust outperforms *Syzkaller in terms of branch coverage, state coverage and
unique vulnerabilities.

IEEE S&P 2024

Branch coverage State coverage Unique vulnerabilities

*https://github.com/google/syzkaller

SyzTrust discovered 70 unknown vulnerabilities.

Evaluation - Vulnerabilities

14IEEE S&P 2024

Link TEE Air

Tsinglink Cloud

mTower

TinyTEE

Real World Targets • Buffer overflow
• Missing release of memory

after effective lifetime
• Null pointer dereference
• Untrusted pointer dereference

We got 19 CVEs to date, each rated as high-impact vulnerabilities.

SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices

Key Challenges

Summary of SyzTrust

Real World Impact

mTower

TinyTEE

Link TEE Air

Tsinglink
Cloud

First fuzzing framework for IoT Trusted OSes

• Inability of instrumentation
• Limited resources
• Stateful workflow

• 70 previously
unknow bugs

• 34 bugs have
been patched

• 19 CVEs

Operation
allocated

Operation
key set Cipher

initialized

Operation
freed

Cipher
updated

Manager Proxy CA
& TA

Trusted
OS

Trusted
OS

State
Variables

State Variable
Inference

State coverage

Code coverage

Initial
Seeds

State Monitor

Hardware-assisted
Controller

Trace
Collector

Execution Engine
(on MCU)

Test cases

A composite
feedback

Test cases

Feedback

Fuzzing Engine (on PC)

Debug Probe

Test cases

FeedbackSyscall
Templates

Email: wangqinying@zju.edu.cn

	SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices
	Motivation
	Motivation
	Motivation
	Motivation
	Challenges of Fuzzing Trusted OSes
	Challenges of Fuzzing Trusted OSes
	Key Observations towards a Solution
	Key Observations towards a Solution
	Key Observations towards a Solution
	Key Observations towards a Solution
	SyzTrust End-to-End
	Evaluation - Baseline Comparison
	Evaluation - Vulnerabilities
	SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices

