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Trust Execution Environments (TEEs) are essential to IoT security.

Motivation
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Motivation

A TEE is an isolated and trusted environment shielded against local attacks. 
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Motivation
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Trusted OS is the primary component to enable the TEE to use security techniques.
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• Trusted storage APIs

• Cryptographic operations APIs

• Time APIs

• Peripheral and event APIs
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Motivation
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The flaws in Trusted OS lead to severe results, which can be further utilized to 
exploit other TAs and even the whole system.
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• Gaining control

• Extracting confidential data
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Challenges of Fuzzing Trusted OSes
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Challenge 1: Inability of instrumentation and constraint resource 

Minimal Fuzzer (466 KB)

RAM

96 KB

Cannot be loaded to the MCU!

MCU FLASH (512 KB)

TEE (448KB)

Normal World

Secure World

Close source and encrypted Resource limited
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Challenges of Fuzzing Trusted OSes
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Challenge 2: Stateful workflow and complex structure

Operation 
allocated

Operation 
key set Cipher 

initialized

Operation 
freed

Cipher 
updated

struct TEE_OperationHandle{ 
uint32_t  algorithm,
uint32_t operationState,

TEE_ObjectHandle key…
}

Complex structure to control 
the execution contexts

Stateful workflow
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ARM Coresight Embedded Trace Macrocell (ETM) provides real-time instruction 
tracing, where we can obtain code coverage.

Key Observations towards a Solution
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We can decouple execution to offload heavy-weight tasks to our computer.

Key Observations towards a Solution
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Several variables in handle structures determine and store the Trusted OS’ state.

Key Observations towards a Solution
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TEE_OperationHandle 

algorithm: 0                   
operationState: 0           
TEE_ObjectHandle: 0   
…

TEE_OperationHandle 

algorithm: ALG_AES_ECB
operationState: INITIALIZED
TEE_ObjectHandle: 
0x2000000
…

TEE_OperationHandle

algorithm: ALG_AES_ECB
operationState: ACTIVE
TEE_ObjectHandle: 
0x2000000
…

TEE_Allocate
Operation TEE_CipherUpdate

TEE_CipherDoFinal

Challenge 2
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We can stream the state variable values via a debug probe and calculate state 
coverage.

Key Observations towards a Solution
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SyzTrust includes two modules, the fuzzing engine and execution engine.

SyzTrust End-to-End
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Evaluation - Baseline Comparison
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SyzTrust outperforms *Syzkaller in terms of branch coverage, state coverage and 
unique vulnerabilities.
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Branch coverage State coverage Unique vulnerabilities

*https://github.com/google/syzkaller



SyzTrust discovered 70 unknown vulnerabilities.

Evaluation - Vulnerabilities
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Link TEE Air

Tsinglink Cloud

mTower

TinyTEE

Real World Targets • Buffer overflow
• Missing release of memory 

after effective lifetime
• Null pointer dereference
• Untrusted pointer dereference

We got 19 CVEs to date, each rated as high-impact vulnerabilities.



SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices 

Key Challenges

Summary of SyzTrust

Real World Impact
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First fuzzing framework for IoT Trusted OSes

• Inability of instrumentation
• Limited resources
• Stateful workflow 

• 70 previously 
unknow bugs

• 34 bugs have 
been patched

• 19 CVEs
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