
Gradient

Aleksander Boruch-Gruszecki, Adrien Ghosn, Mathias Payer, Clément Pit-Claudel
OOPSLA 2024, Pasadena

Gradual Compartmentalization via Object Capabilities Tracked in Types

Your computer

Our software is stunningly vulnerable to supply chain attacks.
Examples: Log4Shell, SolarWinds, the xz/liblzma backdoor.

We have a problem

2

😈

A backdoor in a lib used by Chrome could give access to everyone’s computers.

There is a way forward

“Every [part of a] program should operate using the least [authority] necessary
to complete the job.” — Principle of Least Authority/PoLA (J. Saltzer, 1974)

3

We want a mechanism for compartmentalizing parts of a program.

Basic idea: accessing the outside of the compartment is completely controlled.

👿

Chrome does compartmentalization with processes: a heavyweight approach.

There is a way forward

The object capability model:
➔ Allows enforcing the PoLA policies with code, using PL-level concepts
➔ So far, required a stop-the-world migration

What if:
- we could gradually adopt object capabilities in a program, part-by-part
- we could still introduce classical libraries
- and we were still able to enforce PoLA?

That’s the core motivation for our gradual compartmentalization approach,
and for Gradient, a Scala 3 extension proposal featuring the approach.

4

(See Miller, “Robust Composition”, 2006)

Object capabilities

Gradient: Gradual Compartmentalization via Object Capabilities Tracked in Types

Legacy log4j

6

def main() =
 val log = new log4j.Logger()
 log.info("Hello world!")

package log4j:
 class Logger():
 def info(msg: String) =
 open("...").write(msg)

Classical code in libraries like log4j can access arbitrary system features.

 if shouldTriggerBackdoor(msg) then
 execute(downloadMalware())

Modern CapLog

7

 def main() =
 val CL = new CapLog(fs, net, eval)
 val log = new CL.Logger()
 log.info("Logger created")

module Main(fs: Fs^, net: Net^, eval: Eval^):

module CapLog(fs: Fs^, net: Net^, eval: Eval^):
 class Logger():
 def info(msg: String) =
 fs.open("...").write(msg)
 if shouldTriggerBackdoor(msg) then
 execute(eval, downloadMalware(net))

First: instantiate CapLog!
Next: instantiate Logger.

CapLog is like log4j but for our Gradient extension: it uses object capabilities.

Capabilities are used to access
system features.

How an object capability program starts

8

In the beginning, there are only some basic capabilities:
the devices which let the program access the real world.

How an object capability program starts

9

The runtime instantiates the Main module and then calls the main method.

How an object capability program starts

10

Main wants to instantiate (create CL, an instance of) CapLog.
CapLog requests capabilities to do its job. Main decides what CapLog gets.

How an object capability program starts

11

Main wants to instantiate (create CL, an instance of) CapLog.
CapLog requests capabilities to do its job. Main decides what CapLog gets.

Restricting the authority of CapLog

12

module Main(fs: Fs^, net: Net^, eval: Eval^):
 def main() =
 val rfs = new RestrictedFs(fs, "/var/log/")
 // rfs can only access files in /var/log
 val CL = new CapLog(rfs, InertNet(), InertEval())
 val log = new CL.Logger()
 log.info("Logger created")

class RestrictedFs(fs: Fs^, dir: String) extends Fs:
 def open(path: String) =
 if path.isRootedIn(dir)
 then fs.open(path)
 else throw new RuntimeException(...)

Inspect if the call to
`open` is OK.

We want CapLog to only access files in the directory with logs.

Object capabilities

+ Allow compartmentalization at the level of objects
+ Allow expressing arbitrary security policies with code

But, to enforce the PoLA on a library in a program, object capabilities must be used in:
1. the library
2. in its dependencies
3. in program code using the library (the reverse dependencies)

13

Can we do better?

Gradual
compartmentalization

Gradient: Gradual Compartmentalization via Object Capabilities Tracked in Types

Using classical code in the object capability model

15

module Main(#package log4j):
 def main() =
 val log = new log4j.Logger()
 log.info("Logger created")

How can classical code and object capabilities interact?
What access policies can be enforced?

We want to integrate classical code packages into the object capability model.
Step 1: they can access system features – we treat them as object capabilities.

Uniform access to system features

16

Classical code accesses system features via system calls,
but object capability code can only do that via devices.

We need to put something here.

Idea: we can treat system calls like they were method calls to devices!

module Main(#package log4j):
 def main() =
 enclosed[{fs}]:
 val log = new log4j.Logger()
 log.info("Logger created")

Controlling the authority of packages

17

Only fs-related syscalls allowed here!

How can we enforce the PoLA on packages of classical code?

We treat system calls like they were method calls to devices.
Idea: dynamically forbid some system calls within certain blocks!

(See Ghosn et al., “Enclosure: Language-Based Restriction of Untrusted Libraries”, ASPLOS 2021.)

Essentially, enclosed blocks allow dynamically creating compartments!

Preventing access through mutable state

Mutable state allows “talking to” objects with access to system features.

In the paper we discuss how our approach can control mutable state access.
- Idea 1: mutable objects are capabilities.
- Idea 2: they are allocated in special memory regions.
- Policies can be enforced both on classical code and object capabilities.

In principle, the approach extends to controlling access to immutable secrets.

18

enclosed blocks

+ Allow compartmentalization at the level of code blocks

+ Work on arbitrary existing code (at the cost of flexibility)

+ Allow expressing PoLA policies with PL-level concepts

19

Object capabilities
tracked in types

Gradient: Gradual Compartmentalization via Object Capabilities Tracked in Types

Static, type-based compartmentalization

Gradient tracks (the capture of) capabilities in types via Capture Tracking.
Packages may be capture-checked, enabling static capability access checks.

 def main()^{fs} =
 val log = new log4j.Logger()
 restricted[{log}]:
 log.info("Logger created")

Ascriptions can be both
method-level and block-level.

21

Error! main should only capture {fs}, but instead it captures {fs, net, eval}.

(See Boruch-Gruszecki et al., “Capturing Types”, TOPLAS 2023, presented at POPL 2024)

module Main(package log4j):

Static, type-based compartmentalization

module Main(package nice4j):
 def main()^{fs} =
 val log = new nice4j.Logger()
 restricted[{log}]:
 log.info("Logger created")

Ascriptions can be both
method-level and block-level.

22

(Capabilities are also visible in types of all objects, e.g., log: Logger^{fs}.)

Gradient tracks (the capture of) capabilities in types via Capture Tracking.
Packages may be capture-checked, enabling static capability access checks.

module Main(package nice4j):
 def main()^{fs} =
 val log = new nice4j.Logger()
 restricted[{log}]:
 log.info("Logger created")

Static, type-based compartmentalization

Ascriptions can be both
method-level and block-level.

23

Capture ascriptions statically compartmentalize code, using the type system.

Gradient tracks (the capture of) capabilities in types via Capture Tracking.
Packages may be capture-checked, enabling static capability access checks.

Back to danger

Tracked capabilities ensure that classical code runs in enclosed blocks.

24

module Main(#package log4j):
 def main()
 val log = new log4j.Logger()
 log.info("Logger created")

Errors: main may access code with unrestricted authority.

 = ^# =

Back to danger

Tracked capabilities ensure that classical code runs in enclosed blocks.

An enclosed block asserts what devices are accessed.

25

module Main(#package log4j):
 def main()^{fs} =
 enclosed[{fs}]:
 val log = new log4j.Logger()
 log.info("Logger created")

Object capabilities tracked in types

+ Allow statically enforcing PoLA policies, at the level of blocks/objects

+ Can enforce the PoLA on packages of (capture-checked) classical code

+ Allow restricted blocks: a static, more flexible version of enclosed

26

Formal foundations

We extend CC<:□ (the Capture Calculus) with:

- mutability (regions, mutable references)
- object capability foundations (records, modules)
- more precise capture tracking for objects
- gradual capture tracking

- capture-unchecked terms
- formal enclosed blocks (a way to assert capture signatures)
- calling capture-checked functions from capture-unchecked code

We prove that the resulting system is sound.

27

Validating the approach

Capture-checking a package: easier than adopting object capabilities outright.

Case study: manually capture-checking the standard Scala XML library.
The parser uses Java, accesses the filesystem and the network;
the code uses mutable objects (even if they aren’t needed).

28

Out of 4200 LoC, 260 needed updates. 200/260 were as trivial as above.

Gradient: Gradual Compartmentalization via Object Capabilities Tracked in Types

- We present gradual compartmentalization, a hybrid approach which allows
picking the best compartmentalization solution for every part of a program.

- We propose Gradient, a Scala 3 extension using gradual compartmentalization.

- We develop the formal foundations for Gradient.
We add mutability, object foundations, gradual capture tracking to CC<:□.

- We discuss how to implement Gradient based on existing works.
The tasks are well-studied in isolation, the effort is like implementing a new PL.

- To validate the approach, we manually capture-check an existing library.
No refactoring, 260/4600 LoC needed changes, 200/260 changes were trivial.

- We evaluate the performance of an Enclosure-based implementation.
Even in pessimistic cases, the penalty can be below 1%.

Thank you!

