
FuzzFlow: Fuzzing JavaScript Engines

with a Graph-based IR
Haoran Xu1, Zhiyuan Jiang1, Yongjun Wang1, Shuhui Fan1,

Shenglin Xu1, Peidai Xie1, Shaojing Fu1, Mathias Payer2

CCS 2024

1
2

 JS engines are everywhere

• Web browsers

• Runtime like Deno, NodeJS

• Embedded in software like PDF editor

• Mobile devices

2

 Testing JS engines is challenging

• Extensive codebase (millions of lines of code)

• Highly structured input format

• Sufficient review and fuzzing

3

 Mutation-based Greybox Fuzzing

4

“For finding vulnerabilities in
modern JavaScript engines, especially
engines with JIT compilers, better
results can be achieved with
mutational, coverage-guided
approaches.”

-- from Project Zero’s blog

• Requirements

 Motivation

Validity

Granularity Meaningful
2. Changes only on the syntax will

not trigger deep paths

1. The mutated test case should be

valid to pass the early checks

3. Mutations only on control

flow or data flow helps to

trigger corner paths

5

 Motivation

• Rethinking the workflow...

6

 Motivation

• Rethinking the workflow...

7

The representation of the
mutation target is crucial.

 Existing Approaches

• Recap the history of mutation targets

8

Bytes/Tokens AST Bytecode IR

Mutation on
bytes

Mutation on
subtree

Mutation on
instructions

Superion,DIE.. FuzzilliAFL...

Mutation Target

Mutation Operators

How to represent a JS program?

2019 20232015

 Existing Approaches

• Recap the history of mutation targets

• AST

• test cases with semantic errors that cannot reach the backend

• test cases with altered syntax but unchanged semantics

• Bytecode IR

• lacks explicit control and data flow

9

 Our Methoad: FuzzFlow

• How to mutate the semantics directly?

10

 FlowIR: Mutate the Semantics Directly

• A directed node-labeled, and edge unlabeled graph.

• The CFG represents the partial order on the operations.

• The DDG represents the flow of values from definition of a var to its uses.

11

Control Flow
subGraph

Data
Dependency

subGraph
FlowIR

 FlowIR: Mutate the Semantics Directly

• An example of FlowIR

12

FlowIR of Main script FlowIR of Funciton foo

A test case triggered
CVE-2021-21220

 FuzzFlow Design

Overview

13

JS
seeds JS2Graph FlowIR seeds

Mutate

Run

Graph2JS

Select

Feedback

 Mutation on Graph

• Mutations on DDG

• Node attribute mutation

• Node input mutation

• Splicing independent data-flow subgraphs

• ...

• Mutations on CFG

• Node movement

• Nodes group relocation

• Branch swapping

• ...

14

 Evaluation

• Better code coverage.

• Better validity.

• Better mutation granularity.

• 37 new bugs found in mainstream JS engines.

15

 Conclusion

• Fuzzing JS engines is challenging.

• The choice of the underlying representation defines the possible mutation space and

subsequently influences the design of mutation operators.

• FlowIR provides a graph-based mutation target for testing JS engines.

• The representation of the mutation target deserves more attention.

16

