
Top of the Heap: Efficient Memory Error Protection
of Safe Heap Objects

Kaiming Huang
The Pennsylvania State University

State College, PA, USA
kzh529@psu.edu

Mathias Payer
École Polytechnique Fédérale de

Lausanne
Lausanne, Switzerland

mathias.payer@nebelwelt.net

Zhiyun Qian
University of California, Riverside

Riverside, CA, USA
zhiyunq@cs.ucr.edu

Jack Sampson
The Pennsylvania State University

State College, PA, USA
jms1257@psu.edu

Gang Tan
The Pennsylvania State University

State College, PA, USA
gxt29@psu.edu

Trent Jaeger
University of California, Riverside

Riverside, CA, USA
trentj@ucr.edu

Abstract
Heap memory errors remain a major source of software vulnerabil-
ities. Existing memory safety defenses aim at protecting all objects,
resulting in high performance cost and incomplete protection. In-
stead, we propose an approach that accurately identifies objects
that are inexpensive to protect, and design a method to protect
such objects comprehensively from all classes of memory errors.
Towards this goal, we introduce the Uriah system that (1) statically
identifies the heap objects whose accesses satisfy spatial and type
safety, and (2) dynamically allocates such "safe" heap objects on
an isolated safe heap to enforce a form of temporal safety while
preserving spatial and type safety, called temporal allocated-type
safety. Uriah finds 72.0% of heap allocation sites produce objects
whose accesses always satisfy spatial and type safety in the SPEC
CPU2006/2017 benchmarks, 5 server programs, and Firefox, which
are then isolated on a safe heap using Uriah allocator to enforce
temporal allocated-type safety. Uriah incurs only 2.9% and 2.6%
runtime overhead, along with 9.3% and 5.4% memory overhead,
on the SPEC CPU 2006 and 2017 benchmarks, while preventing
exploits on all the heap memory errors in DARPA CGC binaries and
28 recent CVEs. Additionally, using existing defenses to enforce
their memory safety guarantees on the unsafe heap objects signifi-
cantly reduces overhead, enabling the protection of heap objects
from all classes of memory errors at more practical costs.

CCS Concepts
• Security and privacy→ Software security engineering.

Keywords
Heap Memory Errors, Memory Safety, Software Security, Program
Analysis, Software-based Fault Isolation, Secure Allocator.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690310

ACM Reference Format:
Kaiming Huang, Mathias Payer, Zhiyun Qian, Jack Sampson, Gang Tan,
and Trent Jaeger. 2024. Top of the Heap: Efficient Memory Error Protection
of Safe Heap Objects. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’24), October 14–18, 2024, Salt
Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3658644.3690310

1 Introduction
Memory errors in C/C++ programs continue to cause the most
significant security problems. The White House recently stated
that future software should be memory safe [126]. According to
the NSA [91], Microsoft [77], and Google [124], ≈70-80% of vul-
nerabilities are caused by memory errors. Known since the An-
derson Report [6], memory errors have led to high-impact attacks
such as the Morris Worm [103], Slammer [82], Heartbleed [100],
and Blastpass [8]. Memory errors are exploited by ransomware
that costs organizations billions of dollars [30, 114, 131], and are
even found by studies [14, 116, 137] of software produced by LLM-
based code generators [33, 94, 98]. A wide variety of notable attack
techniques have been discovered to exploit memory errors [15–
18, 39, 49, 53, 63, 67, 68, 93, 101, 115, 135, 136, 150, 151] that enable
attackers to gain control of process memory.

Among these errors, heap memory errors are notorious for their
prevalence and severity, posing significant challenges for develop-
ers. There are several reasons why heap memory is more prone to
errors. First, heap memory may be used to store objects of variable
size, which can also change through reallocations. Errors in track-
ing sizes of these objects can violate spatial safety, where memory
operations access locations outside expected bounds. Second, heap
objects are often complex, consisting of hierarchically structured
data types that may be cast into multiple views to different formats
depending on the program context. Mistakes in interpreting the
layouts of data structures can violate type safety, where memory
operations may access objects at invalid offsets and/or using in-
correct data types. Third, unique to heap memory is the challenge
of managing dynamic allocation and deallocation. Unlike stack
memory, heap memory management in C/C++ requires manual
intervention, causing errors that violate temporal safety where
pointers may not be initialized before use (i.e., UBI) and/or may
be used after deallocation (i.e., UAF). Finally, heap objects may be
accessed across multiple threads complicating the challenges above.

https://doi.org/10.1145/3658644.3690310
https://doi.org/10.1145/3658644.3690310
https://doi.org/10.1145/3658644.3690310

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Kaiming Huang et al.

Despite years of efforts to develop heap memory safety defenses,
heap data is not systematically protected from all three classes of
memory errors comprehensively. Researchers have produced tech-
niques to enforce memory safety requirements to prevent spatial
memory errors [4, 27, 83, 110], type memory errors [38, 51, 59, 146],
and temporal memory errors [13, 31, 58, 72, 73, 84, 130, 139–143,
148, 149] independently, as well as multiple classes of memory er-
rors [25, 28, 29, 69, 86, 88, 105]. However, none of these defenses
have been widely-adopted in production (although several are used
in fuzz testing), as they often incur significant overheads. Produc-
tion defenses such as AutoSlab [66], kalloc_type [102], and Partition-
Alloc [36] only focus on temporal safety, Microsoft Defender [78]
preserves the integrity of heap metadata for code with memory
errors. However, such defenses only make exploitation harder (i.e.,
memory errors and exploitations are still possible). Thus, a lingering
question is how to introduce heap protection that can be adopted in
practice (i.e., is effective and efficient) and can serve as a foundation
for enforcing memory safety comprehensively for the entire heap.

We observe that producing defenses for heap memory is very
difficult because any defense must satisfy three mutually con-
flicting properties: An ideal defense must provide memory protec-
tion against all classes of memory errors with coverage across all
memory objects for reasonable cost in performance and memory
overheads. The past 20 years of research has demonstrated that
it is very hard to find a silver bullet that achieves all three goals
simultaneously [41]. Traditionally, researchers have focused on the
goal of complete coverage across all objects, but some memory
operations may occur frequently causing a high overhead for the
defenses, resulting in trade-offs on protecting only one or some of
the memory error classes [4, 11, 25, 80, 83, 105]. An alternative ap-
proach, exemplified by DataGuard [40], targets protection against
all memory error classes, but only for objects that can be protected
efficiently, finding that over 90% of stack objects can be protected
for 4.3% overhead on SPEC CPU2006 benchmarks. DataGuard en-
ables a significant fraction of "safe" stack objects to be protected
comprehensively from memory errors, but does not address heap
objects nor consider the impact on the remaining unsafe objects.

In this paper, we examine the challenge of memory safety valida-
tion to protect safe heap objects1, whose memory references must
comply with all classes of memory safety, from being corrupted by
memory errors on other unsafe objects for low cost. Our broader
vision is that such an approach will reduce the overhead of applying
defenses to protect the remaining heap objects comprehensively
as well. Similar ideas have been examined in selective symbolic
execution [117] and removing redundant type checks [145]. We will
demonstrate: (1) this idea makes heap memory protection efficient,
(2) protecting safe heap objects against all memory error classes
provides promising exploit mitigation, and (3) applying existing
defenses only to the remaining unsafe heap objects offers the same
security guarantees at lower cost.

One idea would be to apply the techniques for stack memory
safety validation [40] to heap objects. Unfortunately, the original
methods do not apply to the heap. First, heap objects typically have
more complex representations and a greater number of aliases, are
involved in more dynamic changes and shared between threads, and
1"Heap objects" refers to all objects allocated to an allocation site, per static analysis.

have much longer lifetimes than stack objects. As a result, we must
design new approaches for static safety validation, while addressing
the greater number of false positives that may be produced by static
analysis of heap usage. Second, no general static analysis exists
to validate temporal safety for heap objects. As a result, defenses
have been proposed to enforce temporal safety at runtime, but
these efforts have shown that fully eliminating temporal errors
at runtime incurs high performance costs [28, 69]. Thus, we must
adapt this idea strategically and effectively to enforce temporal
safety at runtime, while keeping costs low.

To address these challenges, we develop the Uriah system to (1)
validate heap objects whose accesses must always satisfy spatial
and type safety and (2) enforce isolation and a form of temporal
safety over validated heap objects in (1) to preserve their spatial
and type safety at runtime. First, Uriah provides static memory
safety validation methods that ensure that all operations that access
a heap object through all its aliases must satisfy both spatial and
type safety, while accounting for the challenges above, including
reallocations and concurrent access. Second, given results showing
that the type-safe memory reuse can be enforced efficiently to
prevent temporal errors exploits [66, 81, 129], Uriah leverages
this idea to enforce a more restrictive form of type-safe memory
reuse to maintain spatial and type safety at runtime for all the
validated heap objects on a separate safe heap against temporal
exploits, and isolate it from memory errors in accesses to objects on
the regular (unsafe) heap. This version of type-safe memory reuse,
called temporal allocated-type safety, only allocates objects with the
same fields of the same size and type for all fields in each memory
region within an isolated safe heap. The result is the following
security guarantee: For objects whose own accesses all satisfy
spatial and type safety statically, which we call safe objects in this
paper, Uriah ensures that no access to any object can violate the
spatial and type safety of any safe object at runtime. Uriah protects
safe objects from anymemory errors in accesses to unsafe objects by
separating safe objects onto a safe heap isolated using SFI. Further,
Uriah protects the spatial and type safety of safe objects at runtime
from temporal exploits that leverage dangling pointers to the safe
heap by enforcing temporal allocated-type safety.

By employing Uriah, we find major benefits in protecting mem-
ory safety for heap objects. First, Uriah finds that 72.0% of heap
allocation sites can be validated to produce objects that satisfy spa-
tial and type safety statically for a variety of programs, including
Firefox, servers (nginx and httpd), and the SPEC CPU2006/2017
benchmarks. This represents a substantial increase relative to the
39.9% found equivalently safe by employing prior techniques (see
Table 3).Uriah protects all objects produced at these allocation sites
by isolation on the safe heap. This accounts for 73.6% of the memory
object allocations made by the SPEC CPU2006 benchmarks at run-
time. Second, Uriah exhibits only 2.9% and 2.6% runtime and 9.3%
and 5.4% memory overhead for the SPEC CPU2006 benchmarks and
the SPEC CPU2017 benchmarks, respectively. We compare Uriah’s
memory and runtime overheads to seven state-of-the-art defenses
(see Table 4), finding that Uriah has lower overheads for allocating
all objects for all but one system, but stronger security guarantees.
As a defense, Uriah prevents exploitation of all 102 heap vulner-
abilities in Cyber Grand Challenge binaries and 28 recent heap
CVEs. More importantly, while Uriah does not protect objects on

Top of the Heap: Efficient Memory Error Protection of Safe Heap Objects CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

1 static uint64_t read_indexed_address (uint64_t idx,
2 struct comp_unit *unit){
3 ...
4 bfd_byte *info_ptr; // used for memory access
5 size_t offset;
6 offset += unit->dwarf_addr_offset;
7 if (offset < unit->dwarf_addr_offset
8 || offset > file->dwarf_addr_size
9 || file->dwarf_addr_size - offset < unit->offset_size)
10 // wrong check always true
11 return 0;
12 info_ptr = file->dwarf_addr_buffer + offset;
13 return bfd_get_64 (unit->abfd, info_ptr);
14 //unsafe memory access
15 }
16
17 static struct dwarf_block * read_blk (bfd *abfd,
18 bfd_byte **ptr, bfd_byte *end, size_t size){
19 ...
20 struct dwarf_block *block;
21 block = (struct dwarf_block*) bfd_alloc (abfd, ...)
22 }
Listing 1: Spatial memory error for vulnerability CVE-2023-1579, which allows attackers to
exploit a buffer over-read through unit to access objects aliased by block

the unsafe heap, it reduces the number of unsafe objects, lowering
the effort to enforce memory safety overall. To examine this, we
combine Uriah with existing defenses, TDI [81] and CAMP [69],
saving ≈70% of their original overhead to efficiently enforce their
security guarantee over the unsafe heap.

The contributions of Uriah include:
• We build the Uriah system for heap memory safety enforcement,
which provides memory safety validation to determine which
heap objects satisfy spatial and type safety and a heap allocator
that protects these objects by enforcing temporal allocated-safety
over an isolated safe heap. Heap objects in the safe heap are
isolated from memory errors efficiently.
• Uriah includes new analyses for spatial and type safety valida-
tion that address the challenges of heap objects, such as complex
representations, dynamic resizing, multi-threading, and up/down-
casts. In addition,Uriah applies new symbolic execution analyses
to validate unsafe cases, converting them to safe cases when all
unsafe aliases lack feasible execution paths.
• Our evaluation shows that Uriah protects 72.0% of the allocation
sites of CPU2006/2017 benchmarks, 5 server programs, and Fire-
fox, with only 2.9% and 2.6% runtime and 9.3% and 5.4% memory
overheads, on the SPEC CPU2006/2017 benchmarks, respectively,
while preventing exploits of 28 known CVEs and CGC programs.

2 Motivation
In this section, we motivate our research by examining how heap
memory errors may be exploited and past research on mitigating
such errors, showing the limitations, and proposing our ideas.

2.1 Exploiting Heap Memory Errors
Despite decades of work on mitigation, memory errors remain an
active source of vulnerabilities, particularly for the heap. Over the
past 10 years, there have been more than 10,000 CVEs of heap
memory errors, including hundreds in the current calendar year.

A program contains a memory error when a program’s memory
reference may violate a memory safety property. Researchers have
identified three classes of memory safety properties defined below.
• Spatial Safety: Every pointer that may reference the object must
only access memory within the object’s allocated region.
• Type Safety: Every pointer that may reference the object must
only access the same data types for each offset and each field.

Defense Spatial Type Temporal Scope

Uriah (this work) A ✓ ✓ ✓† H∗

CCured [20, 86, 87] R ✓ ✓ S & H
Checked-C [29, 148] R ✓ ✓ UAF S & H
EffectiveSan [28]
ASan [105] R ✓ UAF S & H
Baggy-Bounds [4]

R ✓ S & HSoftBound [83]

Low-Fat [26, 27]
HexType [51]

R ✓ S & HTypeSan [38]

CaVer [59]
DangSan [130]

R UAF HDangNull [58]

FreeSentry [142]

SAFECode [25] A ✓ UAF† S & H
FFMalloc [134] A UAF H
MarkUs [2]

Cling [3] A UAF† H

Type-After-Type [129] A UAF† S & H
DieHard [11]

A ✓ ✓† H
DieHarder [90]

FreeGuard [108]

TDI [81]
CAMP [69] A&R ✓ UAF S & H
DataGuard [40] A ✓ ✓ ✓ S∗

Safe Stack [55] A ✓ S∗

Table 1: Comparison of Uriah with Previous Works. Defense includes custom
allocator (A) or runtime checks (R). “✓" indicates an approach protects that
class of memory errors and “ " when it does not. UAF in the Temporal column
indicates that the protection includes use-after-free, double-free, and invalid-
free, but not use-before-initialization. †indicates the approach enforces a
well-defined subset of temporal safety, such a temporal type safety [129].
The Scope column indicates the protection covers stack (S) and/or heap (H),
possibly for a subset of objects that adhere to a property (e.g., are "safe") “∗".

• Temporal Safety: Every pointer that may reference the object
must not be used to access the object’s allocated region before
being assigned to the object nor after the object’s deallocation.

Listing 1 shows an example of a heap vulnerability (CVE-2023-
1579) in binutils. A size check against the unit->offset_size
field at line 9 always returns true, because this is the incorrect
field for this size check; the check should be made against the
unit->addr_size field. This error enables the info_ptr pointer
assigned in line 12 to reference out-of-bounds memory, eventually
resulting in heap buffer over-reads in the function called at line 13.
In this case, the block allocated at line 21 is often exploited, and, as
it may alias any data on the heap allocated by bfd, an attacker can
read any heap data by illicitly accessing memory through block.

To exploit heap memory errors, attackers utilize a memory error
in accessing one object to exploit other objects. We refer to an object
whose accesses have memory errors as a vulnerable object. In this
example, the vulnerable object aliased by unit has a spatial memory
error that permits attackers to read outside its allocation.We call the
objects that can be accessed illicitly due to a memory error, target
objects. In this example, heap objects aliased by block are target
objects. Existing, commonly-adopted defenses cannot prevent the
exploitation effectively. For example, ASLR [12] can be bypassed
by disclosure attack [21, 113] and cannot prevent illicit reads, as

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Kaiming Huang et al.

the target object is often allocated at a known or configurable [23,
115, 132] offset. Spatial defenses, such as ASan [105], are known
to present high costs. Other defenses [36, 66, 102] only focus on
temporal safety, neglecting spatial and type errors.

2.2 Limitations of Heap Memory Defenses
Researchers have explored a variety of techniques to enforce a
subset or all classes of memory safety, but none of these tech-
niques have yet found broad acceptance in production systems.
Most current defenses aim for full coverage of vulnerable objects,
but have issues enforcing comprehensive memory safety for all
classes of memory errors for reasonable performance and mem-
ory costs, hindering their deployment. We characterize software-
based defenses in Table 1. Initially, runtime defenses were designed
for a single class of memory errors, such as spatial error protec-
tions [4, 27, 83, 86, 105] that restrict memory operations on objects
within bounds metadata, type error protections [28, 38, 51, 59, 73,
146] that validate type casts at runtime, and temporal error pro-
tections that often seek to invalidate pointers when memory is
deallocated [28, 58, 130, 142, 148]. However, despite optimizations,
these defenses have performance overheads that prevented their
adoption for production systems. Defenses that enforce memory
safety for multiple classes of memory errors, such as ASan [105] and
EffectiveSan [28], are applied commonly for detecting vulnerabili-
ties in fuzzing. ASan performance has been optimized [147], but its
use of red-zones can be circumvented, limiting its effectiveness in
preventing exploits. Checked-C [29] introduces additional language
semantics for spatial and type safety, but faces backward compat-
ibility issues with legacy codebases. Checked-C was extended to
enforce temporal safety with compatible use of fat pointers [148],
but the original compatibility issues of Checked-C persist.

More recently, researchers have proposed defenses that lever-
age secure allocators [2, 11, 25, 69, 81, 90, 108, 129, 134] to pre-
vent exploitation to target objects through temporal errors. Most
of these defenses aim to prevent UAF [2, 25, 69, 129, 134], but
some works [11, 81, 90, 108] include prevention of UBI. Interest-
ingly, researchers have found that enforcing type-safe memory
reuse [25, 81, 129] is an effective approach to prevent dangling
pointer misuse by associating data regions with a single data type,
as such exploits typically result in type confusion. Unfortunately,
the pioneer SAFECode [25] ignores spatial safety and requires an
exact alias analysis to apply its per-function, per-type allocation
pool for all heap objects, so it can only be applied to small programs
and is expensive. Recent work, Type-After-Type [129] demonstrates
such a technique can be enforced efficiently. However, it places ob-
jects from the same allocation site into the same pool, risking type
errors if multiple types are dynamically determined and allocated
at that site. Other works focus on restricting memory reuse [2, 134],
trading memory overhead for preventing dangling pointer misuse
(See Table 4). In a broader sense of memory safety, the impact for
all the secure allocators is limited as they do not account for all
classes of memory errors, as attacks on spatial and/or type errors
remain possible on objects allocated by these systems.

2.3 Protecting Target Objects without Checks
In practice, attacks often exploit memory errors in accesses to
vulnerable objects to corrupt target objects [16, 17, 39, 49, 63, 67,

135, 136, 150, 151]. As a result, defenses that prevent accesses to
vulnerable objects from reaching target objects can block many
attack options. Recent work has proposed an approach to achieve
this goal in the classes-coverage-cost space of memory defenses.
DataGuard [40] proposes to protect stack objects that pass a static
memory safety validation for all classes of memory safety from
memory errors in accesses to other objects, finding that protection
can be achieved at low cost using multiple stacks, such as Safe
Stack [55], without runtime checks. Although this solution is biased
toward enforcement of all classes of memory safety at a low cost at
the expense of complete coverage, such a trade-off is worthwhile, as
over 85% of stack objects only have memory references that satisfy
all classes of memory safety in a large study of over 1,200 Linux
packages [43]. The overhead for protecting memory-safe stack
objects in SPEC CPU2006 benchmark programs is only 4.3% [40].

Thus, a research question is whether and how memory safety
validation can be applied to identify heap objects that can be pro-
tected from all classes of memory errors cheaply. Unfortunately,
heap usage introduces challenges that Dataguard’s stack analyses
cannot handle. For spatial safety, DataGuard’s use of value range
analysis [109] relies on the predefined, fixed-size objects. However,
heap objects may be resized dynamically, and even reallocated,
as well as being accessed across multiple threads. For type safety,
DataGuard only validates integer type casts, considering any cast
between non-identical compound types as unsafe. Heap objects
are much more likely to be involved in the latter (approximately
60%, see Table 3). For temporal safety, DataGuard performs a static
liveness analysis, which is not feasible for heap objects. Heap ob-
jects have much longer lifetimes than stack objects, so researchers
have not yet produced a satisfactory static analysis to validate the
temporal safety of heap objects. In addition, all these static analyses
suffer more false positives (i.e., falsely classifying objects as unsafe)
due to the greater over-approximation of aliases to heap objects.
DataGuard utilizes symbolic execution to validate legal executions
to remove a significant fraction of these false positives, but the
depths of the def-use chains for aliases to heap objects often exceed
the limits that DataGuard uses to prevent path explosion.

As a result, a method to protect heap objects frommemory errors
that retains low overhead requires a variety of different problems
to be solved. The spatial and type memory safety validation analy-
ses must be extended to solve challenges specifically for validating
heap objects effectively. The additional complexity of these analysis
problems and heap analysis in general will result in more false posi-
tives, so we need alternative methods to resolve the greater number
of false positives that will occur while retaining good scalability.
Finally, we need runtime methods to enforce temporal safety while
preserving spatial and type safety. Inspired by the fact that illicit
memory accesses caused by temporal errors require (re)use mem-
ory of different types, existing temporal defenses for heap objects
enforce type-safe memory reuse to ensure only objects of the same
type are allocated in each memory region [25, 129], but the aim for
complete coverage introduces limitations (See Section 2.2).

3 Uriah Overview
To ensure the security guarantee (Section 1) of Uriah, we aim to:
(1) statically validate the heap objects whose accesses must satisfy
spatial and type safety, which form its allocated-type (Definition 1),

Top of the Heap: Efficient Memory Error Protection of Safe Heap Objects CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

 DataGuard

Heap
Object Type Validation

compound cast and
reallocation
Section 5.5

Symbolic
Validation

(Remove false aliases)
Section 5.6

Spatial and
Type Safe

Heap Object

Unsafe
Spatial Validation

multi-thread and
reallocation

Section 5.3 and 5.4 Temporal Allocated-
Type Safety

(Isolated safe heap for
safe objects)

Safe

Safe

Possibly
Unsafe

Possibly
Unsafe

Safe

Stack Aliases

Heap Aliases

Global Aliases

Validation needed for memory safety of uses of aliases to access heap object

 Ptr
Arith

 Type
Cast

Safe
Aliases

Static Safety Validation of Heap Objects
Runtime Allocation

72.0%

Uriah

Initialization
check + SFI

Validation of Aliases

Validation needed for aliases’ memory safety
Section 5.1

Section 5.7
Section 5.2

Figure 1: Overview of the Uriah approach.

and (2) prevent exploits of temporal errors at runtime from per-
mitting accesses that violate the allocated-type of validated safe
heap objects in (1), through enforcing temporal allocated-type safety
(Definition 2) and isolation. The Uriah allocator ensures that only
safe objects with identical memory layout of sizes and types are
(re)allocated in the same memory locations. Memory (re)uses are
restricted to the same allocated-type for validated safe heap objects,
preventing temporal exploits that corrupt their allocated-type2.
Definition 1. The allocated-type of a heap object (consists of 𝑛
fields) is a tuple (𝑆,𝑇 , {(𝑓𝑖 , 𝑠𝑖 , 𝜏𝑖 , 𝑜𝑖)}𝑛𝑖=1) where:
• 𝑆 is the declared total size of the object in memory.
• 𝑇 represents the declared type of the object.
• {(𝑓𝑖 , 𝑠𝑖 , 𝜏𝑖 , 𝑜𝑖)}𝑛𝑖=1 is the set of quadruples for each field 𝑓𝑖 of the
object, where 𝑠𝑖 is the size of field 𝑓𝑖 , 𝜏𝑖 is the type of field 𝑓𝑖 , and
𝑜𝑖 is the offset of 𝑓𝑖 in the object.
• No two fields overlap, i.e., for any pair of distinct fields 𝑓𝑖 and 𝑓𝑗
with offsets 𝑜𝑖 and 𝑜 𝑗 , sizes 𝑠𝑖 and 𝑠 𝑗 , respectively, the intervals
[𝑜𝑖 , 𝑜𝑖 + 𝑠𝑖) and [𝑜 𝑗 , 𝑜 𝑗 + 𝑠 𝑗) do not intersect.

Definition 2. Temporal allocated-type safety is a property that
requires a memory region be used to access objects of one allocated-
type. Memory reuses are restricted to objects of one declared size
and type for all fields, without partial overlapping.

Figure 1 shows an overview of the Uriah approach. This ap-
proach must: (1) validate that accesses to all the aliases of heap
objectsmust satisfy memory safety, (2) validate that all accesses to
a heap object through all of its aliases must satisfy spatial and type
safety, and (3) enforce temporal allocated-type safety on heap ob-
jects found to satisfy (1) and (2) to prevent exploitation of temporal
errors by preserving spatial and type safety in all allocations. First,
Uriah collects all possible aliases of heap objects conservatively.
Aliases may reside in the stack, heap, or global regions, so Uriah
validates heap aliases and leverages the DataGuard analysis [40]
for stack aliases and adapts that analysis for global aliases con-
servatively (Section 5.1). Second, Uriah validates that all uses of
aliases to access heap objects must satisfy spatial and type safety.
Uriah validates spatial safety considering the impact of realloca-
tions (Section 5.2) and multi-threading (Section 5.3), and type safety
considering the impact of compound type casts and reallocations
(Section 5.4). Uriah uses symbolic execution to remove false aliases
and infeasible unsafe paths to validate false positives due to the
over-approximations of static analysis (Section 5.5). Third, heap
objects validated to satisfy spatial and type safety are allocated on
a single isolated safe heap that enforces temporal allocated-type
safety (Section 5.6). Unsafe heap objects are isolated on an unsafe
heap, and existing protection can be applied to the unsafe heap.
2Similar to temporal type safety [129], temporal allocated-type safety does not prevent
exploits that reuse memory of different objects of the same allocated-type.

The Uriah approach for protecting heap objects draws inspira-
tion from the Anna Karenina Principle [52]3. Uriah aims to max-
imize the number of safe target objects (i.e., “happy family") that
may be co-located in the isolated safe heap (i.e., creating the largest
“happy family") by (1) validating spatial and type safety statically,
and (2) enforcing temporal allocated-type safety at runtime to pre-
vent illicit accesses caused by temporal errors. Despite the complex-
ity in structure (e.g., compound types) and usage (e.g., reallocation
and multi-threading) of heap objects, we find that many allocation
sites only produce heap objects whose accesses can be proven to
satisfy spatial and type safety. No runtime checks are necessary on
safe objects, as Uriah’s heap allocator ensures that accesses to safe
objects satisfy temporal allocated-type safety. Uriah isolates these
safe objects from illicit accesses from the unsafe heap via SFI.

4 Threat Model
We assume that every program protected by Uriah may have any
classes of memory errors on the heap. We also assume that every
heap object that Uriah has deemed unsafe may have memory
error. We assume adversaries will try to attack any unsafe heap
object to corrupt safe heap objects. We aim to protect the safe heap
objects from being affected by such attacks by the construction
of Uriah. Protection of unsafe heap objects can be realized by
applying existing defenses on Uriah’s unsafe heap objects only.

To ensure that the CFG we analyze is an over-approximation of
program executions to guarantee the soundness of Uriah’s static
analyses, we assume the presence of CFI [1], which implies that
the corresponding indirect call analysis is sound , so that attackers
cannot leverage the remaining unmitigated exploits by Uriah to
synthesize malicious control flows beyond the expected CFG. We
further assume the code memory is not writable, and the data
memory is not executable [70]. To ensure that Uriah operates
correctly, we assume the computed safety constraints are protected
from tampering, and the underlying allocator (i.e., TcMalloc) is free
from flaws and maintains the integrity of its state and metadata.

5 Design
In this section, we detail Uriah’s design to perform the tasks out-
lined Figure 1. Soundness4 (ensuring that no unsafe objects are
misclassified as safe) is discussed individually in each section.

5.1 Collecting and Validating Aliases
All aliases that may alias each heap object must be identified to
validate that all possible accesses to each heap object satisfy spatial
3From the opening line in Tolstoy’s Anna Karenina [127]: “All happy families are alike;
each unhappy family is unhappy in its own way."
4As defined by the static analysis community [112], sound analysis over-approximates
the program’s executions. We also summarize soundness in the extended paper [42].

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Kaiming Huang et al.

and type safety and to validate the memory safety of accesses to the
aliases themselves. Assume program executions are restricted to the
computed CFG via CFI (Section 4), Uriah computes an overapprox-
imation of all aliases from the stack, heap, and global regions for
each heap object inter-procedurally in a context and flow-sensitive
way, using static value-flow analysis [119] (SVF) on a program-
dependence graph [71] (PDG) representation. SVF and PDG are both
claimed to be sound5. SVF [119–123] uses heap cloning [5, 57, 133]
for flow-sensitive aliases analysis [10] at intra-procedural level, the
result is fed into PDG [71], which uses a parameter-tree model to
compute context-sensitive aliases inter-procedurally.

A challenge is to verify the safety of all aliases to each heap object,
regardless of whether they are stored in the stack, heap, and global
region. The memory safety of accesses to stack aliases (67.29% of all
aliases) is validated using DataGuard [40]. Heap aliases (31.88% of
all aliases) will be validated byUriah as heap objects as described in
the remaining subsections. Global aliases make up only 0.83% of the
aliases in all the tested benchmarks6, so we provide a conservative
approach. Global aliases are either: (a) singletons, (b) fields of global
objects that only have singleton fields, or (c) fields of global objects
that have fields of compound types. With Uriah, we validate global
aliases of classes (a) and (b), which constitute over 87.3% of all global
aliases, as follows. First, no spatial errors are possible for accesses
to singleton objects or objects with only singleton fields (i.e., no
pointer arithmetic except field access). Second, Uriah detects any
type casts of these global aliases, as described in Section 5.4. Third,
Uriah requires global aliases to be initialized immediately following
their declaration. Uninitialized global aliases are deemed unsafe
to avoid temporal errors. Since protecting global memory is not a
contribution of this work, we assume SFI techniques may be applied
to protect safe global aliases from being corrupted bymemory errors
on accesses to unsafe global memory similar to how we isolate the
safe heap, but implementing that is future work.

5.2 Spatial Safety Validation
A heap object is validated to be spatially safe if all of its aliases must
only access memory locations within the object’s memory region,
defined by its size. Uriah requires that all heap objects must be
declared to have or always be bounded by a constant size, which
forms the spatial constraint checked in spatial safety validation. If
an object’s size is not a constant, the object is classified as unsafe.

CCured [86] finds that only aliases used in pointer arithmetic
operations may violate spatial safety, Uriah applies sound context-
sensitive [107] value-range analysis [40, 109, 125] to validate the
spatial safety of each heap object using Algorithm 1 for all pointer
arithmetic operations on each of its aliases. Each alias is checked to
comply with the collected constraints (i.e., size) for all accesses with
an index (i.e., a position of the object between 0 and size) along the
def-use chain (line 3). When referencing an object through an alias,
the reference may use offset (i.e., in pointer arithmetic) to change
the index. The initial index must be less than the size of heap object
(line 4). The offset is required to be constant and the index+offset
5Computing global aliases may suffer from the well-known scalability and precision
issues for large programs, e.g., Linux Kernel [61].We leave the adoption of the proposed
technique for future work.
6Using global aliases to reference heap objects raises both security and performance
concerns [27, 28, 61], and is thus explicitly inadvisable in much production software
(e.g., a stated in reference to the Linux kernel [9], Chrome [35], and Nginx [89]).

Algorithm 1: Spatial Safety Validation for Heap Objects
Input: object - the heap object to be validated
Output: classification of the object (safe or unsafe)

1 function SpatialValidation(object)
2 for each alias of object do
3 alias.index = def(alias)
4 if (alias.index ≥ object.size then
5 object.safety(unsafe) return
6 if SingleThread(alias) then
7 for each use of alias to access object do
8 if IsConstant(offset) then
9 if use.offset < 0 or !(0 ≤ (alias.index +

use.offset) < object.size then
10 object.safety(unsafe) return
11 if Increment_Index(use)) then
12 alias.index + = use.offset

13 else if MultiThread(alias) then
14 MultiThreadValidation(object, alias)

15 object.safety(safe) return

must always be between 0 and the size of the object for every use
(line 5-9). Uriah classifies an object as unsafe if any access uses a
negative offset to prevent underflows, as the PDG overapproximates
possible executions. The index may be incremented by the offset in
some cases (line 10-11) and needs to be updated in such cases. The
validation for multithreading (line 13) is discussed in Section 5.3.

The challenge is that spatial safety validation must account for
reallocations since heap objects can be dynamically-resized through
reallocations. Previous approaches [4, 26, 28, 69, 81, 83] treat real-
locations as new allocations, ignoring the impact of unsafe real-
locations on accesses using the original aliases. Reallocation can
compromise accesses through the original aliases by: (1) shrink-
ing the object’s size, as accesses using the original aliases to the
reallocated object may exceed the new/reallocated bounds, and (2)
moving the object to a different location, which can turn the origi-
nal aliases into dangling pointers if not managed correctly. For case
(1), Uriah classifies the objects whose sizes are reduced through
reallocations (which is rare) as unsafe. Uriah limits the cases ob-
jects can be reallocated safely only to those that extend the size of
the last field or append fields to the object at the end of its original
data type (which are common cases for reallocation). Aliases to the
reallocated object will be analyzed (i.e., for their def-use chains)
using the newly reallocated size as the size in Algorithm 1. For case
(2), accesses using the original (possibly dangling) aliases will be
evaluated using the original size for their def-use chains to detect
an spatial errors relative to the original object memory rather. The
temporal safety concerns for case (2) are addressed in Section 5.6.

5.3 Spatial Validation with Concurrency
As heap objects may be shared among threads (i.e., can be accessed
concurrently in multiple threads), spatial safety validation of Uriah
must account for concurrent accesses to heap objects through
aliases while indexes may be modified in different threads7. The
problem is to identify the heap objects that may be accessed concur-
rently and then reason about the safety of such concurrent accesses
7Race conditions, as not memory errors, are excluded in this paper.

Top of the Heap: Efficient Memory Error Protection of Safe Heap Objects CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Algorithm 2: Spatial Safety Validation for Shared Objects
Input: object - the heap object used in concurrent context
Input: alias - the alias to the heap object
Output: classification of the object (safe or unsafe)

1 function MultiThreadValidation(object, alias)
2 if IsShared(object) then
3 if !IsConstant(Threads_Set) then
4 object.safety(unsafe) return
5 for each use of alias used in multiple threads do
6 for each thread in Threads_Set do
7 if use.offset < 0 or !(0 ≤ (alias.index + use.offset) <

object.size then
8 object.safety(unsafe) return
9 if Increment_Index(use)) then
10 alias.index + = use.offset

11 classify(object, SAFE) return

conservatively. While SVF provides intra-thread CFGs [118] that
identify the aliases accessed in functions that may be executed
concurrently in multiple threads, such a method introduces a large
number of false positives, asmany heap objects accessed in the intra-
thread CFG may not be used concurrently (i.e., are thread-local).
The challenge is to remove false positives while still maintaining an
overapproximated set of objects that may be accessed concurrently.

Uriah identifies the shared heap objects from the heap objects
accessed in an intra-thread CFG by determining whether they are
assigned to any alias that may be used concurrently in multiple
threads. Such aliases should be used in intra-thread CFG and either:
(1) are on the heap, (2) are in global memory, or (3) are on the stack
and passed as parameters of thread creation API. Other aliases used
in the intra-thread CFG are thread-local. Since the construction of
inter-procedural, intra-thread CFGs and SVF aliasing are claimed
sound [56, 118], Uriah over-approximates the heap objects that
may be shared and the aliases that may access them concurrently.

To reason about spatial safety conservatively, updates to the
aliases of shared heap objects must consider whether the aliases
may be used concurrently in multiple threads or not. Algorithm 2
shows the spatial validation of shared heap objects among threads.
Accessing shared heap objects consists of two cases, depending on
whether the alias is: (1) thread-local or (2) used in multiple threads.
We observe that case (1) is the commonmethod for accessing shared
heap objects in production software. For example, Nginx and httpd
create thread-local copies of aliases to access shared heap data. For
case (1), since the alias is thread-local, aliases in different threads
are used independently and can be examined using Algorithm 1
discussed in Section 5.2 (thus excluded in Algorithm 2). For case
(2), where the number of threads can be concretized statically , we
extend the value-range analysis to calculate the index by accumu-
lating the access range (line 5-10) across memory operations in all
threads. For example, if 2 threads access the heap object through in-
crementing the alias by 3 and 5, then the index calculated by Uriah
will be increased by 8. Accumulation only applies to accesses that
increment index of the alias using constant offsets. Other accesses
(e.g., access to fields without changing the index of the alias) do not
need to be accumulated. Scenarios where the index is incremented
while the number of threads cannot be determined statically are

Algorithm 3: Type Safety Validation for Heap Objects and Aliases

Input: object - the memory object to be validated
Output: classification of the object (SAFE or UNSAFE)

1 function TypeValidation(object)
2 for each type cast cast(TN, T) for each alias of object do
3 if IsIntegerCast(cast) then
4 DataGuardTypeValidation(TN, T)
5 else
6 if 𝑇 ! = 𝑇𝑁 then
7 𝑙𝑎𝑦𝑜𝑢𝑡𝑇𝑁 ← GetTypeLayout(𝑇𝑁)
8 𝑙𝑎𝑦𝑜𝑢𝑡𝑇 ← GetTypeLayout(𝑇)
9 𝑝𝑟𝑒 𝑓 𝑖𝑥𝑇𝑁 ← GetPrefix(𝑙𝑎𝑦𝑜𝑢𝑡𝑇𝑁 , sizeof(𝑇))

10 for each field 𝑓𝑇 in 𝑙𝑎𝑦𝑜𝑢𝑡𝑇 do
11 𝑓𝑇𝑁 ← GetField(𝑓𝑇 , 𝑝𝑟𝑒 𝑓 𝑖𝑥𝑇𝑁)
12 if 𝑜 𝑓 𝑓 𝑠𝑒𝑡 (𝑓𝑇) ≠ 𝑜 𝑓 𝑓 𝑠𝑒𝑡 (𝑓𝑇𝑁)or!𝑓𝑇𝑁 then
13 object.safety(unsafe) return

14 object.safety(safe) return

unsafe (line 3-4). Thread-local objects are validated in Section 5.2.
If the calculated index is greater than the size of the heap object,
then the object is unsafe (line 7-8). For reallocations on shared heap
objects, Uriah relies on the common convention that the reallo-
cation operation is atomic8 (i.e., no race between reallocation and
memory access to the same heap object). Spatial constraints are
updated for all threads upon reallocation. Shared heap objects are
unsafe if reallocated to variable size in concurrent contexts.

5.4 Type Safety Validation
As defined in Section 2.1, A heap object is considered type safe only
if all of its aliases only access objects of the same data types at each
offset per the definition of its allocated-type, see Definition 1. The
task is to identify the types used by aliases to access the object
and verify if type casts among these types ensure type safety of all
accesses. CCured [86] finds that only aliases used in type cast oper-
ations may violate type safety, and identified that upcast must be
safe [87]. They define an upcast is a type cast from type𝑇𝑁 to type
𝑇 when the layout of 𝑇 in memory is a prefix of the layout of 𝑇𝑁 .
At the time of the CCured work (around 2005), they claimed that
63% of type casts are between identical types, and of the remaining
casts, 93% are safe upcasts. Thus, a significant benefit may be seen
by validating safe type casts statically. However, SAFECode conser-
vatively classifies all objects in type casts as unsafe, CCured only
applied its approach to casts where the type𝑇 is an explicit subtype
in 𝑇𝑁 , ignoring cases where the subtype 𝑇 does not physically
exist, but instead of its all its fields are present as a prefix of type
𝑇𝑁 , as such cases are prefixes using allocated-types. Moreover, in
recent systems, only C++ upcasts are classified [28, 38, 51, 59, 145]
by leveraging class hierarchy and RTTI. Thus, redundant runtime
checks are still applied to casts that can be validated as type safe.

We find that any upcast where the type resulting type is an exact
prefix of the allocated-type satisfies temporal type safety [129] for
8POSIX realloc() employs mutexes internally to avoid data corruption in races on
metadata [97]. Intel suggests adoption of thread-safe memory management API [45],
e.g., Intel oneTBB [46]. Allocators [32, 50, 64] are designed to leverage thread-local
storage/cache and per-thread freelists. Applications such as Nginx and Apache Httpd
utilize atomic reallocation operations and tend to only use realloc on thread-local data.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Kaiming Huang et al.

allocated-types, providing more opportunities for type-safe casts.
To identify safe type casts, Uriah performs type safety validation
following Algorithm 3 for each type cast operations for all aliases
of the heap object9. DataGuard [40] only validates safe type casts
among integers. Uriah reuses DataGuard’s type safety validation
for integer casts while focusing on casts among compound types
(line 2-4). Uriah validates compound type casts to determine if two
data types are compatible, which we call the compatible-type-cast
analysis (line 6-14). Two types in a cast are compatible types if the
types are identical or the cast is an upcast, other type casts are
considered unsafe. Different from C++ where 𝑇 usually serves as a
field of 𝑇𝑁 due to inheritance and coercion, we observed that in
many cases,𝑇 is not contained in𝑇𝑁 for C programs, but instead all
of its fields are. The compatible-type-cast analysis does not require
𝑇 to be contained in 𝑇𝑁 , as long as all the fields of the 𝑇 are at
the same offsets and of the same sizes and types in 𝑇𝑁 , cast from
𝑇𝑁 to 𝑇 ensures that an access at any offset within 𝑇 references
the same type (line 10-13). Also, it is worth mentioning that type
safety validation on shared heap objects among threads is validated
similarly since the safety of type cast is regardless of whether it
can be executed concurrently. The compatible-type-cast analysis
is built on the sound definition of upcasts in CCured [20, 87]. Our
validation is conservative, requiring the types to match concretely
and exactly to retain soundness.

Type safety validation is complicated by several challenges: (1)
heap objects can be dynamically typed (e.g., through polymorphism
in C++); (2) interchange of void*, char*, and other types (e.g.,
memcpy takes void* as parameter for arbitrary types); (3) heap
memory is not always assigned concrete types upon allocation
(e.g., the auto keyword may result in the pointer being assigned
void*); (4) reallocations change original allocated-type (e.g., by
extending the length of a field), and (5) memory safety concerns of
using unions. These challenges may make it harder to determine
the correct memory layout of an object. Uriah resolves challenges
in determining an object’s type (i.e., cases (1-3) by delaying type
assignment. Uriah does not consider void* or char* as a concrete
type. For heap objects whose allocated-type cannot be concretized
or aliased by void* or char* pointers, Uriah delays assignment of
a concrete type until the object is interpreted as a specific type. If
the type cannot be concretized statically, such objects are classified
as unsafe. For (4), Uriah only allows reallocations that extend the
size of the last field or append fields to the object at the end of
its original data type (see Section 5.2). For complied cases, a new
allocated-type is assigned to the heap object using the new declared
type. For (5), LLVM represents unions as structures. Unionmembers
are declared as distinct SSA variables [76] through type casts from
such structures to the member. Uriah validates such casts using
type safety validation before validating all following operations.

5.5 Symbolic Validation
Because Uriah’s static analysis over-approximates the possible
executions, it may classify a heap object as unsafe that could really
be safe, producing false positives. Researchers have identified two
9We consider all C and C++ type casting operations. C++ offers 5 types of casts:
static_cast, dynamic_cast, reinterpret_cast, const_cast, and C-style_cast. Among them,
dynamic_cast and const_cast have no security concerns [38, 51, 59], C-style_cast is
translated to other casts. We concentrate on validating static_cast and reinterpret_cast.

Uriah’s Heap Allocator Operations

Allocation Allocate object X of allocated-type T to region labeled for T. X
must be validated to satisfy spatial and type safety.

Deallocation Dealloc object X of allocated-type T, returning the memory region
to the free-list of allocated-type T to restrict its reuse to T.

Reallocation
Reallocates the object of original allocated-type T to new
allocated-type T’. The object is deallocated in the memory for T
and allocated in the memory for T’.

Table 2:Operational semantics for the Uriah safe heap allocator

approaches to remove false positives found from static analysis
using symbolic execution: (1) executing all paths to verify legal ex-
ecutions [40], and (2) pruning infeasible paths until only compliant
paths remain [143, 144]. Using (1) for the heap, we find that many
false positives are generated by infeasible aliasing (i.e., pointers can-
not be defined to reference the object) and operations (i.e., pointers
uses cannot access the object), due to the over-approximation of
static analysis, indicating the executions that result in the objects
to be classified as unsafe is not feasible (i.e., infeasible path).

Instead, on top of (1), Uriah applies symbolic execution in (2)
to prune infeasible paths. Specifically, Uriah removes infeasible
paths until all unsafe aliases can be removed as false positives. False
positives may occur because: (1) an object cannot be assigned (i.e.,
defined) to an alias on a path with an unsafe operation (i.e., infeasi-
ble definition); (2) an object cannot be used by an alias in an unsafe
operation (i.e., infeasible use); and (3) the path cannot be executed
in a manner that causes the unsafe operation (i.e., infeasible path).
First, to prune infeasible definitions, Uriah symbolically executes
each unsafe alias from its declaration to definitions that involve
later unsafe uses to determine whether the definition is reachable
in this path. Second, to prune infeasible uses, Uriah symbolically
executes from the pointer definition to its unsafe uses following its
def-use chain. In both of these cases, infeasibility is detected by the
failure of the symbolic execution engine (S2E [19]) to generate path
constraints. Finally, the infeasible paths are detected by evaluating
the path constraints on the def-use chains. All possibly unsafe paths
are considered before an object is reclassified as safe, preventing
any unsafe object from being classified as safe. If after removing
infeasible aliases and operations, all the remaining aliases of a heap
object can be validated to be safe for spatial and type safety for the
remaining operations, the heap object is reclassified as safe.

Symbolic execution suffers from scalability issues (e.g., path
explosion). Uriah applies loop canonicalization [74], simplification,
and unrolling [44, 75] features, and state merging [22]. Uriah limits
functions executed symbolically via a configurable depth to avoid
path explosion and classify heap objects in such cases as unsafe.

5.6 Uriah Runtime Allocation
Uriah enforces temporal allocated-type safety for heap objects val-
idated to satisfy spatial and type safety in an isolated, safe heap.
Uriah’s temporal allocated-type safety prevents temporal errors
prior to initialization and after deallocation by initializing all point-
ers on allocation and enforcing type-safe reuse on reallocation,
respectively. Recall from Section 3 that temporal allocated-type
safety requires that objects of only one allocated-type may be allo-
cated in each memory region to prevent a dangling pointer from
being used to access data of a different allocated-type. However,
there are several issues with the current approaches that prevent

Top of the Heap: Efficient Memory Error Protection of Safe Heap Objects CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Total VR-Spatial Uriah-Spatial CCured-Type CTCA-Type Uriah-Type VR-Spatial+ Uriah-Spatial+
CCured-Type Uriah-Type

Firefox 26,162 19,857 (75.9%) 20,432 (78.1%) 14,101 (53.9%) 19,700 (75.3%) 20,040 (76.6%) 12,270 (46.9%) 18,392 (70.3%)
nginx 954 705 (73.9%) 785 (82.3%) 585 (61.3%) 766 (82.3%) 819 (85.5%) 521 (54.6%) 744 (78.0%)
httpd 1,074 662 (61.6%) 816 (76.0%) 825 (76.8%) 918 (85.5%) 942 (87.7%) 575 (53.5%) 760 (70.8%)
proftpd 1,707 1,275 (74.7%) 1,380 (80.8%) 596 (34.9%) 1,201 (70.4%) 1,366 (80.0%) 458 (26.8%) 1,174 (68.8%)
sshd 378 270 (71.4%) 310 (82.0%) 170 (45.0%) 284 (75.1%) 304 (80.4%) 144 (38.1%) 274 (72.5%)
sqlite3 761 614 (80.7%) 655 (85.7%) 382 (50.2%) 567 (74.5%) 587 (77.1%) 316 (41.5%) 513 (67.4%)
SPEC2006 — 71.1% 79.6% 37.7% 80.3% 85.0% 29.8% 72.2%
SPEC2017 — 68.9% 83.4% 41.8% 79.0% 83.9% 28.2% 75.6%
AVERAGE — 72.2% 81.0% 50.2% 77.8% 82.0% 39.9% 72.0%

Table 3: Incremental Safety Improvement of Uriah, and Comparison with CCured. Total column shows the total number of heap objects (i.e., allocation sites). We
omitted CCured-Spatial column since heap objects are always involved in pointer arithmetic, resulting in the CCured-Spatial to be around 0 for all benchmarks.
CCured-type column shows the number of heap objects are not aliased by any pointer used in type casts. VR-Spatial column represents the number of heap objects
passed value-range analysis, Uriah-Spatial column represents the number of heap objects passed the complete Uriah’s static spatial safety validation. CTCA-Type
column represents the number of heap objects passed Compatible-type-cast analysis, Uriah-Type column represents the number of heap objects passed the complete
Uriah’s static type safety validation. The VR-Spatial+CCured-Type column shows the number of heap objects passed value-range analysis and CCured-type analysis.
Uriah-Spatial+Uriah-Type column shows the number of safe heap objects passed Uriah’s complete static safety validation. SPEC 2006 and SPEC 2017 rows show the
average percentage, individual results of SPEC benchmarks are shown in Table 3. Average row shows the average number of all tested benchmarks.

them from enforcing temporal allocated-type safety and preserving
spatial and type safety. We first outline Uriah’s allocator opera-
tions and then examine how it resolves issues in prior approaches
to enforce spatial, type, and temporal allocated-type safety.
5.6.1 The Safe Heap.

Uriah implements temporal allocated-type safety over objects in
the safe heap. Table 2 describes the API of Uriah’s allocator for the
safe heap. First, Uriah supports allocation, which allocates objects
using type-specific freelists. All memory regions begin untyped
and are assigned an allocated-type on the first allocation to that
memory region. Second, Uriah supports deallocation, which places
the memory region on a per-type free list to preserve the allocated-
type of the memory region for future allocations. Uriah maintains
the allocated-type with each allocation’s metadata. Third, Uriah
supports reallocation, which may change the size of the object
allocated (i.e., changing the allocated-type). Reallocations that result
in a new allocated-type of the heap object will result in the heap
object being moved out from the original pool and allocated in
the pool corresponding to the new allocated-type. Original aliases,
though may be dangling pointers without proper handling, can
only reference objects of the original allocated-type.
5.6.2 Isolation from the Unsafe Heap.

The unsafe heap region is built on top of the tcmalloc’s span and
page heap memory management scheme. For 64-bit system, cur-
rently only 48 bits are used for addressing, with 1 bit to distinguish
kernel and user space, up to 128TB memory can be used for user
space. Uriah reserves 1TB for the unsafe heap region. Uriah forces
all access to unsafe objects to only access memory in the unsafe
heap by performing bit-masking upon memory operations. Thus,
even if a pointer is illicitly modified to an address outside of the un-
safe heap, Uriah will restrict the pointed address to within unsafe
heap through bit-masking. Thus, any memory errors on operations
to objects located in the unsafe heap cannot be exploited for crafting
pointers that reference memory outside the unsafe heap region.
5.6.3 Security Implications of the Safe Heap.

Spatial Safety: SAFECode [25] and Type-After-Type [129] do not
enforce spatial safety within the heap. SAFECode uses per-type
heaps, so spatial errors are limited to objects of same data type, but
they recommend additional runtime checks. Other systems [81]
allocate objects separated by guard pages, but spatial errors can

evade guard pages. Uriah’s static safety validation ensures that
any object added to the safe heap must satisfy spatial safety.

Type Safety: SAFECode [25] enforces type safety by only pool-
ing objects of the same data type into each per-type heap. However,
SAFECode’s method for reusing per-type heaps leads to significant
overheads [47]. Uriah’s static safety validation ensures that any
object added to the safe heap must satisfy type safety. Objects of
multiple types can be added to the same safe heap (i.e., in different
locations) since they are guaranteed to satisfy spatial safety.

Use-Before-Initialization (UBI): UBI is possible on the stack,
heap, or global aliases of heap objects. For stack pointers, Uriah
leverages DataGuard [40] to ensure that safe stack aliases are never
used before initialization. For heap pointers, current techniques to
enforce temporal type safety [25, 69, 129] do not explicitly prevent
UBI attacks on heap pointers, techniques to zero memory on initial-
ization [80] is expensive. However, Uriah’s heap allocator is built
on top of TcMalloc, which already zeroes memory upon request
from the OS [34, 37]. Uriah detects uninitialized global aliases and
classifies the aliased heap object as unsafe (Section 5.1).

Dangling Pointers: Another memory safety problem occurs
due to the reuse of dangling pointers after reallocation/dealloca-
tion. Dangling pointers to the reallocated/deallocated safe heap
objects are restricted to only reference memory of the object’s
allocated-type. Some allocation sites may allocate objects whose
type cannot be determined statically, so some systems use alloca-
tion sites instead of types to determine the memory regions that
may be allocated for objects [81, 129]. This has been found to create
cases where memory regions may be reused for objects of multiple
types and sizes, invalidating the temporal allocated-type safety. Be-
cause Uriah preserves allocated-type for memory reuse, it does not
allocate any such objects on the safe heap, avoiding this problem.

6 Implementation
Uriah has been deployed on the x86_64 architecture, running on an
Intel CPU i9-9900K with 128 GB RAM, using LLVM 10.0 on Ubuntu
20.04. The CCured framework is adapted from NesCheck [79]. We
expand the original value-range analysis through the call-string ap-
proach for achieving scalable context-sensitivity [107] and covering
dynamically-sized objects. For type safety validation, we eliminate
the type casts generated by the compiler immediately after memory
allocation, since it is the common way of allocating heap objects

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Kaiming Huang et al.

Runtime Overhead (%) Memory Overhead (%)
TAT SC AS DS ES FF MU Uriah-R Uriah TAT SC AS DS ES FF MU Uriah-R Uriah

perlbench 8.3 2800.8 174.2 251.2 824.1 8.5 22.1 8.5 5.1 35.7 83.5 262.4 371.4 21.8 124.8 28.1 39.2 24.5
bzip2 4.4 11.1 74.4 5.1 122.5 2.7 1.7 4.7 2.4 5.5 12.3 42.4 6.2 11.5 17.4 7.2 6.4 3.9
mcf 2.6 42.6 12.6 48.3 67.1 1.2 2.2 2.4 1.5 2.3 11.1 14.5 55.3 8.2 5.5 6.8 2.4 1.8
gobmk 5.6 - 56.3 11.3 225.8 7.5 17.2 5.9 3.2 8.2 - 1130.5 124.5 17.8 78.5 91.6 8.2 5.2
hmmer 2.4 7.6 42.7 2.8 324.8 6.4 27.2 2.4 2.1 51.5 24.5 6580.4 12.4 44.5 85.2 82.8 57.5 34.4
sjeng 3.6 457.2 67.5 2.7 78.2 4.1 4.2 4.0 2.2 3.6 8.5 18.7 2.7 12.2 21.6 17.4 3.8 3.1
libquantum 4.6 202.4 27.1 3.1 291.2 3.8 3.0 5.1 2.9 4.2 7.6 289.1 4.1 6.7 17.4 12.2 4.5 3.5
h264ref 6.2 423.3 23.2 2.3 655.8 1.7 4.8 6.0 3.2 12.6 42.7 72.4 8.5 8.8 39.5 78.4 14.1 8.5
lbm 3.6 10.5 34.4 3.7 43.7 2.2 2.8 3.9 2.0 4.6 6.8 27.2 5.7 15.4 8.9 9.8 4.9 3.2
sphinx3 6.8 23.1 17.5 5.8 235.1 7.6 5.5 7.0 3.7 38.7 94.7 1150.8 182.8 9.1 1182.5 34.2 41.5 24.4
milc 6.2 12.8 14.6 21.1 142.0 4.4 6.4 6.5 3.2 3.4 10.5 337.1 34.1 14.2 12.2 15.6 3.7 3.2
omnetpp 6.6 - 76.5 698.4 167.4 5.1 36.5 6.8 4.5 13.2 - 425.3 1125.6 12.6 436.1 73.1 15.1 11.5
soplex 2.2 2135.4 94.7 12.2 212.9 7.2 5.6 2.6 2.1 5.6 17.8 355.2 1450.0 24.1 52.5 59.3 5.8 4.3
namd 3.4 2020.4 27.3 3.8 66.5 8.7 2.3 3.9 2.5 4.4 9.8 54.2 8.5 7.5 24.4 17.6 4.8 3.6
astar 3.5 312.6 62.6 72.3 246.1 3.3 2.5 3.6 3.1 4.8 35.5 468.1 515.6 11.3 77.1 64.4 5.2 3.7
AVERAGE 4.7 650.8 53.7 76.2 246.9 4.9 9.6 4.9 2.9 13.2 28.1 748.6 260.5 15.0 145.6 39.9 14.5 9.3

Table 4: Runtime and Memory Overhead of Uriah Compared with Prior Works for SPEC CPU 2006. We use the following abbreviations to represent the prior works,
TAT-Type-After-Type, SC-SAFECode, AS-ASan, DS-DangSan, ES-EffectiveSan, FF-FFMalloc, MU-MarkUs. The lowest overhead on a benchmark is marked as bold.

(i.e., casting to the corresponding type from void*) and it is safe.
We utilize S2E [19] as the guided symbolic execution engine for re-
moving false aliases. To reduce the path explosion of the symbolic
execution, Uriah employs a depth limit, where any terminated
symbolic execution implies that the related heap object is unsafe.

For runtime allocation to enforce temporal allocated-type safety,
Uriah creates per-allocated-type pools on the safe heap and isolates
all unsafe objects found by static validation in the unsafe heap.
This is achieved by adding an additional parameter that contains
the hash of the allocated-type to the allocation API in TcMalloc
only for safe heap objects, while all unsafe heap objects share the
same unique hash. The pools are built by leveraging the spans of
TcMalloc, the unsafe heap owns a separate, isolated span. The spans
and metadata are originally isolated in TcMalloc through guard
pages. Once acquired, the memory will never be returned to the OS
for later reuse by another span (pool), but is only reused through
the pool’s freelist. The metadata and freelist are also isolated.

7 Evaluation
This section focuses on evaluating how Uriah improves the se-
curity for low overhead. We conduct this evaluation by analyzing
browsers, servers, SPEC CPU2006, and SPEC CPU2017 benchmarks.

7.1 Identifying Safe Heap Objects
RQ1: How many heap objects does Uriah identify that can be allo-
cated on the safe heap? Table 3 shows the counts and percentages of
safe heap objects using existing techniques (i.e., VR-Spatial+CCured-
Type) and Uriah (Uriah-Spatial+Uriah-Type). Uriah classifies
72.0% of heap objects as statically safe in Firefox, server programs
and SPEC CPU2006/2017 benchmarks on average10.

For spatial safety, CCured classified virtually no safe heap objects,
which is expected as heap objects are usually compound objects and
use pointer arithmetic for field accesses. Traditional value-range
analysis (VR-Spatial) classifies 72.2% of heap objects as satisfying
spatial safety, but may misclassify unsafe heap objects as safe due
to its inability to handle reallocations and concurrency. Uriah’s
10We examined 15 out of 19 C/C++ benchmarks in SPEC CPU2006. The remaining
benchmarks (gcc, xalancbmk, povray, and dealII) are not supported by the SVF anal-
ysis due to the version is too old. The newer version in SPEC CPU2017 (gcc_s and
xalancbmk_s) are supported. We analyzed all 12 SPEC CPU2017 Benchmarks.

0 2 4 6 8 10
perlbench_s

gcc_s
mcf_s

xalancbmk_s
deepsjeng_s

x264_s
lbm_s

omnetpp_s
imagick_s

leela_s
nab_s
xz_s

6.6
4.2

0.5
8.6

0.7
3.8

1.7
6.4

1.2
1.4

0.8
2.7

Runtime

0 5 10 15 20
perlbench_s

gcc_s
mcf_s

xalancbmk_s
deepsjeng_s

x264_s
lbm_s

omnetpp_s
imagick_s

leela_s
nab_s
xz_s

18.6
12.4

1.1
14.5

0.2
1.2

0.2
7.7

2.4
3.2
2.9

0.1
Memory

Figure 2: Runtime and Memory Overhead of Uriah on SPEC CPU2017

extensions that handle dynamic sizing and multi-threading (Sec-
tion 5.2 and 5.3) and remove spurious aliasing (Section 5.5) classify
around 81.0% of heap objects as safe. For type safety, CCured clas-
sifies around 50.2% of the heap objects as safe. Enhanced by the
compatible-type-cast analysis (Section 5.4) and symbolic execution
(Section 5.5), Uriah classifies 82.0% of the heap objects as safe, an
additional 31.8% of heap objects being classified as safe. The stats
for individual benchmarks can be found in the extended paper [42].

The results in Table 3 show static heap object counts, raising the
question: how does Uriah perform with runtime allocations? We
use heaptrack, perf, and Mtuner as the heap memory profiler to
measure such data on SPEC 2006 benchmarks. If Uriah classifies
a heap object as safe statically, all the corresponding runtime allo-
cations are classified as safe as well. Based on the result, 73.6% of
total runtime heap allocations are classified as safe by Uriah.

7.2 Performance Evaluation
RQ2:What is the performance impact of isolating enforcing temporal
allocated-type safety? In this section, we evaluate the performance of
Uriah on the SPEC CPU2006 and SPEC CPU2017 benchmarks. We
compare Uriah with seven prior heap defenses on SPEC CPU2006
and provide result on SPEC CPU2017 (many compared works were
not originally evaluated on SPEC CPU2017). All prior works are
built from their open-sourced implementations without any up-
dates. We note that defenses vary in their goals (see Table 1). All

Top of the Heap: Efficient Memory Error Protection of Safe Heap Objects CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Foundation Static SymExec Total
Firefox 17,436.4s 2,349.2s 10,386.8s 30,172.4s
nginx 2,259.8s 132.6s 323.7s 2,716.1s
httpd 249.5s 1.6s 64.2s 315.3s
proftpd 1,328.4s 212.7s 564.4s 2,105.5s
sshd 225.6s 251.0s 191.4s 668.0s
sqlite3 3,396.4s 472.8s 1,624.4s 5493.6s

Table 5: Time Elapsed in Each Phase of Uriah’s Static Safety Validation. The
Foundation column represents the adapted CCured analysis time. The Static
column represents the time spent for spatial and type safety validation.
SymExec shows the time elapsed in the symbolic execution phase. Total col-
umn shows the total static safety validation time - sum of the first 3 columns.

defenses except Uriah provide coverage of all objects for the mem-
ory error classes they address, but may not cover all memory error
classes, whereas Uriah protects 73.6% of heap objects (72.2% of
allocation sites) that satisfy spatial and type safety to enforce tem-
poral allocated-type safety for the SPEC CPU2006 benchmarks. The
Uriah-R column uses Uriah to allocate all heap objects to emulate
the complete coverage of all objects for comparison.

7.2.1 Performance Overhead. Table 4 on the left side shows that
Uriah has the lowest average runtime overhead on SPEC CPU2006
benchmarks of 2.9%. ASan, DangSan, and EffectiveSan enforcemem-
ory safety using runtime checks, including maintaining the meta-
data for use in such checks, resulting in high runtime overhead.
Uriah does not require runtime checks, so it elides their overheads.
HexType [51] is not listed as it only supports C++ programs.

Uriah also outperforms allocator-based defenses. Specifically,
SAFECode exhibits much worse performance overhead than oth-
ers (more than 20x on perlbench and named), due to SAFECode’s
method to reuse memory by allocating and deallocating per-type
pools for each function (or call chains through escape analysis).
MarkUs and FFmalloc are much more efficient since they track used
memory and prohibit memory reuse, although they are still more
expensive than Uriah in most cases. Type-After-Type improves
performance by introducing a per-type pool allocation scheme by
using an efficient memory allocator, TcMalloc. Unfortunately, it is
impractical to compare Type-After-Type and Uriah on the same set
of objects without breaking either system. For a fair comparison, we
measured Uriah’s overhead when it applies to all heap allocations,
the results show that Uriah-R(untime) performs slightly worse,
which is expected given the more precise identification of type by
Uriah. Moreover, Uriah provides guarantees for spatial and type
safety, and enforces the stronger temporal allocated-type safety
property against temporal attacks. We also evaluated Uriah on
SPEC CPU2017. See Figure 2, Uriah exhibits a 2.6% overhead on
SPEC CPU2017 on average, which is reasonably low.

7.2.2 Memory Consumption. Uriah has the lowest average mem-
ory overhead on SPEC CPU2006 benchmarks of 9.3% (right side of
Table 4). Uriah-R, which provides full coverage of allocation, has a
slightly higher (14.5%) memory consumption than Type-After-Type
(13.2%), which again is expected. Previous works consume much
more memory than Uriah due to: (1) memory usage for checking
mechanisms, e.g., red-zones of ASan; (2) memory usage for allo-
cation metadata of EffectiveSan and DangSan; (3) memory usage
by prohibiting memory reuse in FFmalloc and MarkUs. Systems
that employ type-based reuse, like Uriah, sometime also have a
higher memory utilization. SAFECode also supports reusing heap

Uriah Uriah-R TAT
SunSpider 1.6% 2.3% 2.1%
Octane 2.0 0.1% 0.3% -0.2%
Dromaeo JS 2.4% 3.3% 3.8%
Dromaeo DOM 0.8% 1.4% 1.1%

Table 6: Runtime Overhead of Uriah vs. Type-After-Type on Firefox.

pools, which enables it to be more memory-efficient than Type-
After-Type and Uriah in some cases, despite still being quite high
for some programs, like perlbench and sjeng. Also, pool reuse is
the main cause of SAFECode’s increased runtime overhead. We
have observed that the need to reuse pools is often unnecessary as
allocated-types are typically reused. Again, we evaluated Uriah
on SPEC CPU2017 for its memory overhead. See Figure 2, Uriah
exhibits a 5.4% memory overhead on SPEC CPU2017 on average.

7.2.3 Static Analysis Time. Table 5 shows the static safety valida-
tion time of Uriah on all the benchmarks we analyzed. In general,
the spatial and type safety validation approaches by Uriah are
efficient given the Static column indicates the least amount of time
among the three phases. The CCured analysis and constraint ex-
traction i.e., Foundation, takes more time since Uriah leverages
the analysis in a context-sensitive manner. We note that the time
for static safety validation is a one-time cost for each program, as
long as no updates are made to the program. The static analysis
time for SPEC benchmarks can be found in the extended paper [42].

7.2.4 Firefox. We appliedUriah on the Firefox browser (changeset
ad179a6f) to further evaluate its runtime overhead on real-world ap-
plications. We evaluated four commonly-used Firefox benchmarks,
namely SunSpider, Octane 2.0, Dromaeo JS, and Dromaeo DOM.
Note that we only compared with Type-After-Type in this section
since: (1) Uriah shares a similar approach for runtime allocation
(i.e., enforcing type-based temporal safety) with Type-After-Type
and (2) for all the existing frameworks evaluated in Table 4, only
EffectiveSan was evaluated on Firefox originally. Since EffectiveSan
is mostly a runtime checking mechanism (i.e., Sanitizer), it exhibits
much higher overhead than the allocator-based designs.

As shown in Table 6, Uriah incurs less overhead than Type-
After-Type for all four benchmarks tested. However, a key reason is
that Uriah only applies its type-based pool allocation for the safe
heap objects (i.e., 70.3% of allocation sites), while Type-After-Type
applies a similar technique to all the heap allocations. For a fair
comparison, we also include the results when Uriah is applied to
all heap allocations (i.e., Uriah-R). Uriah generally incurs a slightly
higher overhead than Type-After-Type, which is expected given
that it distinguishes types more strictly and precisely (i.e., allocated-
type) than Type-After-Type, creating more pools. However, the
additional overhead of Uriah is modest for Firefox.

7.3 Impact on Mitigating Exploitation
RQ3: Does Uriah improve the security against exploitation of heap
memory errors? While Uriah may expand the range of safe objects,
a legitimate concern is whether this (alone) effectively prevents ex-
ploits or only reduces the overheads of applying additional defenses.
Uriah places heap objects that cannot be validated as satisfying
spatial or type safety on an unsafe heap, so perhaps these unsafe
heap objects are both the vulnerable objects and target objects ex-
ploited in attacks. For evaluating the ability of Uriah to mitigate

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Kaiming Huang et al.

CVEs Evaluated

Spatial 2023-27781; 2023-27117; 2023-27249; 2023-27103; 2023-23456; 2023-
1655; 2023-1579; 2023-0433; 2023-0288; 2023-0051

Type 2023-23454; 2023-1078; 2023-1076; 2022-27882; 2021-21861; 2021-
21860; 2021-3578; 2021-28275

Temporal 2023-27320; 2023-25136; 2023-22551; 2023-0358; 2023-1449; 2022-
47093; 2022-45343; 2022-43680; 2022-43286; 2022-4292

Table 7: Recent CVEs evaluated under the Uriah defense.

attacks on memory errors for heap objects, we choose to examine
vulnerabilities in the DARPA CGC binaries and 28 recent CVEs.
7.3.1 Impact on Mitigating Exploits on CGC Binaries. To assess the
security implications of Uriah, we apply it on the DARPA CGC
Binaries [24]. We picked all 73 Binaries with heap memory errors,
including 65 spatial errors, 17 type errors, and 20 temporal errors.

We say that Uriah successfully mitigates the attack when the
vulnerable object is classified as unsafe and isolated in the unsafe
heap and the target object is classified as safe and allocated in the
safe heap. Additionally, temporal errors may also be mitigated by
temporal allocated-type safety enforcement. Uriah successfully
mitigates all 65 spatial error and 17 type error exploits. For type
error cases. 4 of them are incompatible casts, 13 are bad casts on in-
tegers (serving as bounds or access ranges) that change signedness,
objects are unsafe if index is used in bad cast. 12 of the temporal er-
rors are UAF and 8 are UBI. Of the 20 cases, 6 of them are mitigated
by Uriah’s static safety validation since the exploits are combined
with spatial or type errors. 14 of them are mitigated by Uriah’s
runtime allocation to ensure temporal allocated-type safety. The
UBI cases trigger crashes using original PoC exploit scripts, since
Uriah’s heap allocator zeros heap memory upon requesting mem-
ory from OS, preventing exploitation. Thus, Uriah successfully
mitigated all 102 heap memory errors of the 73 CGC binaries.
7.3.2 Impact on Mitigating Exploits on Recent CVEs. We evaluated
28 recent CVEs (see Table 7). We picked all C/C++ heap CVEs in
userspace programs in 2023 from CVE database reported before
June 2023 when we began the evaluation. Selected CVEs must meet
the following requirements: (1) open-sourced; (2) at least one PoC
and/or PoV is available; and (3) a patch has been released. These re-
quirements are necessary as we must pinpoint the vulnerable/target
object and run the memory safety validation for the program.

We evaluated the exploitation paths used in the available exploits
(PoCs). The goal is to find how often advanced exploits corrupt
safe target objects to determine whether isolating safe objects can
reduce real attack targets. Of course, some vulnerabilities could
be exploited by attacking unsafe target objects instead in other
exploitation paths, but isolating safe objects for low cost remains
worthwhile as it can increase exploit development cost. A challenge
is that recent CVEs often do not have a corresponding PoV (i.e.,
proof-of-vulnerability, exploit write-up/script) released. Thus, we
do not know the target objects of any example exploit. However,
we can evaluate Uriah’s ability to identify vulnerable objects in
the PoC/PoV as unsafe. Uriah successfully identified vulnerable
objects for all 18 spatial/type error CVEs, by classifying them as
unsafe. Runtime allocation of Uriah ensures that those vulnerable
objects are isolated on the unsafe heap to block illicit access to the
safe heap objects. For the 10 CVEs that relate to temporal memory
errors, since vulnerable objects are not involved in spatial/type
errors, Uriah’s static validation classified them as safe and pre-
vents exploits by enforcing temporal allocated-type safety on the

SPEC CPU2006 SPEC CPU2017
Native w/ Uriah Native w/ Uriah

TDI 8.4% / 15.5% 2.5% / 3.7% 12.5% / 18.6% 4.4% / 7.1%
CAMP 54.9% / 237.7% 16.8% / 72.3% 21.3% / 127.5% 8.2% / 40.6%

Table 8: Overhead Reduction of Applying TDI and CAMP to Uriah Unsafe
Heap. Overhead is represented using the form "(runtime) / (memory)".

safe heap, preventing temporal exploits (e.g., UAF/DF) that aim at
reusing the memory for different allocated-type.

7.4 Combining Uriah with Existing Protections
RQ4: What is the security impact and performance improvement
of applying existing protections to the Uriah unsafe heap? We ap-
plied two recent frameworks of protecting heap memory safety on
Uriah’s unsafe heap, namely TDI [81] and CAMP [69].

The results in Table 8, showcase significant reductions in both
runtime and memory overhead when protections are only applied
to Uriah’s unsafe heap (≈70% of their original overhead). These
findings highlight the effectiveness of integrating protections with
Uriah. More importantly, all the CVEs presented in their paper,
namely 28 from CAMP and 4 from TDI, remain prevented by only
applying these defenses to Uriah’s unsafe heap, highlighting the
effectiveness of integrating existing protections with Uriah in
reducing costs while keeping the their original security guarantee.

8 Discussion
While we have seen that Uriah does mitigate existing exploits, as
previously discussed, there remain classes of attacks that Uriah
does not directly protect against: (1) attacks on unsafe objects; (2)
attacks where the target and vulnerable objects are the same; and
(3) temporal attacks on (re)using memory of objects of the same
allocated-type. By design, Uriah does not prevent attacks on heap
objects that fail spatial or type safety validation (i.e., unsafe objects),
as these unsafe objects are allocated in the unsafe heap. For example,
Uriah does not prevent the exploitation of CVE-2022-23088 [7], in
which the attacker overflows a field of a structure and gains access
to another field. However, Uriah does greatly reduce the fraction
of heap objects that are placed in the unsafe heap and are thus
exposed to attacks. Fortunately, other defenses can be applied on
unsafe heap with reduced cost, as illustrated in Section 7.4.

In some cases, attackers can perform exploits by reusing the
memory of the same allocated-type of vulnerable object, but such
attacks can be difficult to implement [66]. While Uriah does not
completely prevent such temporal exploits through UAF/DF, it does
prevent such reuse attacks that (1) require spatial and/or type errors
(e.g., DirtyCred [68]) or (2) reuse memory of unsafe objects for safe
objects of the same allocated-type (i.e., by isolation). To assess
the efficacy of attacks by reusing memory of the same type, we
examine the recent DirtyCred attack. DirtyCred allows an attacker
to modify authentication credentials by reusing the memory of the
same type, but we found that DirtyCred also requires exploitation
of other memory errors to enable such reuse, which Uriah prevents
successfully. Note that advanced analyses to augment the memory
safety validation of Uriah can be adopted, such as T-prunify [145].

9 Related Work
To prevent spatial errors, researchers have proposed techniques
to validate that memory accesses are within an object’s memory
bounds on each reference [27, 83, 110]. Static analysis techniques are

Top of the Heap: Efficient Memory Error Protection of Safe Heap Objects CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

employed to remove checks for objects that can be proven to only
be accessed safely [4, 86]. To prevent type errors, runtime checks
such as UBSan [73] and VTrust [146] worked only for polymorphic
classes of objects, CaVer [59] and TypeSan [38] aimed to include the
non-polymorphic objects and C-style type casts but introduced high
overhead due to inefficient metadata tracking and inserted checks.
Hextype [51] minimizes overhead and increases coverage for var-
ious allocation patterns but only supports C++. EffectiveSan [28]
includes C programs, but it only deals with upcasts in C++. To
prevent temporal errors, detectors of potential temporal safety vio-
lations on the heap using static analysis are proposed [31, 72, 139–
141, 143, 149]. Unfortunately, all works present soundness limi-
tations. Alternatively, runtime defenses have been proposed by
leveraging dangling pointer elimination [58, 130, 142], pointer deref-
erence checking [20, 28, 84, 86, 87, 148], limiting exploitability [13],
modifying memory allocators to introduce new memory alloca-
tion [108, 129, 134], and garbage collection schemes [2, 25].

Hardware-assisted defenses [54, 62, 65, 92, 104, 106, 111, 138] are
emerging to reduce costs introduced by software-based defenses by
applying recent hardware features (e.g., ARM PA) and fat-pointer
design. However, the applicability of such approaches is usually
limited due to the dependency on the specific hardware platform
and feature. Moreover, research has already shown that such hard-
ware features can be compromised [99]. Also, the idea of employing
cryptography for memory protection and pointer integrity has been
proposed [60, 85, 95, 96, 128]. However, these techniques do not
ensure memory safety for all objects (e.g., pointers only) and only
selectively protect sensitive memory. Moreover, many approaches
utilize the unused bits of pointers for encoding the metadata of
checking. Given the trend of evolving the OS into 64-bit mode by
Intel [48], such designs may no longer be feasible in the near future.

10 Conclusion
We present the Uriah system that enforces temporal allocated-type
safety while preserving spatial and type safety of the validated safe
heap objects. Uriah leverages static safety validation approaches
to validate heap objects that are free from spatial and type memory
errors, proposes an efficient memory allocator to isolate objects that
passes static safety validations on a separate safe heap, and enforces
temporal allocated-type safety on the safe heap. Distinct from pre-
vious approaches that tried to detect and eliminate memory errors,
Uriah is designed to isolate the targets of exploitation from illicit
accesses from vulnerable objects to target objects to thwart attacks.
Uriah isolates objects produced at 72.0% of heap allocation sites
from exploitations of spatial and type errors, as well as temporal
attacks that violate temporal allocated-type safety for low runtime
and memory overhead. Combining Uriahwith existing protections
drastically reduces their overhead while preserving their original
security guarantee, offering insights of making existing and future
heap memory error defenses more targeted and efficient.

Acknowledgment
We thank our Shepherd and the anonymous reviewers for their
insightful feedback. This work was supported by CNS-1801534,
ERC Horizon 2020 grant 850868, and SNSF PCEGP2_186974. Any
opinions, findings, conclusions, or recommendations expressed in

this material are those of the authors and do not necessarily reflect
the views of the funding agency.

References
[1] Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. Control-flow integrity.

In Proceedings of the 12th ACM Conference on Computer and Communications
Security (New York, NY, USA, 2005), CCS ’05, ACM, p. 340–353.

[2] Ainsworth, S., and Jones, T. M. Markus: Drop-in use-after-free prevention
for low-level languages. In 2020 IEEE Symposium on Security and Privacy, SP
2020 (San Francisco, CA, USA, 2020), IEEE, pp. 578–591.

[3] Akritidis, P. Cling: A memory allocator to mitigate dangling pointers. In
Proceedings of the 19th USENIX Conference on Security (2010).

[4] Akritidis, P., Costa, M., Castro, M., and Hand, S. Baggy bounds checking:
An efficient and backwards-compatible defense against out-of-bounds errors.
In Proceedings of the 18th Conference on USENIX Security Symposium (2009).

[5] Anand, S., and Harrold, M. J. Heap cloning: Enabling dynamic symbolic
execution of java programs. In Proceedings of the 26th IEEE/ACM International
Conference on Automated Software Engineering (2011), ASE ’11, p. 33–42.

[6] Anderson, J. P. Computer security technology planning study. Tech. rep., The
Mitre Corporation, Air Force Electronic Systems Division, 1972.

[7] Anonymous. CVE-2022-23088 Exploiting A Heap Overflow in the Freebsd
WiFi Stack. https://www.zerodayinitiative.com/blog/2022/6/15/cve-2022-23088-
exploiting-a-heap-overflow-in-the-freebsd-wi-fi-stack, 2022.

[8] Apple. About the security content of ios 16.6.1 and ipados 16.6.1. https://
support.apple.com/en-us/106361. Accessed: 2024-04-10.

[9] Archives, L. K. Linux kernel coding style. https://www.kernel.org/doc/html/
next/process/coding-style.html. Accessed: 2024-04-10.

[10] Barbar, M., Sui, Y., and Chen, S. Flow-sensitive type-based heap cloning. In
34th European Conference on Object-Oriented Programming, ECOOP 2020 (2020).

[11] Berger, E. D., and Zorn, B. G. Diehard: Probabilistic memory safety for unsafe
languages. In Proceedings of the 27th ACM SIGPLAN Conference on Programming
Language Design and Implementation (2006), PLDI ’06.

[12] Bhatkar, S., DuVarney, D. C., and Sekar, R. Address obfuscation: An efficient
approach to combat a board range of memory error exploits. In Proceedings of
the 12th Conference on USENIX Security Symposium (2003).

[13] Burow, N., McKee, D. P., Carr, S. A., and Payer, M. Cfixx: Object type integrity
for c++. In Network and Distributed System Security Symposium (NDSS) (2018).

[14] Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards,
H., Burda, Y., Joseph, N., Brockman, G., et al. Evaluating large language
models trained on code. arXiv preprint arXiv:2107.03374 (2021).

[15] Chen, S., Xu, J., Sezer, E. C., Gauriar, P., and Iyer, R. K. Non-Control-Data
Attacks Are Realistic Threats. In Proceedings of the 14th Conference on USENIX
Security Symposium (2005).

[16] Chen, Y., Lin, Z., and Xing, X. A systematic study of elastic objects in kernel
exploitation. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (CCS 2020).

[17] Chen, Y., and Xing, X. Slake: Facilitating slab manipulation for exploiting
vulnerabilities in the linux kernel. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS 2019).

[18] Cheng, L., Ahmed, S., Liljestrand, H., Nyman, T., Cai, H., Jaeger, T., Asokan,
N., and Yao, D. Exploitation Techniques for Data-Oriented Attacks with Existing
and Potential Defense Approaches. ACM Transactions on Privacy and Security
24, 4 (2021).

[19] Chipounov, V., Kuznetsov, V., and Candea, G. S2e: A platform for in-vivo
multi-path analysis of software systems. SIGPLAN Not. 46, 3 (mar 2011), 265–278.

[20] Condit, J., Harren, M., McPeak, S., Necula, G. C., and Weimer, W. Ccured
in the real world. SIGPLAN Not. 38, 5 (may 2003), 232–244.

[21] Crane, S., Liebchen, C., Homescu, A., Davi, L., Larsen, P., Sadeghi, A.-R.,
Brunthaler, S., and Franz, M. Readactor: Practical code randomization
resilient to memory disclosure. In 2015 IEEE Symposium on Security and Privacy.

[22] Cyberhaven. Exponential Analysis Speedup with State Merging. http:
//s2e.systems/docs/StateMerging.html, 2018.

[23] Daniel, M., Honoroff, J., and Miller, C. Engineering heap overflow exploits
with javascript. In Proceedings of the 2nd Conference on USENIX Workshop on
Offensive Technologies (USA, 2008), WOOT’08, USENIX Association.

[24] Darpa. Cyber Grand Challenge. https://github.com/CyberGrandChallenge/.
[25] Dhurjati, D., Kowshik, S., and Adve, V. Safecode: Enforcing alias analysis for

weakly typed languages. SIGPLAN Not. 41, 6 (June 2006), 144–157.
[26] Duck, Yap, and Cavallaro. Stack Bounds Protection with Low Fat Pointers.

In Proceedings of the 2017 Network and Distributed System Security Symposium.
[27] Duck, G. J., and Yap, R. H. C. Heap bounds protection with low fat pointers. In

Proceedings of the 25th International Conference on Compiler Construction (2016).
[28] Duck, G. J., and Yap, R. H. C. Effectivesan: Type and memory error detection

using dynamically typed c/c++. SIGPLAN Not. 53, 4 (jun 2018), 181–195.
[29] Elliott, A. S., Ruef, A., Hicks, M., and Tarditi, D. Checked c: Making c safe

by extension. In 2018 IEEE Cybersecurity Development (SecDev), pp. 53–60.

https://www.zerodayinitiative.com/blog/2022/6/15/cve-2022-23088-exploiting-a-heap-overflow-in-the-freebsd-wi-fi-stack
https://www.zerodayinitiative.com/blog/2022/6/15/cve-2022-23088-exploiting-a-heap-overflow-in-the-freebsd-wi-fi-stack
https://support.apple.com/en-us/106361
https://support.apple.com/en-us/106361
https://www.kernel.org/doc/html/next/process/coding-style.html
https://www.kernel.org/doc/html/next/process/coding-style.html
http://s2e.systems/docs/StateMerging.html
http://s2e.systems/docs/StateMerging.html
https://github.com/CyberGrandChallenge/

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Kaiming Huang et al.

[30] Emsisoft. The cost of ransomware in 2020: A country-by-country analy-
sis. https://blog.emsisoft.com/en/36665/the-cost-of-ransomware-in-2020-a-
country-by-country-analysis/, 2020. Accessed on May 13, 2023.

[31] Feist, J., Mounier, L., and Potet, M.-L. Statically detecting use after free on
binary code. Journal of Computer Virology and Hacking Techniques 10 (2014).

[32] Ghemawat, S., and Menage, P. Tcmalloc: Thread-caching malloc. https://goog-
perftools.sourceforge.net/doc/tcmalloc.html, 2021.

[33] GitHub. GitHub Copilot. https://copilot.github.com/.
[34] Golick, J. How tcmalloc works. https://jamesgolick.com/2013/5/19/how-

tcmalloc-works.html, 2013.
[35] Google. Google c++ style guide - static and global variables. https://

google.github.io/styleguide/cppguide.html#Static_and_Global_Variables.
[36] Google. Partitionalloc design. https://chromium.googlesource.com/chromium/

src/+/master/base/allocator/partition_allocator/PartitionAlloc.md, 2021.
[37] Google. Restartable sequence mechanism for tcmalloc. https://github.com/

google/tcmalloc/blob/master/docs/rseq.md, 2023.
[38] Haller, I., Jeon, Y., Peng, H., Payer, M., Giuffrida, C., Bos, H., and van der

Kouwe, E. Typesan: Practical type confusion detection. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security (2016).

[39] Hu, H., Shinde, S., Adrian, S., Chua, Z. L., Saxena, P., and Liang, Z. Data-
oriented programming: On the expressiveness of non-control data attacks. In
2016 IEEE Symposium on Security and Privacy (SP 2016).

[40] Huang, K., Huang, Y., Payer, M., Qian, Z., Sampson, J., Tan, G., and Jaeger, T.
The taming of the stack: Isolating stack data from memory errors. In Network
and Distributed System Security Symposium (NDSS 2022).

[41] Huang, K., Payer, M., Qian, Z., Sampson, J., Tan, G., and Jaeger, T. Compre-
hensive memory safety validation: An alternative approach to memory safety.
IEEE Security & Privacy (April 2024).

[42] Huang, K., Payer, M., Qian, Z., Sampson, J., Tan, G., and Jaeger, T. Top
of the heap: Efficient memory error protection of safe heap objects. https:
//arxiv.org/abs/2310.06397, 2024.

[43] Huang, K., Sampson, J., and Jaeger, T. Assessing the impact of efficiently
protecting ten million stack objects from memory errors comprehensively. In
Proceedings of the 2023 IEEE Secure Development Conference (IEEE SecDev 2023).

[44] Huang, Z., Lie, D., Tan, G., and Jaeger, T. Using safety properties to generate
vulnerability patches. In 2019 IEEE Symposium on Security and Privacy (SP).

[45] Intel. Intel guide for developing multithreaded application. https:
//www.intel.com/content/dam/develop/external/us/en/documents/gdma-2-
165938.pdf. 2011.

[46] Intel. Intel oneapi threading building blocks. https://www.intel.com/content/
www/us/en/developer/tools/oneapi/onetbb.html#gs.63k1wf.

[47] Intel. Intel mpx explained - performance evaluation. https://intel-
mpx.github.io/performance/, 2018. Accessed on May 23, 2023.

[48] Intel. Envisioning a simplified intel architecture. https://www.intel.com/
content/www/us/en/developer/articles/technical/envisioning-future-
simplified-architecture.html, 2023. Accessed on May 21, 2023.

[49] Ispoglou, K. K., AlBassam, B., Jaeger, T., and Payer, M. Block oriented
programming: Automating data-only attacks. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (CCS 2018).

[50] jemalloc. jemalloc — general purpose memory allocation functions. https:
//jemalloc.net/jemalloc.3.html. Accessed on Mar 7, 2024.

[51] Jeon, Y., Biswas, P., Carr, S., Lee, B., and Payer, M. Hextype: Efficient detection
of type confusion errors for c++. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (2017), CCS ’17.

[52] Karenina, A. Anna karenina principle, 2023.
[53] Kellermann, M. The Dirty Pipe Vulnerability. https://dirtypipe.cm4all.com/.
[54] Kim, Y., Lee, J., and Kim, H. Hardware-based always-on heap memory safety. In

2020 Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
[55] Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., and Song,

D. Code-pointer integrity. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation (2014), OSDI’14.

[56] Landi, W., and Ryder, B. G. A safe approximate algorithm for interprocedural
pointer aliasing. SIGPLAN Not. 39, 4 (apr 2004), 473–489.

[57] Lattner, C., Lenharth, A., and Adve, V. Making context-sensitive points-to
analysis with heap cloning practical for the real world. In 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation.

[58] Lee, B., Song, C., Jang, Y., Wang, T., Kim, T., Lu, L., and Lee, W. Preventing
Use-after-free with Dangling Pointers Nullification. In Proceedings of the 2015
Network and Distributed System Security Symposium (NDSS 2015).

[59] Lee, B., Song, C., Kim, T., and Lee, W. Type casting verification: Stopping an
emerging attack vector. In Proceedings of the 2015 USENIX Security Symposium.

[60] LeMay, M., Rakshit, J., Deutsch, S., Durham, D. M., Ghosh, S., Nori, A., Gaur,
J., Weiler, A., Sultana, S., Grewal, K., and Subramoney, S. Cryptographic
capability computing. In MICRO-54: 54th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO 2021).

[61] Li, G., Zhang, H., Zhou, J., Shen, W., Sui, Y., and Qian, Z. A hybrid alias
analysis and its application to global variable protection in the linux kernel. In
32nd USENIX Security Symposium (2023).

[62] Li, Y., Tan, W., Lv, Z., Yang, S., Payer, M., Liu, Y., and Zhang, C. Pacmem:
Enforcing spatial and temporal memory safety via arm pointer authentication.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS 2022).

[63] Liang, Z., Zou, X., Song, C., and Qian, Z. K-leak: Towards automating the
generation of multi-step infoleak exploits against the linux kernel. In 31st
Annual Network and Distributed System Security Symposium, NDSS (2024).

[64] Library, G. C. Glibc wiki - mallocinternals. https://sourceware.org/glibc/wiki/
MallocInternals. Accessed on Mar 7, 2024.

[65] Liljestrand, H., Nyman, T., Wang, K., Perez, C. C., Ekberg, J.-E., and Asokan,
N. Pac it up: Towards pointer integrity using arm pointer authentication. In
Proceedings of the 28th USENIX Conference on Security Symposium (2019).

[66] Lin, Z.How autoslab changes thememory unsafety game. https://grsecurity.net/
how_autoslab_changes_the_memory_unsafety_game, 2022.

[67] Lin, Z., Chen, Y., Wu, Y., Mu, D., Yu, C., Xing, X., and Li, K. Grebe: Unveiling
exploitation potential for linux kernel bugs. In 2022 IEEE Symposium on Security
and Privacy (SP 2022).

[68] Lin, Z., Wu, Y., and Xing, X. Dirtycred: Escalating privilege in linux kernel. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS 2022).

[69] Lin, Z., Yu, Z., Guo, Z., Campanoni, S., Dinda, P., and Xing, X. CAMP:
Compiler and allocator-based heap memory protection. In 33rd USENIX Security
Symposium (USENIX Security 24) (Philadelphia, PA, Aug. 2024).

[70] Linux. Linux 2.6.7. nx (no execute) support for x86.
https://lkml.org/lkml/2004/6/2/228, 2004.

[71] Liu, S., Tan, G., and Jaeger, T. Ptrsplit: Supporting general pointers in automatic
program partitioning. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS 2017).

[72] LLVM. Clang static analyzer. https://clang-analyzer.llvm.org/, 2023.
[73] LLVM. Clang undefined behavior sanitizer. http://clang.llvm.org/docs/

UsersManual.html, 2023. Accessed: 2023-05-02.
[74] Canonicaliza natural loops. LLVM documentation at https://llvm.org/docs/

Passes.html#loop-simplify-canonicalize-natural-loops, 2020.
[75] Loop Simplify Form. LLVM documentation at https://llvm.org/docs/

LoopTerminology.html#loop-simplify-form, 2020.
[76] Mapping High Level Constructs to LLVM IR - Union. https:

//mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/basic-
constructs/unions.html.

[77] Microsoft. Trends, challenges, and strategic shifts in the software vulnerability
mitigation landscape, 2019.

[78] Microsoft. Customize exploit protection. https://learn.microsoft.com/en-
us/microsoft-365/security/defender-endpoint/customize-exploit-
protection?view=o365-worldwide, 2022.

[79] Midi, D., Payer, M., and Bertino, E. Memory safety for embedded devices
with nescheck. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security (ASIA CCS 2017).

[80] Milburn, A., Bos, H., and Giuffrida, C. Safelnit: Comprehensive and practical
mitigation of uninitialized read vulnerabilities. In Network and Distributed
System Security Symposium (NDSS 2017).

[81] Milburn, A., Van Der Kouwe, E., and Giuffrida, C. Mitigating information
leakage vulnerabilities with type-based data isolation. In 2022 IEEE Symposium
on Security and Privacy (SP 2022).

[82] Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., and Weaver,
N. Inside the Slammer worm. IEEE Security & Privacy 1, 4 (2003), 33–39.

[83] Nagarakatte, S., Zhao, J., Martin, M. M., and Zdancewic, S. Softbound:
Highly compatible and complete spatial memory safety for c. In 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementation.

[84] Nagarakatte, S., Zhao, J., Martin, M. M., and Zdancewic, S. Cets: Compiler
enforced temporal safety for c. In Proceedings of the 2010 International Symposium
on Memory Management (ISMM 2010).

[85] Nasahl, P., Schilling, R., Werner, M., Hoogerbrugge, J., Medwed, M., and
Mangard, S. Cryptag: Thwarting physical and logical memory vulnerabilities
using cryptographically colored memory. In Proceedings of the 2021 ACM Asia
Conference on Computer and Communications Security (ASIA CCS 2021).

[86] Necula, G. C., Condit, J., Harren, M., McPeak, S., and Weimer, W. Ccured:
Type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3.

[87] Necula, G. C., McPeak, S., and Weimer, W. Ccured: Type-safe retrofitting of
legacy code. SIGPLAN Not. 37, 1 (jan 2002), 128–139.

[88] Neugschwandtner, M., Sorniotti, A., and Kurmus, A. Memory categoriza-
tion: Separating attacker-controlled data. In Detection of Intrusions and Malware,
and Vulnerability Assessment (Cham, 2019), Springer International Publishing.

[89] Nginx. Nginx development guide - common pitfalls. https://nginx.org/en/docs/
dev/development_guide.html#common_pitfalls. Accessed: 2024-04-10.

[90] Novark, G., and Berger, E. D. Dieharder: Securing the heap. In Proceedings of
the 17th ACM Conference on Computer and Communications Security (2010).

[91] NSA-CSS. Nsa releases guidance on how to protect against software memory
safety issues, 2022.

[92] Oleksenko, O., Kuvaiskii, D., Bhatotia, P., Felber, P., and Fetzer, C. Intel

https://blog.emsisoft.com/en/36665/the-cost-of-ransomware-in-2020-a-country-by-country-analysis/
https://blog.emsisoft.com/en/36665/the-cost-of-ransomware-in-2020-a-country-by-country-analysis/
https://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://copilot.github.com/
https://jamesgolick.com/2013/5/19/how-tcmalloc-works.html
https://jamesgolick.com/2013/5/19/how-tcmalloc-works.html
https://google.github.io/styleguide/cppguide.html#Static_and_Global_Variables
https://google.github.io/styleguide/cppguide.html#Static_and_Global_Variables
https://chromium.googlesource.com/chromium/src/+/master/base/allocator/partition_allocator/PartitionAlloc.md
https://chromium.googlesource.com/chromium/src/+/master/base/allocator/partition_allocator/PartitionAlloc.md
https://github.com/google/tcmalloc/blob/master/docs/rseq.md
https://github.com/google/tcmalloc/blob/master/docs/rseq.md
https://arxiv.org/abs/2310.06397
https://arxiv.org/abs/2310.06397
https://www.intel.com/content/dam/develop/external/us/en/documents/gdma-2-165938.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/gdma-2-165938.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/gdma-2-165938.pdf
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html#gs.63k1wf
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html#gs.63k1wf
https://intel-mpx.github.io/performance/
https://intel-mpx.github.io/performance/
https://www.intel.com/content/www/us/en/developer/articles/technical/envisioning-future-simplified-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/envisioning-future-simplified-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/envisioning-future-simplified-architecture.html
https://jemalloc.net/jemalloc.3.html
https://jemalloc.net/jemalloc.3.html
https://dirtypipe.cm4all.com/
https://sourceware.org/glibc/wiki/MallocInternals
https://sourceware.org/glibc/wiki/MallocInternals
https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
http://clang.llvm.org/docs/UsersManual.html
http://clang.llvm.org/docs/UsersManual.html
https://llvm.org/docs/Passes.html#loop-simplify-canonicalize-natural-loops
https://llvm.org/docs/Passes.html#loop-simplify-canonicalize-natural-loops
https://llvm.org/docs/LoopTerminology.html#loop-simplify-form
https://llvm.org/docs/LoopTerminology.html#loop-simplify-form
https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/basic-constructs/unions.html
https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/basic-constructs/unions.html
https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/basic-constructs/unions.html
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/customize-exploit-protection?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/customize-exploit-protection?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/customize-exploit-protection?view=o365-worldwide
https://nginx.org/en/docs/dev/development_guide.html#common_pitfalls
https://nginx.org/en/docs/dev/development_guide.html#common_pitfalls

Top of the Heap: Efficient Memory Error Protection of Safe Heap Objects CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

mpx explained: A cross-layer analysis of the intel mpx system stack. ACM
SIGMETRICS Performance Evaluation Review (2019).

[93] One, A. Smashing the stack for fun and profit. Phrack magazine (1996).
[94] OpenAI. ChatGPT. https://chat.openai.com/. Accessed on May 13, 2023.
[95] Palit, T., Firose Moon, J., Monrose, F., and Polychronakis, M. Dynpta:

Combining static and dynamic analysis for practical selective data protection.
In 2021 IEEE Symposium on Security and Privacy (SP 2021).

[96] Proskurin, S., Momeu, M., Ghavamnia, S., Kemerlis, V. P., and Polychron-
akis, M. xmp: Selective memory protection for kernel and user space. In 2020
IEEE Symposium on Security and Privacy (SP 2020).

[97] ptmalloc. realloc(3) - linux man page. https://linux.die.net/man/3/realloc.
[98] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. Lan-

guage models are unsupervised multitask learners. OpenAI Blog (June 2019).
[99] Ravichandran, J., Na, W. T., Lang, J., and Yan, M. Pacman: Attacking arm

pointer authentication with speculative execution. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (ISCA 2022).

[100] Riku, Antti, Matti, and Mehta, N. Heartbleed. http://heartbleed.com/, 2014.
[101] Roemer, R., Buchanan, E., Shacham, H., and Savage, S. Return-oriented

programming: Systems, languages, and applications. ACM Trans. Inf. Syst. Secur.
15, 1 (2012).

[102] Security, A. Towards the next generation of xnu memory safety:
kalloc_type. https://security.apple.com/blog/towards-the-next-generation-of-
xnu-memory-safety/, 2022.

[103] Seeley, D. A Tour of the Worm. https://www.cs.unc.edu/~jeffay/courses/
nidsS05/attacks/seely-RTMworm-89.html.

[104] Serebryany, K. Arm memory tagging extension and how it improves c/c++
memory safety. login Usenix Mag. 44 (2019).

[105] Serebryany, K., Bruening, D., Potapenko, A., and Vyukov, D. Addresssani-
tizer: A fast address sanity checker. In Proceedings of the 2012 USENIX Conference
on Annual Technical Conference (ATC 2012).

[106] Sharifi, R., and Venkat, A. Chex86: Context-sensitive enforcement of memory
safety via microcode-enabled capabilities. In Proceedings of the ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA 2020).

[107] Sharir, M., and Pnueli, A. Two approaches to interprocedural data flow analysis.
[108] Silvestro, S., Liu, H., Crosser, C., Lin, Z., and Liu, T. Freeguard: A faster

secure heap allocator. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS 2017).

[109] Simon, A. Value-range analysis of c programs: Towards proving the absence of
buffer overflow vulnerabilities, 2008.

[110] Simpson, M. S., and Barua, R. K. MemSafe: Ensuring the Spatial and Temporal
Memory Safety of C at Runtime. In Proceedings of the 2010 10th IEEE Working
Conference on Source Code Analysis and Manipulation (SCAM 2010).

[111] Sinha, K., and Sethumadhavan, S. Practical memory safety with rest. In Pro-
ceedings of the 2018 Annual International Symposium on Computer Architecture.

[112] Smaragdakis, Y., and Kastrinis, G. Defensive Points-To Analysis: Effective
Soundness via Laziness. In 32nd European Conference on Object-Oriented Pro-
gramming (ECOOP 2018).

[113] Snow, K. Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., and Sadeghi,
A.-R. Just-in-time Code Reuse: On the Effectiveness of Fine-grained Address
Space Layout Randomization. In Proceedings of the 34th IEEE Symposium on
Security and Privacy (S&P 2013).

[114] Sophos. The state of ransomware. https://news.sophos.com/en-us/2024/04/30/
the-state-of-ransomware-2024, 2024.

[115] Sotirov, A. Heap feng shui in javascript. Black Hat Europe (2007).
[116] Stamatogiannakis, M., Bos, H., Giuffrida, C., Mavroudis, V., and Pa-

padopoulos, S. Asleep at the keyboard? assessing the security of github copilot’s
code contributions. In 2022 IEEE Symposium on Security and Privacy (S&P 2022).

[117] Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J.,
Shoshitaishvili, Y., Kruegel, C., and Vigna, G. Driller: Augmenting fuzzing
through selective symbolic execution. In Proceedings of the 23rd Annual Network
and Distributed System Security Symposium (NDSS 2016).

[118] Sui, Y., Di, P., and Xue, J. Sparse flow-sensitive pointer analysis for multi-
threaded programs. In Proceedings of the 2016 International Symposium on Code
Generation and Optimization (CGO 2016).

[119] Sui, Y., and Xue, J. Svf: Interprocedural static value-flow analysis in llvm. In
Proceedings of the 25th International Conference on Compiler Construction (2016).

[120] Sui, Y., and Xue, J. Value-flow-based demand-driven pointer analysis for c and
c++. IEEE Transactions on Software Engineering 46, 8 (2018), 812–835.

[121] Sui, Y., and Xue, J. On-demand strong update analysis via value-flow refine-
ment. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE 2016).

[122] Sui, Y., Ye, D., and Xue, J. Detecting memory leaks statically with full-sparse
value-flow analysis. IEEE Transactions on Software Engineering (TSE) 40, 2 (2014).

[123] Sui, Y., Ye, D., and Xue, J. Static memory leak detection using full-sparse value-
flow analysis. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis (ISSTA 2012).

[124] Taylor, A., Whalley, A., Jansens, D., and Oskov, N. An update on mem-
ory safety in chrome. https://security.googleblog.com/2021/09/an-update-on-

memory-safety-in-chrome.html, 2021.
[125] Teixeira, D., and Pereira, F. M. Q. The Design and Implementation of a

Non-Iterative Range Analysis Algorithm on a Production Compiler. In The 15th
Brazilian Symposium on Programming Languages (SBLP 2011).

[126] The White House. Press release: Future software should be memory
safe. https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-
release-technical-report/. FEBRUARY 26, 2024.

[127] Tolstoy, L. Anna Karenina. Wordsworth Editions, Tsarist Russia, 1995.
[128] Unterguggenberger, M., Schrammel, D., Lamster, L., Nasahl, P., and Man-

gard, S. Cryptographically enforced memory safety. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security (CCS 2023).

[129] van der Kouwe, E., Kroes, T., Ouwehand, C., Bos, H., and Giuffrida, C.
Type-after-type: Practical and complete type-safe memory reuse. In Proceedings
of the 34th Annual Computer Security Applications Conference (ACSAC 2018).

[130] van der Kouwe, E., Nigade, V., and Giuffrida, C. Dangsan: Scalable use-
after-free detection. In 2017 European Conference on Computer Systems.

[131] Ventures, C. Cybersecurity ventures’ ransomware damage report. https:
//cybersecurityventures.com/cybersecurity-500/.

[132] Wang, Y., Zhang, C., Zhao, Z., Zhang, B., Gong, X., and Zou, W. MAZE:
Towards automated heap feng shui. In 30th USENIX Security Symposium (2021).

[133] Whaley, J., and Lam, M. S. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In Proceedings of the ACM SIGPLAN
2004 Conference on Programming Language Design and Implementation (2004).

[134] Wickman, B., Hu, H., Yun, I., Jang, D., Lim, J., Kashyap, S., and Kim, T. Pre-
venting Use-After-Free attacks with fast forward allocation. In 30th USENIX
Security Symposium (2021).

[135] Wu, W., Chen, Y., Xing, X., and Zou, W. Kepler: facilitating control-flow
hijacking primitive evaluation for linux kernel vulnerabilities. In Proceedings of
the 28th USENIX Security Symposium (SEC 2019).

[136] Wu, W., Chen, Y., Xu, J., Xing, X., Gong, X., and Zou, W. FUZE: Towards
facilitating exploit generation for kernel use-after-free vulnerabilities. In 27th
USENIX Security Symposium (SEC 2018).

[137] Xu, F. F., Alon, U., Neubig, G., and Hellendoorn, V. J. A systematic evaluation
of large language models of code. In Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming (MAPS 2022).

[138] Xu, S., Huang, W., and Lie, D. In-fat pointer: Hardware-assisted tagged-pointer
spatial memory safety defense with subobject granularity protection. In Pro-
ceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2021).

[139] Yan, H., Sui, Y., Chen, S., and Xue, J. Spatio-temporal context reduction: A
pointer-analysis-based static approach for detecting use-after-free vulnerabili-
ties. In Proceedings of the 2018 International Conference on Software Engineering.

[140] Yan, H., Sui, Y., Chen, S., and Xue, J. Machine-learning-guided typestate
analysis for static use-after-free detection. In Proceedings of the 33rd Annual
Computer Security Applications Conference (ACSAC 2017).

[141] Ye, J., Zhang, C., and Han, X. Poster: Uafchecker: Scalable static detection of
use-after-free vulnerabilities. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (CCS 2014).

[142] Younan, Y. FreeSentry: Protecting Against Use-after-free Vulnerabilities Due
to Dangling Pointers. In 22nd Annual Network and Distributed System Security
Symposium (NDSS 2015).

[143] Zhai, Y., Hao, Y., Zhang, H., Wang, D., Song, C., Qian, Z., Lesani, M., Krish-
namurthy, S. V., and Yu, P. Ubitect: A precise and scalable method to detect
use-before-initialization bugs in linux kernel. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE 2020).

[144] Zhai, Y., Hao, Y., Zhang, Z., Chen,W., Li, G., Qian, Z., Song, C., Sridharan, M.,
Krishnamurthy, S. V., Jaeger, T., and Yu, P. Progressive scrutiny: Incremental
detection of ubi bugs in the linux kernel. In Proceedings 2022 Network and
Distributed System Security Symposium (NDSS 2022).

[145] Zhai, Y., Qian, Z., Song, C., Sridharan, M., Jaeger, T., Yu, P., and Krishna-
murthy, S. V. Don’t waste my efforts: Pruning redundant sanitizer checks of
developer-implemented type checks. In USENIX Security Symposium (2024).

[146] Zhang, C., Carr, S. A., Li, T., Ding, Y., Song, C., Payer, M., and Song, D. Vtrust:
Regaining trust on virtual calls. In Symposium on Network and Distributed System
Security (NDSS 2016).

[147] Zhang, Y., Pang, C., Portokalidis, G., Triandopoulos, N., and Xu, J. Debloat-
ing address sanitizer. In 31st USENIX Security Symposium (SEC 2022).

[148] Zhou, J., Criswell, J., and Hicks, M. Fat pointers for temporal memory safety
of c. Proc. ACM Program. Lang. 7, OOPSLA1 (2023).

[149] Zhu, K., Lu, Y., and Huang, H. Scalable static detection of use-after-free
vulnerabilities in binary code. IEEE Access 8 (2020).

[150] Zou, X., Hao, Y., Zhang, Z., Pu, J., Chen, W., and Qian, Z. Syzbridge: Bridging
the gap in exploitability assessment of linux kernel bugs in the linux ecosystem.
In 31st Annual Network and Distributed System Security Symposium (NDSS 2024).

[151] Zou, X., Li, G., Chen, W., Zhang, H., and Qian, Z. SyzScope: Revealing High-
Risk security impacts of Fuzzer-Exposed bugs in linux kernel. In 31st USENIX
Security Symposium (SEC 2022).

https://chat.openai.com/
https://linux.die.net/man/3/realloc
http://heartbleed.com/
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://www.cs.unc.edu/~jeffay/courses/nidsS05/attacks/seely-RTMworm-89.html.
https://www.cs.unc.edu/~jeffay/courses/nidsS05/attacks/seely-RTMworm-89.html.
https://news.sophos.com/en-us/2024/04/30/the-state-of-ransomware-2024
https://news.sophos.com/en-us/2024/04/30/the-state-of-ransomware-2024
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://cybersecurityventures.com/cybersecurity-500/
https://cybersecurityventures.com/cybersecurity-500/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Exploiting Heap Memory Errors
	2.2 Limitations of Heap Memory Defenses
	2.3 Protecting Target Objects without Checks

	3 Uriah Overview
	4 Threat Model
	5 Design
	5.1 Collecting and Validating Aliases
	5.2 Spatial Safety Validation
	5.3 Spatial Validation with Concurrency
	5.4 Type Safety Validation
	5.5 Symbolic Validation
	5.6 Uriah Runtime Allocation

	6 Implementation
	7 Evaluation
	7.1 Identifying Safe Heap Objects
	7.2 Performance Evaluation
	7.3 Impact on Mitigating Exploitation
	7.4 Combining Uriah with Existing Protections

	8 Discussion
	9 Related Work
	10 Conclusion
	References

