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Abstract
Syzbot continuously fuzzes the full Linux kernel to discover latent
bugs. Yet, around 75% of recent kernel bugs are caused by recent
patches, dubbed regression bugs. Regression fuzzing prioritizes in-
puts that target recently or frequently patched code. However, this
heuristic breaks down in the kernel environment as there are too
many patches (and therefore too many targets).

To improve regression fuzzing, we note that certain code change
patterns (e.g., modifying GOTO) carrymore risk of introducing bugs
than others. Leveraging this observation, we introduce SyzRisk, a
continuous regression fuzzer for the kernel that stresses bug-prone
code changes. SyzRisk introduces code change patterns that allow
for identifying risky code changes. After systematically estimating
the risk of suspected change patterns under various circumstances,
SyzRisk assigns more weight to risky change patterns. Using the
accumulated corpus from prior continuous fuzzing, SyzRisk further
prioritizes mutation inputs based on the observed weights.

We simulated the pattern creation from developers using 146
known Linux kernel root causes including 38 CVE root causes and
collected 23 risky change patterns. The evaluation shows that the
pattern-based weighting method highlights root-cause commits
3.60x more compared to the heuristic of simply targeting recent
and frequent changes. Our evaluation of the Linux kernel v6.0
demonstrates that SyzRisk records a 61% speedup in bug exposure
time compared to Syzkaller, while discovering the most complete
set of bugs across all compared fuzzers.

CCS Concepts
• Security and privacy→ Operating systems security.
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Continuous Fuzzing, Kernel Security, Regression Testing, Develop-
ment Study, Code Analysis
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1 Introduction
Bugs in an operating system (OS) kernel expose the entire system.
Kernel fuzzing is widely used to proactively detect such bugs, lim-
iting their impact. However, the Linux kernel is huge with a high
code turnover—the kernel consists of over 26 million lines of code
as of July 23, 2023, and 529k lines of code are effectively added ev-
ery three months. The large size and fast change call for a massive
amount of fuzzing time for thorough checking. Researchers at-
tempt to address this issue by making kernel fuzzing more efficient
[24, 30, 39, 47], but the most well-adopted method is continuous
fuzzing (e.g., Syzbot [7]) where the most recent kernel image is
indefinitely fuzzed alongside development.

However, while continuous fuzzing inherently rechecks the en-
tire kernel, recent findings suggest that the vast majority of new
bugs are attributed to a tiny fraction of code: the code changed by
patch commits [8, 60, 64]. Known as regression bugs, [64] suggested
that around 77% of bugs reported by OSSFuzz [6] are regressions.
The situation in the Linux kernel is no different, as the Syzbot record
in the last two years (i.e., 2021~2022) suggests that around 75% of
newly discovered bugs are attributed to patch commits that were
updated less than one year before they are first detected. Regression
bugs are therefore the dominant source of bugs in the kernel.

Motivated by similar findings, AFLChurn [64] introduced regres-
sion fuzzing that focuses on recently patched code areas, facilitating
the detection of regression bugs through fuzzing. The basic idea is
to assign weights to the code, prioritizing inputs that incur higher
weights during execution. AFLChurn further incorporated a heuris-
tic code weighting method that gives a higher weight to recent and
frequent code modifications, based on the general observation in
the software engineering community [23, 35, 36].

However, this heuristic weighting method breaks down under
the kernel environment as the amount of recent and frequent modi-
fication itself is huge. In 2022, the Linux kernel accepted an average
of 219 commits every day. This amounts to almost 526k lines of
changed (i.e., added or deleted) code per month, which is of similar
size as a stand-alone user-space project—for reference, ImageMag-
ick 7.1.0-60 [4] consists of 663k lines total, with only 95k lines being
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Figure 1: Percentage of bugs by the age of root causes on the
first detection (stack graph) and changed lines of code per
year (area graph). "Unknown": bugs that Syzbot could not
have found the cause commit out of recent commits.

changed every month. The excessive number of patch modifica-
tions distracts regression fuzzing to benign modifications (i.e., the
modifications that do not cause bugs), making it fail to put due
testing time to root-cause modifications (i.e., the modification that
provides the fundamental cause of bugs).

The existing approach assumes that each code modification is
equally bug-prone upon its introduction, and the recentness and
frequency are the sole major factors determining the likelihood of
bugs. However, we note that not every code modification is equally
bug-prone. Certain modifications have more potential side-effects
that call for more thorough developer attention, otherwise easily
introduce new bugs.

We investigated 146 Linux kernel root-cause modifications in
2020~2021 and established three observations that characterize root-
cause modifications. First, some changes are more likely to cause
bugs, hence risky; changing a struct field, for example, requires
adjustment of all use locations or otherwisemay cause bugs. Second,
the risk of modification—a set of code changes—compounds as it
involves multiple risky changes; more risky changes mean more
complexities that developers need to handle, some of which are
likely to be missed as they grow. Finally, some risky changes are
project-specific; modifying gotos, for example, is especially risky in
the kernel because they are usually coupled with resource cleanup.

Notice that all observations point to the developer’s involvement
in making a certain code change risky, meaning that they can
suspect which changes may be risky when they make changes
or when retrospectively looking into root causes for bug fixes.
Leveraging this, we design SyzRisk, a continuous kernel regression
fuzzer that stresses the suspected root-cause code changes. SyzRisk
provides kernel developers with a simple interface to compose a
set of suspected risky change patterns, which SyzRisk proceeds
to estimate their risk under various circumstances (e.g., size of
modification or containing subsystem) using known root causes.
SyzRisk further matches the patterns with patch modifications and
increases the weights as they match more patterns, suggesting a
higher chance of root causes. Finally, SyzRisk prioritizes the corpus
inherited from the prior continuous fuzzing campaign based on the
collected weights during execution.

To demonstrate the effectiveness of SyzRisk, we emulated the
pattern creation scenario from developers using the 146 Linux root-
cause modifications and composed 23 recurring code change pat-
terns with 31 lines of code per pattern on average. Our evaluation

1
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Figure 2: Conceptual illustration of regression fuzzing and
the impact of weighting methods. Each box and number rep-
resent a function and its weight, and the red box represents
the function with a root-cause modification.

of past Linux kernel commits shows that the collected patterns not
only remain valid but also highlight the root cause modifications
3.60x more likely than the simple heuristic of just using the latest
commits, including root causes that our patterns are not directly
derived from. We further compared SyzRisk to state-of-the-art re-
gression fuzzing methods with the Linux kernel v6.0, showing a
61% improved bug discovery time than Syzkaller [22].

In summary, we present the following contributions:
• We present SyzRisk, a change-pattern-based continuous ker-
nel regression fuzzer, which provides a simple interface to
describe suspected risky change patterns and automatically
estimates their risks.

• We propose a systematic way to assess the risk of code
changes and demonstrate its effectiveness in regression fuzzing
to stress unknown root-cause modifications.

• We present 23 risky change patterns in the Linux kernel
that highlight root causes 3.60x better than the heuristic
weighting method, which allows for a 61% improved bug
discovery time against Syzkaller.

• We open-source SyzRisk to facilitate pattern development
and future research on kernel regression fuzzing:
https://github.com/HexHive/SyzRisk

2 Background and Motivation
SyzRisk builds on and extends continuous kernel fuzzing and re-
gression fuzzing. To highlight differences and our contributions,
we here highlight the techniques and some of their limitations.

2.1 Continuous Kernel Fuzzing
Continuous kernel fuzzing (e.g., Syzbot [7]), as the name suggests,
continuously fuzzes kernel images along with version development.
Specifically, Syzbot maintains multiple fuzzing instances so that
they can periodically rebuild the kernel images from designated
branches with various kernel configs and sanitizers. When contin-
uing with rebuilt kernel images, Syzbot reuses the amassed corpus
from older revisions because most inputs in the corpus remain valid
to cover most of the kernel even after revision updates.
Limitation. By design, continuous kernel fuzzing rechecks the
entire kernel space every time the kernel is updated, but a majority
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Figure 3: Weight distribution of kernel commits between Jul
1, 2018 and Jul 1, 2019 (the reference date). RC and BE denote
root cause and benign commits. In (a), the top, the notch and
the bottom of the boxes represent the 25th, 50th and 75th
percentile, and the whiskers span the standard 1.5 IQR.

of kernel bugs are caused by patch changes—known as regression
bugs. To confirm how many kernel bugs are regressions, we investi-
gated all Syzbot-reported bugs1 in 2018~2022 that Syzbot could have
successfully performed the root cause bisection. Figure 1 shows
the percentage of bugs that Syzbot successfully identified the root-
cause commits, confirming that 86% of bugs have identifiable cause
commits. We further classified the bugs by the age of their root
cause commits on the first detection, which revealed that nearly
75% of bugs were caused by 0-year-old commits in the last two
years (i.e., 2021~2022), meaning that they were younger than one
year when the bugs were discovered.

Orthogonally, we note that only a small portion of the kernel
code is changed every year. Figure 1 also shows the percentage of
added and deleted lines compared to the total lines of code at the
beginning of the year. On average, only 20% and 9% of source code
are added or deleted per year. This suggests that even though new
bugs in the kernel are dominated by regression bugs, continuous
kernel fuzzing spends a large chunk of fuzzing time in unchanged
code that is unlikely to exhibit bugs.

2.2 Regression Fuzzing
Motivated by the prevalence of regression bugs, AFLChurn [64]
proposed regression fuzzing to facilitate regression bug discovery
in user-space projects. Basically, regression fuzzing puts weights
on modifications so as to decide which inputs should be prioritized
over others. Figure 2 illustrates how regression fuzzing utilizes
weights. In this example, input 1 visits the functions weighted by
{0.4, 1.2, 1.8, 0.4}, and input 2a visits {0.4, 1.2, 1.2, 0.4}. Regression
fuzzing calculates the weight of inputs by averaging the visited
weights, which corresponds to 0.95 for input 1 and 0.8 for input 2a.
The fuzzer then prioritizes input 1 by giving it a higher chance of
selection or a longer mutation time.

AFLChurn further introduced a heuristic weighting method that
gives higher weights to recent and frequent modifications, which
also coincides with the intuition that they must be the most relevant
to regression bugs. Specifically, given 𝑡 as the elapsed days since
the modification on a given function and 𝑓 as the total number of
modifications on it until the reference date, AFLChurn defined the

1Except 124 erroneous reports that confused the same compile error (in elf.c) as
reproduced crashes.

1 --- a/include/linux/kvm_host.h
2 +++ b/include/linux/kvm_host.h
3 @@ -432,2 +432,2 @@ struct kvm_memslots {
4 - struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM];
5 + struct kvm_memory_slot memslots[];
6 };
7
8 @@ -568,2 +568,2 @@ struct kvm_memslots *kvm_alloc_memslots()
9 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
10 - slots->id_to_index[i] = slots->memslots[i].id = -1;
11 + slots->id_to_index[i] = -1;
12
13 @@ 1032 @@ search_memslots(struct kvm_memslots *sls)
14 struct kvm_memory_slot *memslots = sls->memslots;
15 // no pointer check for ’memslots’.
16 if (gfn >= memslots[slot].base_gfn &&

Figure 4: Root cause of CVE-2020-36313 (use-after-free).

weight of the function as 1/𝑡 × log(𝑓 ) to incentivize recent and
frequent modifications.
Limitation. However, these heuristics break down in the kernel
environment as there are too many recent and frequent modifica-
tions. As mentioned in Section 2.1, the Linux kernel has at most 29%
of changed code every year. While this portion is small compared
to the entire kernel, this still amounts to around 500k~600k lines of
changed (e.g., added or deleted) code every month, which alone is
comparable to a middle-to-large user-space project in size.

This results in the root-cause modifications, which should be
focused on by regression fuzzing, lost in an overabundance of be-
nign modifications. To confirm this, we checked if the heuristics
can distinguish root-cause modifications properly by comparing
the weights of benign commits with root cause commits.2 Figure 3
shows the weight distribution of root cause (RC) and benign (BE)
commits between Jul 1, 2018 and Jul 1, 2019, where the weighting
formula was adjusted for kernel fuzzing so as to reflect its low
throughput compared to user-space fuzzing (10/(𝑡 + 9) × log(𝑓 )).
The distribution shows that root-cause commits barely stand out
from benign commits, having only 8% higher weights than median
benign commits.
Implication. The heuristic of selecting recent patches only weakly
targets true root cause modifications. A large amount of modifi-
cations weakens the signal and regression fuzzing de-prioritizes
them, compromising the efficiency of regression discovery. Figure 2
illustrates three weighting methods, each of which differs in its
highlighting power. Suppose we have two inputs where input 1
only visits benign functions while input 2 visits the root-cause
function. While regression fuzzing is supposed to prioritize input 2,
the weak weighting method (b) cannot prioritize it because input
1 has an even higher weight than input 2, preventing regression
fuzzing from thoroughly testing the root-cause function.

This can be avoided by introducing a stronger weighting method,
which effectively reduces the chance of such occasions. For example,
as the strong weighting method (c) in Figure 2 raises the weight of
the root-cause function significantly, it can tolerate a "noise weight"
from the benign function in input 1 (i.e., 1.8 < 2.1) and prioritize
input 2. This suggests that a weighting method should highlight
root-cause modifications significantly to prioritize relevant inputs.

2Commit weights are calculated as the average of contained functions.
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1 --- a/net/rds/connection.c
2 +++ b/net/rds/connection.c
3 @@ -193,6 +193,10 @@ __rds_conn_create()
4 conn = kmem_cache_zalloc(rds_conn_slab);
5 conn->c_path = kcalloc(npaths, sizeof(...));
6 ...
7 - if (is_outgoing && trans->t_prefer_loopback) {
8 - trans = &rds_loop_transport;
9 + if (trans->t_prefer_loopback) {
10 + if (unlikely(is_outgoing)) {
11 + kmem_cache_free(rds_conn_slab, conn);
12 + conn = ERR_PTR(-EOPNOTSUPP);
13 + goto out;
14 + }
15 }

Figure 5: Root cause of CVE-2021-45480 (memory-leak).

3 Characterizing Root-cause Modifications
As elaborated in Section 2.2, effective regression fuzzing boils down
to highlighting potential root-cause modifications over benign ones.
To gain insight into the differentiating characteristics of root- ause
modifications, we investigated 146 Linux bugs including 38 CVEs
in 2020 and 2021. In this section, we present three key observations
that we noticed during our investigation.

1) Some changes are more likely to cause bugs (i.e., risky).

While any code changes can potentially cause problems, some
changes are more likely to cause bugs, hence risky. This is because
different code changes create a different amount of side-effect that
developers need to address. This amount grows as the code change
involves more global effects or more intricate logic, rendering de-
velopers likelier to miss some side-effect.

For example, Figure 4 shows the root-cause commit of CVE-2020-
36313 that changes a struct field memslots from a static array to a
dynamic array. As it is changing the semantics of the struct field, it
potentially needs to adjust all use locations to prevent them from
incorrectly assuming stale semantics. This commit indeed adjusts
the initialization function for struct kvm_memslots (Line 10-11),
but it fails to address one use location in search_memslots() that
implicitly assumes memslots as a static array, which subsequently
exhibits use-after-free.

2) The risk compounds as it involves more risky changes.

Not only some changes are riskier than others, but the risk of a
modification—a group of contiguous changes—also gets amplified
as it consists of more risky changes. For example, Figure 5 shows the
root cause of CVE-2021-45480, which attempted to add a new excep-
tion in the network initialization function __rds_conn_create().
The modification involves several risky changes, including;

• Managing memory; kmem_cache_free() in Line 11.
• Changing initialization; conn in Line 12, allocated in Line 4.
• Changing error code logic; -EOPNOTSUPP in Line 12.
• Handling a goto control flow; goto in Line 13.

While the developer was dealing with the complexities of all the
risky changes, they missed to cleanup conn->c_path (Line 5) as a
part of the new exception, causing a memory leak. The rationale
here is that each risky change presents additional complexities that
a developer has to address, so the overall modification gets more
likely to be problematic as risky changes accumulate.

3) Some risky change patterns are project-specific.

While the risk of some changes comes from the language itself,
others come from how the project conventionally uses the language
construct. For example, while the complexities in Figure 4 come
from the global nature of structure definitions, the last two risky
changes in Figure 5 comes from how kernel developers use a set of
return codes (i.e., to maintain inter-functional semantics) and the
goto construct (i.e., to handle exceptional control flow, including
resource cleanup).

4 Formalizing Risk of Code Change
The observations in Section 3 suggest that the risk of modifica-
tions indicates how likely a given modification will cause problems,
hence being a root cause. In this section, we formalize the risk of
modifications to highlight potential root causes.
Risk of individual code change. Considering that a risk is sup-
posed to represent how likely a code change is involved in problems,
we can formulate the risk of a code change as follows. Suppose the
probability of a change 𝑐 appearing in root-cause modifications is
𝑃𝑏𝑢𝑔 (𝑐), and the probability in benign modifications is 𝑃𝑏𝑒𝑛𝑖𝑔𝑛 (𝑐).
Then the risk of the change 𝑅(𝑐) can be described as the probability
𝑃𝑏𝑢𝑔 (𝑐) relative to the probability 𝑃𝑏𝑒𝑛𝑖𝑔𝑛 (𝑐);

𝑅(𝑐) =
𝑃𝑏𝑢𝑔 (𝑐)

𝑃𝑏𝑒𝑛𝑖𝑔𝑛 (𝑐)
. (1)

In this formulation, a change can be considered risky if the risk of
the change 𝑅(𝑐) is greater than 1.
Risk ofmodification. Similar to the risk of a single change, the risk
of a modification—a group of contiguous changes—can be described
as the relative probability of root-cause and benign modifications
featuring all constituent changes simultaneously. In other words,
the risk of a certain modification𝑚 is described as;

𝑅(𝑚) =
𝑃𝑏𝑢𝑔 (∧𝑁

𝑛=1𝑐𝑛)
𝑃𝑏𝑒𝑛𝑖𝑔𝑛 (∧𝑁

𝑛=1𝑐𝑛)
, (2)

where {𝑐1, ..., 𝑐𝑁 } is a set of all changes in the modification𝑚. This
can be further approximated as the product of each change’s risk
(Equation 1), as the probability of each change appearing in any
modifications is approximately independent of each other unless
one pattern does not imply (or require) another.3

𝑅(𝑚) ∼
𝑃𝑏𝑢𝑔 (𝑐1) × · · · × 𝑃𝑏𝑢𝑔 (𝑐𝑁 )

𝑃𝑏𝑒𝑛𝑖𝑔𝑛 (𝑐1) × · · · × 𝑃𝑏𝑒𝑛𝑖𝑔𝑛 (𝑐𝑁 ) =

𝑁∏
𝑛=1

𝑅(𝑐𝑛), (3)

Notice that the formalized risk of a modification also gets amplified
by the risk of constituting code changes as noted in Observation 2.

5 SyzRisk
Directed by the observations in Section 3 and using the formal-
ized code change risk in Section 4, we present SyzRisk, the change-
pattern-based continuous kernel regression fuzzer that shifts weights
to potential root cause modifications. SyzRisk allows kernel devel-
opers to describe suspected risky change patterns through a simple
interface and automatically estimates the risks of the supplied pat-
terns. SyzRisk then increases fuzzing weights for matching code
3For example, the code changes in struct fields do not require changing GOTOs.
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Figure 6: Overall workflow of SyzRisk.

Callback Parameter/Return Called at...

OnCommitBegin
(sha, date)

sha:
date:

Hexsha of the commit.
Commit date. Beginning of commit.

OnDiffLine
(v, sco, line)

v:
sco:
line:

Version (added or deleted).
Enclosing scope information.
Changed line information.

Each changed line.

OnCommitEnd() RET: Set of matched functions. End of commit.

Table 1: List of callbacks for a diff-level description.

changes (i.e., more likely to be root causes), adjusting weights over
time based on their age. Figure 6 shows the workflow of SyzRisk.

5.1 Workflow and Usage Model
Pattern description. Developers first describe code change pat-
terns that they suspect risky or bug-prone whenever they spot them
(Section 5.2). Developers may notice potentially risky changes at
various stages of development; when their code changes are causing
too many follow-up modifications in different locations (e.g., modi-
fying struct fields) or when certain code changes keep appearing
in root causes while they are fixing crashes.
Pattern risk estimation.Given change patterns, SyzRisk proceeds
to estimate the actual risk of each pattern (Section 5.3). To do
so, SyzRisk leverages a ground-truth dataset that consists of all
root-cause and benign commits until the current point. SyzRisk
matches the patterns to both kinds of commits and estimates the
risk of each pattern by comparing the relative match frequency of a
given pattern in root-cause and benign commits (Observation 1). At
this stage, developers may also polish the quality of their patterns
iteratively (e.g., for higher risks) using the estimated risks.
Code change weight calculation.With estimated pattern risks,
SyzRisk calculates the weight of all code changes in the repository
by matching the patterns to them. SyzRisk amplifies the weight of
code changes by the risks of their matched patterns, as it suggests
a higher likelihood of causing crashes (Observation 2).
Regression fuzzing. Finally, the SyzRisk fuzzer uses the calcu-
lated codeweights to prioritize input mutation (Section 5.4). SyzRisk
makes use of the previous continuous fuzzing campaign by inher-
iting its input corpus, which already covers most kernel parts but
needs to be prioritized based on the relevance to risky code changes.
SyzRisk decides such relevance per input based on the code weights
collected during its execution.

Callback/API Parameter/Return Called at...

GetReqAnalysis() RET: Set of required analysis. Before matching.

OnChangedFunc
(v, fn)

v:
fn:

Version (before or after).
Changed function body. Each changed function.

GetMetadata
(meta)

meta:
RET:

Type of metadata.
Requested metadata. (API)

Table 2: List of callbacks and an API for a function-level
description.

5.2 Pattern Description and Matching
Reflecting on Observation 1 and 3, SyzRisk allows developers to
describe suspected risky change patterns by implementing pre-
defined callback functions. Writing a description is analogous to
writing a small plugin for the LLVM framework [31] (e.g., AST visi-
tor or IR pass), except that the amount of required implementation
is much smaller (i.e., tens of lines).

SyzRisk provides two ways of describing change patterns, de-
pending on the subject of analysis; diff-level and function-level. A
diff-level description analyzes the diff of a commit, deducing pat-
terns based on the changed (i.e., added or deleted) lines in the diff. A
function-level description analyzes the body of a changed function—
the function that contains at least one changed line—deducing a
pattern from high-level program graphs within the function (e.g.,
AST, CFG or DDG). Appendix A describes the step-by-step match-
ing procedure with the exact timing of callbacks.

5.2.1 Diff-level Description Table 1 shows a list of callback func-
tions for a diff-level pattern description. The detailed explanations
of the callbacks are as follows.
OnCommitBegin(sha, date). SyzRisk calls this callback before it
begins matching a new commit. Developers may utilize this callback
to initialize the internal states or identify the current commit using
sha and date, the SHA hash and date of this commit.
OnDiffLine(v, sco, line). SyzRisk calls this callback when it en-
counters a changed line (i.e., added or deleted; indicated by v) while
scanning through the diff of the current commit. By implementing
this callback, developers can construct a pattern-matching state ma-
chine using the provisioned information by SyzRisk as follows. sco
provides the information on the enclosing scope such as type and
name. Currently, SyzRisk recognizes five types of enclosing scopes;
function, struct, enum, initializer and global. line repre-
sents the changed line, and developers can either use pre-analyzed
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token information (e.g., field and use) or manually analyze code
using regular expression.
OnCommitEnd(). SyzRisk calls this callback when the current
commit is ended. This callback is expected to return a set of matched
functions in the current commit.

5.2.2 Function-level Description Table 2 shows a list of callbacks
and an API for a function-level pattern description. The detailed
explanations of the callbacks and the API are as follows.
GetReqAnalysis(). SyzRisk calls this callback before starting a
matching process, where it is expected to return a set of required
analyses for this pattern description. Currently, SyzRisk supports
three intra-functional analysis—AST, CFG and DDG—as supported
by the back-end pattern matcher [5].
OnChangedFunction(v, fn). SyzRisk calls this callback for each
changed function body. This callback is effectively called twice with
two versions before and after the commit, indicated by v. fn is the
body of the changed function with the analysis result and tagged
changed lines, on which developers can make Joern [5] queries.
This callback is expected to return whether or not the function is
matched to the pattern.
GetMetadata(meta).To compensate the limitation of intra-functional
analysis, SyzRisk provides this API so that developers can lever-
age meta-functional information not available within a function
body. The supported types of metadata are; i) the SHA hash of the
enclosing commit, with which developers can get the results on
a commit level, and ii) a list of function attributes (e.g., __init
or __release), from which developers can assume the intended
purpose or behavior of the function.

5.3 Risk Estimation and Weight Calculation
With the matching results, SyzRisk decides the weights of the
changed functions by reflecting on the risk of matched patterns.
Specifically, SyzRisk first estimates the risks of the supplied patterns
by examining how frequently they appear in known root cause
modifications compared to benign modifications. SyzRisk then cal-
culates the weights of each changed function based on the risk of
matched patterns.

5.3.1 Pattern Risk Estimation As formulated in Section 4, the risk
of a change pattern 𝑅(𝑐) can be described as 𝑃𝑏𝑢𝑔 (𝑐)/𝑃𝑏𝑒𝑛𝑖𝑔𝑛 (𝑐),
where 𝑃𝑏𝑢𝑔 (𝑐) and 𝑃𝑏𝑒𝑛𝑖𝑔𝑛 (𝑐) is the probability of a change 𝑐 appear-
ing in root-cause and benign modifications. As directly measuring
these probabilities is impossible, SyzRisk rather approximates them
by examining how frequently the pattern appears in ground-truth
dataset—consisting of known root cause and benign modifications.

Furthermore, SyzRisk uses different subsets of ground truth to
estimate different types of risk under various circumstantial fac-
tors. Formally, let 𝑋 be a circumstantial factor such as the commit
size or the changed subsystem. If 𝑓𝑏𝑢𝑔 (𝑐 |𝑋 ) and 𝑓𝑏𝑒𝑛𝑖𝑔𝑛 (𝑐 |𝑋 ) are
the frequencies of a change pattern 𝑐 in root-cause and benign
modifications that satisfy the circumstantial factor 𝑋 , the estimated
risk of the pattern �̃�(𝑐 |𝑋 ) if the enclosing modification satisfies the
circumstantial factor 𝑋 is;

�̃�(𝑐 |𝑋 ) =
𝑓𝑏𝑢𝑔 (𝑐 |𝑋 )

𝑓𝑏𝑒𝑛𝑖𝑔𝑛 (𝑐 |𝑋 ) . (4)

Currently, SyzRisk considers three types of risks depending on
the considered circumstantial factors as follows;

• General Risk �̃�(𝑐 |𝜙). This risk is the closest to the general
description of a risk, where the circumstantial factor 𝜙 is
satisfied by any modification.

• Commit-Size Risk �̃�(𝑐 |𝐶𝑠𝑐 ). This risk reflects the correla-
tion between a change pattern and the size (i.e., the number
of changed functions) of the commit that it belongs to. To be
specific, let 𝑠𝑐 = ⌊log2 (𝑠 + 1)⌋ be the size class of the commit
size 𝑠 . Then, the circumstantial factor 𝐶𝑠𝑐 is satisfied by the
modifications in the commit of the size class 𝑠𝑐 .

• Subsystem Risk �̃�(𝑐 |𝑆𝑠𝑦𝑠 ). This risk reflects the correlation
between a change pattern and the changed subsystem. For-
mally, if 𝑠𝑦𝑠 represents a subsystem, the circumstantial factor
𝑆𝑠𝑦𝑠 is satisfied if a modification changes the subsystem 𝑠𝑦𝑠 .

Notice that the estimated risks can be updated incrementally as
kernel development continues because it only requires matching
newly identified root cause and benign modifications and adding
them to the frequency counts. SyzRisk currently bounds the esti-
mated risk within the range of [0.5, 10] to avoid under-estimating
or over-estimating risks due to the lack of ground truth. The upper
bound was chosen by a larger factor than the lower bound (i.e., 10x
higher vs. x2 lower than 1) to favor potentially risky matches even
if the high risk may be transient due to the limited dataset.

5.3.2 Function Weight Calculation After estimating the risk of pat-
terns, SyzRisk calculates the weights of each matched function.
Conceptually, the weight can be defined as proportional to the risk
of modifications inside the function (i.e., 𝑅(𝑚) in Equation 2), but
the ground truth dataset would never be sufficient to estimate every
combination of change patterns. Instead, we again approximate
the risk of modifications using Equation 3 by multiplying all the
risks of the matched patterns. This approximated risk should be
upper-bounded, however, because patterns may develop correla-
tions between each other as a modification gets heavy. For example,
both changing error code logic and goto control flows are likely
to appear simultaneously in heavy modifications such as creating
an entire function. This can break the assumption that patterns are
independent and result in over-estimating heavy modifications.

One additional factor we need to incorporate here is the elapsed
days 𝑡 since the modification has been made so that we can fade
out old, hence well-tested modifications. To incorporate this, we
additionally multiply a time-dependent exponential factor to the
estimated risk. Formally, if {𝑐1, ..., 𝑐𝑁 } is a set of matched change
patterns inside a function 𝐹 , the weight of the functionW(𝐹 ) is;

W(𝐹 ) = bound(
𝑁∏
𝑛=0

�̃�(𝑐𝑖 )) × 2−𝑡/𝑇 . (5)

Here, �̃�(𝑐) is the maximum estimated risk under all circum-
stantial factors considered, and bound(𝑥) = −𝐵𝑒−𝑥/𝐵 + 𝐵 puts a
soft upper-bound on the approximated risk at 𝐵, which currently
SyzRisk sets it to the eighth power of the average general risk (i.e.,
around 256). 𝑇 is a fade-out constant that reduces function weights
by half every𝑇 days after their modification date. If a function ends
up with multiple weights (e.g., multiple commits have modified it),
SyzRisk simply takes the maximum weight.
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Figure 7: Design of SyzRisk runtime components.

5.3.3 Ground-truth Collection While accurately estimating risks
requires a large (generalizable), sound (no false-negative) and com-
plete (no false-positive) ground-truth dataset, in practice, collecting
such a dataset is notoriously difficult as it is intertwined with iden-
tifying root-cause modifications [9, 18, 53, 55, 56]. The following
elaborates on how SyzRisk addresses these issues.
Ensuring a large dataset.While it is generally difficult to identify
the root causemodifications, we can rather easily identify root-cause
commits in the Linux kernel, thanks to the commit convention. To be
more specific, the commit convention encourages kernel developers
to tag the commit (Fixes:) that their commits are supposed to fix,
and especially for crash4 fixes, the commit that introduces them—
hence root causes. Based on this observation, SyzRisk first seeks
the commits with Fixes tags to identify fix commits and check
whether such commits are fixing crashes using Syzbot reports and
relevant keywords in the commit message. Appendix D elaborates
on fix commit identification. SyzRisk then traces back to the tagged
commits to collect root-cause commits. In reverse, SyzRisk collects
any untagged commits for benign samples.
Ensuring soundness. Clearly, the dataset cannot include the root-
cause commits that have not yet been identified, creating false
negatives in the root-cause dataset and false positives in the be-
nign dataset in reverse. However, the false-negative root causes
are eventually covered as the kernel development continues and
developers keep tagging root-cause commits. Moreover, we note
that the soundness issue is only about risk estimation; all root-
cause commits get weighted with the estimated risks regardless of
whether they are included in the dataset.
Ensuring completeness. Even if we can identify root-cause com-
mits, some modifications in such commits might be benign. Specifi-
cally, root-cause commits contain increasingly more benign modifi-
cations as they get larger, because not all modifications contribute
to crashes. On the other hand, we also cannot exclude all large
root-cause commits either, as some root-cause modifications might
span across multiple functions. To bypass this issue, SyzRisk limits
the size of the commit to up to seven changed functions unless the
risk estimation requires larger commits (e.g., commit-size risk in
Section 5.3.1) and assumes all modifications are root causes.

5.4 Regression Fuzzing
With the calculated function weights, SyzRisk performs regression
fuzzing by prioritizing inputs that visit more weighted functions,
4Including KASAN-detectable bugs, concurrency bugs and kernel-panics.

hence bearing higher relevance to root-causemodifications. Figure 7
illustrates the design of the SyzRisk runtime components. SyzRisk
first calculates the weight of an input as the average weight of
functions that it visited during execution, then prioritizes high-
weight inputs by giving them higher chances for mutation.
Input weight calculation. SyzRisk calculates the weight of an
input as the average weight of all visited functions during its exe-
cution. Formally, let F be the list of visited functions during the
execution of the input 𝐼 . Then, the weight of the inputW(𝐼 ) is;

W(𝐼 ) = avg(W(𝐹 ),∀𝐹 ∈ F ). (6)

At the beginning of fuzzing, SyzRisk-manager feeds every input
in the initial corpus from the prior continuous fuzzing to SyzRisk-
executor and calculates the weights of each input, and it continues
to calculate the weight of newly discovered inputs during fuzzing
in a similar way.
Input prioritization. Given the calculated input weights, SyzRisk-
fuzzer prioritizes the high-weight inputs by selecting them with
higher probabilities formutation. Similar to AFLChurn [64], SyzRisk-
fuzzer calculates the normalized input weight 𝜔 against the maxi-
mum input weight in the corpus and decides the likelihood of input
selection by multiplying 25(2𝜔−1) to the original selection likeli-
hood determined by the base fuzzer (i.e., Syzkaller). SyzRisk does
not require simulated-annealing-like priority regulation unlike the
original regression fuzzing, as the corpus from the prior continuous
fuzzing is presumed to have sufficiently explored inputs.

6 Change Patterns
To demonstrate the feasibility of the usage model (Section 5.1),
we simulated the pattern description scenario and collected 23
risky change patterns using the 146 root-cause modifications in
Section 3. Specifically, we presumed developers creating patterns
while analyzing root causes for bug fixes. Table 3 shows the 23 risky
change patterns we collected. In this section, we briefly illustrate
howwe collected them and present the details of two representative
patterns: Modified Struct Field and Entering GOTO.
Ensuring initial pattern set.We first started collecting our initial
candidate pattern set by examining the root-cause commits of 38
crashing CVEs in 2020 and 2021 and 65 Syzbot-reported crashes
fixed in November 2020 and March 2021. We identified root-cause
modifications that directly caused crashes by referring to where
the corresponding fix commit modified, and noted the recurring
changes in the root-cause modifications. As a result, we collected
14 suspected risky code change patterns.
Enhancing pattern set. After dropping some candidate change
patterns that were too generic (i.e., introducing new memory ref-
erences) or too hard to generalize (i.e., changing inside double-
loops), we composed the patterns with SyzRisk (Section 5.2) and
matched them to all Fixes-tagged 1,100 root-cause commits in
2020 to check if the patterns cover them all. Then, we analyzed 43
more unmatched root-cause commits in 2020 to cover all root-cause
commits (except data-only or macro-changing commits, discussed
in Section 9) by tuning the existing patterns to cover corner cases
and adding nine more patterns (Exported Function, Extracted State-
ment, Modified Assembly, New State, Pointer Promotion, Split Function,
Changed Error Code, Inside Switch, Switch-ctrled Var. Mod.).
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1 def OnDiffLine(v, sco, line):
2 if (sco.type == "struct"):
3 mfld.add(line.field)
4 elif (sco.type == "func"):
5 u2f[line.use].add(sco.name)
6
7 def OnCommitEnd():
8 return set().union(*[u2f[fld] for fld in mfld])

Figure 8: Simplified description of Modified Struct Field.

Refining pattern set. We further estimated the general risks of
the collected patterns to check whether they are all risky enough.
As a result, we dropped one pattern whose general risk was under
1.2 (New Callback) and split two patterns into multiple ([Pointer
Arithmetic, Involving GOTO] to [Pointer Arithmetic, Pointer API, Pointer
Offset Manip., Entering GOTO, Inside GOTO]) as they were under-
estimating the risks of individual patterns by implicitly or-ing them.
Checking the generality of patterns. To ensure the general risk-
iness of the collected patterns throughout time, we additionally
estimated the pattern risks with the commit samples before and af-
ter when they are derived from (i.e., 2020~2021). Section 8.2 presents
the estimated risks, suggesting that all collected patterns continue
to be risky over the years.
Statistics. Most of the patterns required no more than 30 minutes
to write descriptions, except a few patterns that required reason-
ing about how to describe (e.g., Pointer Arithmetic; what should
be considered as affecting pointer arithmetic?). Overall, nine diff-
level patterns and 14 function-level patterns take 32.5 lines and
29 lines on average, respectively. The longest pattern is Extracted
Statement (80 lines) that involves string similarity comparison [2],
while the shortest pattern is Memory Mgmt. API (15 lines) that essen-
tially only finds pre-defined memory management function calls
(e.g., "*alloc*"). Table 6 in Appendix E shows the number of
investigated root causes per bug type.

Pattern Summary Level

Chained Dereference Involving chained field dereference. Diff
Exported Function Exporting previously-local functions. Diff
Extracted Statement Moving statements to another function. Diff
Modified Assembly Changing assembly instructions. Diff
Modified Struct Field Using a modified struct field. Diff
New State Using a new state variable. (e.g., #define) Diff
Pointer Promotion Promoting a variable to a pointer. Diff
Split Function Splitting a single function. Diff
Struct Casting Changing struct-to-struct castings. Diff
Changed Error Code Changing error codes or their conditions. Func
Concurrency API∗ Changing concurrency API calls. Func
Entering GOTO Changing code leading to GOTO. Func
Finalization Changing inside a finalization function. Func
Global Variable Changing the usage of global variables. Func
Initialization Changing inside an initialization function. Func
Inside GOTO Changing code inside GOTO. Func
Inside Switch Changing code inside a switch-case. Func
Locked Context Changing code inside a locked context. Func
Memory Mgmt. API∗ Changing memory management calls. Func
Pointer API∗ Changing pointer manipulation API calls. Func
Pointer Arithmetic Changing pointer arithmetic code. Func
Pointer Offset Manip. Changing the value of pointer offsets. Func
Switch-ctrled Var. Mod. Changing switch-case-controlled variables. Func
∗ : Can be described on both diff-level and function-level.

Table 3: List of 23 risky change patterns.

1 def OnChangedFunc(v, fn): Boolean {
2 val gotos = fn.gotos()
3 val postdom = gotos.postDominates()
4 val ctrl = gotos.enclosingCond()
5 return ((gotos ++ postdom ++ ctrl).hasChanged())
6 }

Figure 9: Simplified description of Entering GOTO.

6.1 Modified Struct Field
Description.Modified Struct Field is a diff-level pattern that searches
for any changed usage of modified structure fields. Figure 8 illus-
trates the simplified description of the pattern. Given a commit diff,
it first identifies a set of modified structure fields (mfld in Line 3)
and pairs of used structure fields and the functions (ufld in Line
5). Then it returns the functions using the fields in mfld (Line 8).
Rationale. Since any structure field has its own semantics—e.g.,
what it does or how it is used—that should be globally agreed upon
in any code locations, all relevant functions should be adjusted
properly if a structure field is modified, hence changing its seman-
tics. Weighting the functions that are using such fields is to check if
they are handling the changed semantics properly and to indirectly
visit other relevant functions during a fuzzing run.

6.2 Entering GOTO
Description. Entering GOTO is a function-level pattern that checks
if changes are made to any statements that directly lead to them.
Figure 9 illustrates the simplified description of the pattern. Given
a changed function, it first identifies all goto statements in the
function (Line 2) and the lines and the condition post-dominated
by or enclosing them (Line 3-4). Then, it checks whether such lines
are changed (Line 5).
Rationale. As mentioned in Observation 3, the goto construct is a
prevalent way for kernel developers to handle exceptions, and the
lines leading to gotos and the conditions that decide their execution
directly implement the exceptional logic (e.g., resource cleanups).
Weighting such functions is to check if the changed exceptional
flows are properly implementing such secondary logic, which can
otherwise cause memory bugs (e.g., use-after-free).5

7 Implementation
Pre-fuzzing components. For diff-levelmatching, we implemented
SyzRisk in Python with GitPython [3] to scan commits from the
repository and extract the body of changed functions. For function-
level matching, we incorporated Joern v1.360 [5] for the back-end
pattern matcher. The pattern description interfaces (Section 5.2)
were written in Python and Scala for diff-level and function-level,
respectively. In total, the pre-fuzzing components consist of 4,609
lines of code.
Runtime fuzzer. We based on Syzkaller (revision 2b253ced7f2f
with amutation bug fix from 6feb842be06b) aiming at minimizing
the changes for the potential merge to Syzkaller. Our prime issue
was deriving a list of visited functions from the kcov coverage,
which is partially done by Syzkaller when generating a crash report.
To utilize this, we modified ReportGenerator to acquire a list of

5The exception logic inside goto blocks is covered by Inside GOTO.
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Figure 10: Risks of the 23 change patterns. Patterns are in the same order as Table 3. 2022 commits are up to Oct 2, the release
date of v6.0. Overall: based on all 2018~2022 commits.

visited functions from non-crashing inputs and syz-manager to
feed the calculated input weights to syz-fuzzer. We additionally
modified syz-fuzzer to update the input weights and adjust the
input selection priority accordingly. In total, we implemented the
core regression fuzzing functionality with only 234 lines of code.

8 Evaluation
In this section, we demonstrate the effectiveness of change-pattern-
based regression fuzzing by comparing SyzRisk to the state-of-the-
art regression fuzzing approaches. To be specific, we present the
answers to the following research questions through evaluation.

• RQ1. How risky are the collected 23 change patterns in
Table 3? (Section 8.2)

• RQ2. How much does the change-pattern-based weighting
method highlight root-cause modifications, compared to the
heuristics on recent and frequent modifications? (Section 8.3)

• RQ3. How much does SyzRisk, the change-pattern-based re-
gression fuzzer, outperform other state-of-the-art regression
fuzzers in bug discovery time? (Section 8.4)

• RQ4. How completely can SyzRisk discover bugs compared
to other regression fuzzing methods? (Section 8.5)

8.1 Evaluation Setup
We ran pattern matching, risk estimation and weight calculation
on a server node equipped with an Intel Xeon E5-2680 CPU (56
cores) and 256 GB of memory, running Ubuntu 20.04. The pattern
matching for one-year-worth kernel commits (approximately 80,000
commits per year) took 3 hours for diff-level patterns and 6 hours for

function-level patterns, where function-level pattern matching was
done with 40 parallel threads. We note that the pattern-matching
process is not only highly parallelizable up to the unit of each
individual commit but also a one-time cost as new commits only
need to be pattern-matched just once. The risk estimation and
the weight calculation combined took less than 20 minutes with
five-year-worth matching results.

For the fuzzer evaluation, we utilized four server nodes with
an Intel Xeon Gold 5218 CPU (16 cores) with 64 GB of memory,
running Ubuntu 20.04. Each fuzzer was set to eight VMs with two
executor processors and placed on different nodes so that it does not
interfere other fuzzers. While we set up every machine identically,
we assigned different server machines to fuzzers every iteration to
avoid a possible machine-introduced bias.

8.2 Pattern Risks
To answer RQ1, we estimated the risk of the 23 patterns in Table 3
with the ground-truth commits between Jan 1, 2018 and Oct 2, 2022,
including 4,742 root-cause commits (indicated by at least one other
commit with Fixes: tags) out of 404,965 total commits.
General Risk. Figure 10a shows the general risks of the 23 patterns.
The colored bars were estimated with the commits of designated
years, while the black bars ("Overall") were estimated with all com-
mits from 2018~2022. On average, the general risk of all patterns
is 2.05, which means root causes are 2.05x more likely to involve
one of them than benign ones. Notice that the evaluated root-cause
commits consist of 4,742 commits spanning five years (2018~2022),
while the patterns were extracted from only 146 commits spanning
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(b) Pattern-based weighting method (𝑇 = 30)
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(c) Pattern-based weighting method (𝑇 = 90)

Figure 11: Weight distributions of commits within one year from the reference date (Jul 1, {2019,2020,2021}). RC: root-cause
commits, BE: benign commits. Δ: ratio between RC and BE medians. The top, the notch and the bottom of the boxes represent
the 25th, 50th and 75th percentile, and the whiskers span the standard 1.5 IQR.

two years (2020~2021, Section 6). This suggests that the patterns
are well-generalizable to overall root causes in scale and over time.

The three most risky patterns are Pointer Promotion (PP, 3.79),
Memory Mgmt. API (MMA, 2.77) and Concurrency API (CA, 2.48),
which are generally regarded as dangerous if done carelessly. Both
representative patterns in Section 6 show above-par risks, 2.34 for
Modified Struct Field (MSF) and 2.16 for Entering GOTO (EG). Some
patterns show exceptionally high (over 4) or low (equal to 1) risks
in some years due to the lack of commit samples in those years.
Commit-Size Risk. Figure 10b shows the commit-size risks of the
23 patterns per size class (⌊log2 (𝑠𝑖𝑧𝑒 + 1)⌋, Section 5.3.1). As the
average suggests, commit-size risks are showing a decreasing trend
as the size class increases, while the patterns like Split Function (SF),
Modified Struct Field (MSF) and Inside Switch (IS) are showing the
opposite trend. Two possible reasons are: i) developers might have
become more likely to miss some corner-cases while dealing with
more code adjustments (SF and MSF), or ii) rather than being a
direct root cause, some changes might have become more likely to
appear in root-cause commits as their size grows (IS).

Pointer Promotion (PP), Concurrency API (CA), Inside GOTO (IG)
and Memory Mgmt. API (MMA) show an exceptionally high risk in
the size class 1 (i.e., commits that modify only a single function).
Notice that they are all highly dependent on other functions to work
properly—e.g., the modified resource cleanup logic by Inside GOTO
requires the outside of the function to recognize the modified logic
properly. This means that they are highly risky if the modification
is only done locally without addressing other side effects.
Subsystem Risk. Figure 10c shows the subsystem risks of the 23
patterns in six major subsystems. While most patterns show similar
risks in every subsystem, some patterns are showing particularly
high risks in certain subsystems. For the memory management
subsystem (mm), Pointer Promotion (PP), Pointer API (PAP) and Inside
Switch (IS) patterns are shown to be particularly risky. All these
patterns are closely related to the low-level memory management
logic, making them particularly risky as they can easily propagate
to all in-kernel memory management when handled incorrectly.

For the core kernel subsystem (kernel), most patterns regarding
the low-level logic handling (e.g., Struct Casting (SC), Inside Switch
(IS) and Switch-ctrled Var. Mod. (SVM)) are generally showing high
risks. Notice that the switch-related patterns are showing high risks
in kernel as opposed to the relativly low general and size class
risks (Figure 10a and Figure 10b), reflecting that core kernel logic
largely depends on delicate case handling. Modified Assembly (MA)

shows highly variable risks across different subsystems mainly due
to the lack of commit samples, similar to the case in general risks.

8.3 Root Cause Weighting
To answer RQ2, we calculated the weight of Linux kernel com-
mits (i.e., the average weight of functions inside) with two weight-
ing methods—heuristic and pattern-based weighting methods—and
compared the weight distributions of root-cause and benign com-
mits. For generality, we picked three reference dates for weight
calculation (i.e., from Jul 1, {2019,2020,2021}) and considered the
commits within one year from each (i.e., to Jul 1, {2018,2019,2020}).

To evaluate a heuristic that focuses on recent commits, we reused
AFLChurn’s heuristic weighting formula that puts weights on re-
cent and frequent modifications. As in Section 2.2, we adopted the
formula more kernel-friendly by stretching the time-dependent
factor to reflect the throughput difference between user-level and
kernel fuzzing. For the pattern-based weighting method, we used
the pattern-based weighting formula (Equation 5) that puts weights
on risky modifications. To check how different fade-out constants
(𝑇 ) affect weight distribution, we calculated weights with two dif-
ferent constants; 𝑇 = {30, 90}.

Figure 11 shows the distribution of root-cause commit (RC) and
benign commit (BE) weights, calculated by different weighting
methods. While for heuristics the weights of root cause commits
are almost equal benign commits, the pattern-based weighting
method significantly raises the weight of root cause commits in
both fade-out constants. In particular, more than half of the root-
cause commits have higher weights than 75% of benign commits
on every reference date, including Jul 1, 2019 whose commits are
entirely disjoint from when the patterns are collected. On geomean,
the heuristic weighting method raises the median weight of root-
cause commits by only 1.15x, while the pattern-based weighting
method raises it by 4.14x with𝑇 = 30 and 4.13x with𝑇 = 90, which
is 3.60x higher than the heuristic weighting method.

The long fade-out constant (𝑇 = 90) being as good as the short
one (𝑇 = 30) can be understood by the compensation from old
root-cause commits. That is, while a long fade-out constant puts
weights on more commits that result in the overall increase of
commit weights, it also helps highlight more long-lasting (hence
old) root-cause commits, keeping the weight of root causes standing
out. Appendix B presents two root-cause commit examples showing
how typical root-cause modifications get weighted.
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Function Subsys. Bug Type Average TTE (mins) Relative TTE (vs. Syzkaller)
Syzkaller SyzChurn SR (T=30) SR (T=90) Churn SR (T=30) SR (T=90)

blkcg_deactivate_policy block deadlock 1,011 3,721 2,021 1,801 3.68 2.00 1.78
pfkey_send_acquire net kernel-panic 1,657 393 580 1,010 0.24 0.35 0.61
ext4_bmap fs deadlock 1,921 717 473 1,447 0.37 0.25 0.75
tty_port_tty_get drivers deadlock 2,307 1,703 1,802 1,944 0.74 0.78 0.84
jbd2_journal_lock_updates fs deadlock 2,552 2,655 716 3,212 1.04 0.28 1.26
nilfs_mdt_destroy fs use-after-free 5,886 8,501 6,232 7,578 1.44 1.06 1.29
si470x_int_in_callback drivers use-after-free 6,028 5,833 1,913 4,746 0.97 0.32 0.79
sco_conn_del net deadlock 7,020 10,080 6,696 6,220 1.44 0.95 0.89
ext4_xattr_set_handle fs deadlock 7,980 7,681 5,176 7,926 0.96 0.65 0.99
ntfs_attr_find fs buffer-overflow 8,178 9,151 6,380 4,858 1.12 0.78 0.59
vmf_insert_pfn_prot mm kernel-panic 8,544 6,979 8,221 6,898 0.82 0.96 0.81
detach_extent_buffer_page fs null-dereference 9,017 8,277 8,695 6,460 0.92 0.96 0.72
evict fs deadlock 10,080 3,661 3,675 2,206 0.36 0.36 0.22

Geomean 0.86 0.62 0.80

Speedup 16% 61% 24%

Table 4: Average time-to-exposure (TTE) of 13 bugs discovered by all three iterations, in ascending order of the TTEs from
Syzkaller. The bold TTEs are the shortest TTEs among fuzzers. SR: SyzRisk. Timeout: 10,080 minutes (7 days).

8.4 TTE Comparison
To answer RQ3, we compared the bug exposure time of SyzRisk
to the state-of-the-art regression fuzzing methods with the Linux
kernel v6.0. The compared fuzzing methods are as follows;

• Syzkaller. The baseline vanilla kernel fuzzer, representing a
normal continuous fuzzing scenario. We used the same base
revision (Section 7) without modification.

• SyzChurn. The kernel port of the state-of-the-art user-
space regression fuzzer, AFLChurn [64]. We implemented
SyzChurn based on SyzRisk with heuristic weights on recent
and frequent changes (Section 2.2).

• SyzRisk. The Syzkaller-based implementation of the change-
pattern-based regression fuzzing. Similar to Section 8.3, we
tried two different fade-out constants (𝑇 s) to check their
impact; 𝑇 = 30 and 𝑇 = 90.

To emulate the continuous fuzzing scenario, we prepared the
initial corpus by running four-VM Syzkaller with the Linux kernel
v6.06 for seven days on a Intel Core i7-8665U CPU (eight cores)
machine with 16 GB of memory. Then with the collected corpus,
we ran fuzzers for seven days (10,080 minutes) and repeated it three
times to average the time-to-exposure (TTE) of bugs on each fuzzer.

One challenge of averaging TTEs in kernel fuzzing is that many
bugs exhibit highly variable TTEs. In our evaluation, more than half
of all discovered bugs were missing in at least one iteration. To take
the representative bugs that can be reliably measured within the
timeout, we only counted the bugs that appear in all three iterations,
regardless of which fuzzer discovered them. We also filtered out
trivial bugs detected even before mutation. Appendix C elaborates
on the high variance of TTEs in kernel fuzzing.

Table 4 shows the average TTEs of discovered bugs. On geomean,
SyzRisk achieves the TTE improvement of 61% with𝑇 = 30 and 24%
with 𝑇 = 90, while SyzChurn only improves it by 16%. The high
improvement with 𝑇 = 30 is the result of intensively testing root-
cause modifications (as opposed to SyzChurn, which wastes fuzzing

6Strictly, the kernel for the initial corpus collection should be one commit before v6.0,
but the effect is negligible because the size of a single commit is insignificant compared
to the total size of the kernel.
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Figure 12: Number of bugs discovered by each fuzzer at least
once in three iterations of TTE comparison (Section 8.4).

time in benign modifications) while limiting the fuzzing space to a
small number of modifications (as opposed to𝑇 = 90, which spreads
fuzzing time to old modifications). Meanwhile, 𝑇 = 90 reduces the
geomean of the long-TTE bugs—the longest seven bugs in Syzkaller
TTE—more than 𝑇 = 30 (0.64 vs. 0.74), suggesting that a longer
fade-out constant is more effective for long-lasting bugs.

8.5 Completeness of Discovered Bugs
To answer RQ4, we counted the bugs discovered by each fuzzer at
least once in the TTE comparison (Section 8.4). Figure 12 shows
the number of discovered bugs, where numbers on intersections
are specifying the bugs discovered by all intersected fuzzers. Out
of all 62 bugs, both SyzRisk with 𝑇 = 30 and 𝑇 = 90 discovered
61.3% of bugs (38 bugs) separately, while SyzChurn and Syzkaller
discovered 40.3% (25 bugs) and 56.5% (35 bugs) of all. Notice that
even though SyzRisk focuses on a subset of modifications, both
of its configurations found even more bugs than Syzkaller that
searches the entire kernel indiscriminately.

The effectiveness of SyzRisk over SyzChurn is clear in Figure 12(a),
where both of SyzRisk configurations found three to four times
more unique bugs than SyzChurn. Figure 12(b) shows the advantage
of 𝑇 = 30 over Syzkaller in testing recent modifications, where it
discovered a total of 19 bugs that Syzkaller could not have detected.
This result is further compensated by 𝑇 = 90 with six uniquely
discovered bugs, which incorporates older root causes in weighting.
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In total, the combined SyzRisk missed only 9 bugs, discovering
85.5% of bugs (53 bugs) out of all.

9 Discussion
Integration to continuous fuzzing platform. As continuous
fuzzing platforms (e.g., Syzbot [7]) typically run multiple fuzzer in-
stances at the same time, the basic integrationmethod would be run-
ning SyzRisk instances alongwith vanilla Syzkaller instances.While
this may constrain the compute resource per individual instance,
developers can still expect quicker patch modification testing (with
SyzRisk) as well as thorough bug discovery (with Syzkaller). To
avoid bias in the corpus after a long regression fuzzing, maintainers
can periodically import the corpus from co-running Syzkaller.
False-positive and false-negative matches. For false positives,
we note that the composed patterns need not to be strict as the
pattern matching of SyzRisk does not aim at detecting bugs; SyzRisk
rather utilizes it to find modifications that are likely buggy, which
are later intensively tested by fuzzing. For false negatives, we ob-
served that relaxing pattern description with some assumptions can
improve the false-negative rate while still keeping the false-positive
rate low. Moreover, SyzRisk tolerates some false-negative matches
of individual patterns as SyzRisk incorporates multiple patterns.
Possible pattern levels and extension. While currently SyzRisk
only supports two description levels—diff-level and function-level—
there are more potential description levels to incorporate in the
future. For example, a pattern can be described on a module level as
a spatial expansion of function-level, or it can span across multiple
commits as a temporal expansion of diff-level. Furthermore, the
existing function level can also be extended with AST matching
techniques [20, 43, 48] to incorporate code change information at
an AST-node-level granularity. Exploring risky change patterns on
these additional or extended levels is one way to improve SyzRisk.
Data-only and macro-modifying commits. While a majority of
root-cause commits directly modify function bodies, a few of them
modify them in a less obvious way (e.g., modifying macros) or do
not modify them at all (e.g., data-only changes), posing a challenge
on which functions should be weighted. One direct measurement is
finding every function that references them and assigning weights
on it, but it requires additional analysis on the code base. Supporting
these root-cause commits is one of our future tasks.
Patterns with inverse risks. One interesting research angle is
incorporating patterns with inverse risks, or the patterns whose
appearance lowers the risk of modifications. For example, adding
a new null-pointer check could be one of such patterns as it rules
out some problematic program states. According to the current
formulation (Equation 1), such patterns would exhibit less-than-
one risks. They can be used to further regulate the weights of benign
modifications, but it can also inversely suppress actual root-cause
modifications as they do not necessarily prevent all root causes.

10 Related Work
Kernel Fuzzing. Many researchers have attempted to improve
kernel fuzzing in terms of performance and effectiveness. Based on
the basic kernel fuzzers [22, 44], continuous kernel fuzzing such as
Syzbot [7] circumvents the performance problem by fuzzing them

indefinitely. A majority of kernel fuzzing research [15, 16, 21, 24,
39, 45–47] optimizes various fuzzing components such as input
selection and synthesis, while other research [28, 30, 41] focuses
on a specific kernel component or bug type for effective fuzzing.
While none of them directly addresses regression bugs, they are
orthogonal to SyzRisk and have no restriction to integrate it.
Directed Patch Testing. Patch modifications have long been sus-
pected to be a main source of bugs [8, 60, 64], which sparked many
research on testing patches. Directed fuzzing [10, 11, 13, 34, 52, 54,
57] utilizes the control-flow distance metric to guide a fuzzer toward
targets. Differential testing [29, 37, 42, 61] attempts to maximize
the patch-induced differences and observe any anomalies in them.
However, both target only one or a limited number of locations
at a time, so are unsuitable for a plethora of patched code (e.g., in
the kernel). Some directed fuzzers [14, 32, 38] focus on suspected
root-cause code, but they do not consider code changes for tar-
gets, wasting time in old, hence unlikely code locations. Regression
fuzzing [64] is the fuzzing technique that particularly gears toward
regression bugs by putting weights on patched code locations, but
the heuristic weighting method fails to highlight potential kernel
root causes, making it ineffective on the kernel.
Vulnerability Detection. Pattern matching [1, 5] is a type of static
analysis that discovers bug-causing code patterns in a given code
base. In contrast to them, SyzRisk searches formodification patterns
that are likely to cause bugs and utilizes fuzzing to confirm the
actual bugginess. Some researches utilize machine learning [12, 33,
49, 51, 62] or statistical methods [19, 27, 40] to detect vulnerabilities.
Defect prediction [17, 25, 26, 59] and security patch prediction [48,
50, 63] also utilizemachine learning to predict root-cause or security
patch commits. While they can still get benefits from SyzRisk’s risk
estimation and weight calculation (Section 5.3) in the application to
regression fuzzing, they commonly suffer from high false-positives
and lack comprehensible explanations on how a certain change
causes vulnerabilities, let alone excluding any form of insight from
the developer side.

11 Conclusion
While kernels are dominated by regression bugs, continuous ker-
nel fuzzing wastes time rechecking unmodified code. Regression
fuzzing attempts to mitigate this by weighting modified code, but
the heuristics fail to highlight kernel root causes, making it in-
effective on the kernel. This paper presents SyzRisk, a change-
pattern-based regression fuzzer that weights potential root cause
by matching risky change patterns to patch modifications. The
evaluation of 23 risky change patterns from the Linux kernel shows
that SyzRisk highlights root causes in 2018~2021 3.60x higher than
heuristics, enabling 61% improved bug discovery time on the Linux
kernel v6.0 against Syzkaller.
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A Pattern Matching Procedure
With patterns supplied by developers, SyzRisk performs a pattern
matching on every commit. The step-by-step matching procedure
is as follows.
Initialization. Before matching, SyzRisk prepares the kernel repos-
itory that contains a list of commits and the pattern database pre-
sented by developers. SyzRisk optionally accepts a period of time
that limits the period of commit dates to consider, otherwise scans
all past commits up to now.

1 --- a/include/linux/fs.h
2 +++ b/include/linux/fs.h
3 @@ -1520,6 +1521,9 @@ struct super_block {
4 + errseq_t s_wb_err;
5
6 --- a/include/linux/pagemap.h
7 +++ b/include/linux/pagemap.h
8 @@ -51,7 +51,10 @@ static void mapping_set_error(...)
9 /* Record in wb_err for checkers */
10 - filemap_set_wb_err(mapping, error);
11 + __filemap_set_wb_err(mapping, error);
12 +
13 + /* Record it in superblock */
14 + errseq_set(&mapping->host->i_sb->s_wb_err, error);

Figure 13: Example of a near-median root-causemodification
(kernel-panic, committed on Jun 2, 2020).

Matching diff-level patterns. After initialization, SyzRisk first
matches all diff-level patterns commit by commit. At the beginning
of a new commit, SyzRisk first calls OnCommitBegin() of each
diff-level pattern to notify the beginning of a new matching and
starts scanning down the diff of the commit to its direct parent.
SyzRisk then calls OnDiffLine() to report any added or deleted
lines to each pattern. Finally, when it finishes scanning, SyzRisk
calls OnCommitEnd() to notify the end of the commit and collect
a list of matched functions from each pattern. SyzRisk also extracts
the body of every changed function at this stage—both old and new
versions—to prepare for function-level matching.
Matching function-level patterns. SyzRisk continues the match-
ing procedurewith function-level patterns and the extracted body of
changed functions. SyzRisk first calls GetRequiredAnalysis()
of every pattern to collect the required analysis, and after per-
forming the analysis, SyzRisk calls OnChangedFunc() with every
changed function to find whether the function matches patterns.
After finishing all matching tasks, SyzRisk compiles the matching
results as a list of all (i.e., both diff-level and function-level) matched
patterns per function.

B Case Study: Weight on Root Causes
In this section, we analyze two root cause examples that were
assigned with a near-median and an over-75th-percentile weight
to see how typical root causes get weighted. Both examples were
excerpted from 𝑇 = 30.

B.1 Near-Median Weight
Figure 13 shows a root-causemodification example committed on

Jun 2, 2020, where the pattern-based weighting method weighted
the root-cause function (mapping_set_error) by 3.59, a near-
medianweight on a Jul 1, 2020 reference date. mapping_set_error
attempted to introduce a new logic (Line 14) for a newly added
struct field s_wb_err (Line 4), but it failed to address the case that
mapping->host can be null. This function was indeed matched
with two patterns—Chained Dereference and Modified Struct Field—
that precisely describes the changes that are responsible for this
root cause.

B.2 Over-75th-Percentile Weight

http://lcamtuf.coredump.cx/afl/technical_details.txt
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1 --- a/net/tls/tls_device.c
2 +++ b/net/tls/tls_device.c
3 @@ -1290,6 +1304,26 @@ int tls_device_down(struct net_dev *nd)
4 list_for_each_entry_safe(ctx, tmp, &list, list) {
5 + WRITE_ONCE(ctx->sk->sk_validate, tls_validate_xmit_skb_sw);
6 + WRITE_ONCE(ctx->netdev, NULL);
7 + set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
8 + synchronize_net();
9 ...
10 - WRITE_ONCE(ctx->nd, NULL);
11 - synchronize_net();
12
13 dev_put(nd);
14 - list_del_init(&ctx->list);
15
16 - if (refcount_dec_and_test(&ctx->refcount))
17 - tls_device_free_ctx(ctx);
18 + spin_lock_irqsave(&tls_device_lock, flags);
19 + list_move_tail(&ctx->list, &tls_device_down_list);
20 + spin_unlock_irqrestore(&tls_device_lock, flags);
21 }

Figure 14: Example of an over-75th-percentile root-cause
modification (memory-leak, committed on Jun 1, 2020).

Figure 14 shows a root-cause modification example commit-
ted on Jun 1, 2020, where the pattern-based weighting method
weighted the root-cause function (tls_device_down) by 76.02, an
over-75th-percentile weight on a Jul 1, 2020 reference date. The
commit made extensive modifications in "net/tls" to mitigate a
pre-existing use-after-free bug, but it created another context leak
bug by illegally removing the device release logic (Line 16-17).

As extensive as the modification was, this function was matched
with a total of six patterns—Chained Dereference (Line 5), Concurrent
API (Line 18 and Line 20),Global Variable (tls_validate_xmit_skb_sw
in Line 5), Locked Context (Line 19), Memory Mgmt. API (Line 16-17)
and Modified Struct Field (sk in Line 5)—where two of them are ei-
ther directly (Memory Mgmt. API) or indirectly (Modified Struct Field)
related to the root cause.

C Reason of Highly Variable TTEs in Syzkaller
Compared to AFL

While both Syzkaller and AFL [58] rely on randomness in nature,
Syzkaller incorporates more internal randomness than AFL, re-
sulting in a high variance of bug exposure times (i.e., TTEs). One
prime example of increased randomness is the input selection algo-
rithm; while AFL cycles through all inputs in the corpus, Syzkaller
randomly selects an input every time. This extends the expected
waiting time per individual inputs indefinitely, which results in
an extremely long TTE depending on the outcome of random se-
lection. Another example is corpus pruning (or corpus rotation, in
Syzkaller term), where Syzkaller periodically removes part of the
corpus in a random fashion. This also affects the high variance of
TTEs, depending on which inputs are removed by corpus pruning.
They are mostly to avoid wasting time by continuing with low-
yielding inputs, which Syzkaller does not afford on top of the low
throughput of kernel fuzzing.

D List of Keywords for Fix Commit
Identification

As stated in Section 5.3.3, we identified fix commits by matching
relevant keywords to commit comments. Table 5 shows the list of

Bug Type Keywords

use-after-free use.+after.+free, double.+free, uaf
buffer-overflow (stack|buffer|heap|global|slab).+overflow,

(stack|buffer|heap|global|slab|vmalloc).+overrun,
off.+by.+one, out.+of.+bound

deadlock dead(| |-)lock
race-condition (thread|core|cpu)(1|2) with race,

race\W+condition with (fix|prevent|mitigate)
memory-leak memory.+leak, leak.+memory

null-dereference null.+deref, deref.+null
kernel-panic crash, panic

Table 5: List of keywords for fix commit identification per
bug type (in Python regular expression).

keywords used to identify fix commits of corresponding bug types.
Every bug type was matched independently in a case-insensitive
way, except kernel-panic that was only matched if no other
bug types were matched. In case of no matches but when Syzbot
reports were available, we additionally parsed the reports to extract
a reported bug type in the title.

E Number of Pattern-analyzed Root Causes per
Bug Type

Bug Type Number

kernel-panic 19
buffer-overflow 26
null-dereference 30
race-condition 25
use-after-free 24
deadlock 11

memory-leak 10
uninit-value 4

kernel-infoleak 1

(Total) 150*
∗ : including 4 CVEs with two bug types.

Table 6: Number of pattern-analyzed root-cause commits per
bug type.

The change patterns in Table 3 were derived from 38 crashing
CVEs from 2020 and 2021, 65 Syzbot reports in Novemember 2020
and March 2021, and 43 additional root-cause commits in 2020 that
were unmatched with initial pattern sets (Section 6). Table 6 shows
the number of analyzed root-cause commits per bug type. Note that
four CVEs had two bug types, resulting in the total number larger
than all investigated commits by four.
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