
Monarch: A Fuzzing Framework for Distributed File Systems

Tao Lyu Liyi Zhang
∗

Zhiyao Feng Yueyang Pan Yujie Ren

Meng Xu
∗

Mathias Payer Sanidhya Kashyap

EPFL ∗University of Waterloo

Abstract
Distributed file systems (DFSes) are prone to bugs. Although
numerous bug-finding techniques have been applied to DF-
Ses, static analysis does not scale well with the sheer complex-
ity of DFS codebases while dynamic methods (e.g., regression
testing) are limited by the quality of test cases. Although
both can be improved by pouring in manual effort, they are
less practical when facing a diverse set of real-world DFSes.
Fuzzing, on the other hand, has shown great success in local
systems. However, several problems exist if we apply existing
fuzzers to DFSes as they 1) cannot test multiple components
of DFSes holistically; 2) miss the critical testing aspects of
DFSes (e.g., distributed faults); 3) have not yet explored the
practical state representations as fuzzing feedback; and 4)
lack checkers for asserting semantic bugs unique to DFSes.
In this paper, we introduce Monarch, a multi-node

fuzzing framework to test all POSIX-compliant DFSes under
one umbrella. Monarch pioneers push-button fuzzing for
DFSes with a new set of building blocks to the fuzzing tool-
box: 1) A multi-node fuzzing architecture for testing diverse
DFSes from a holistic perspective; 2) A two-step mutator
for testing DFSes with syscalls and faults; 3) Practical execu-
tion state representations with a unified coverage collection
scheme across execution contexts; 4) A new DFS semantic
checker SymSC. We applied Monarch to six DFSes and un-
covered a total of 48 bugs, including a bug whose existence
can be traced back to the initial release of the DFS.

1 Introduction

Distributed file systems (DFSes) are the backbone of mod-
ern computing infrastructure. In particular, various data-
intensive applications, such as AI model training [61] and
high performance computing [1, 56] rely on them for reli-
ably storing data. However, providing reliability for DFSes
is challenging. First, DFSes are often developed in low-level
programming languages (e.g., C/C++), which are susceptible
to memory bugs [59]. Second, the nature of the distributed
environment adds another level of complexity in the form of

concurrency and fault tolerance, often leading to semantic
bugs. All these bugs in DFSes pose significant threats, such
as information leakage [40], remote code execution [53],
privilege escalation [41], and data loss or corruption [58].
Therefore, to improve their reliability and security, finding
and fixing bugs in DFSes becomes critical.
Various bug-finding techniques, such as model check-

ing [36, 66], formal verification [24, 63], and dynamic test-
ing [6, 14], have been applied to DFSes with different levels
of success. However, these techniques suffer from a com-
mon pitfall – their effectiveness strongly correlates with
the amount of manual effort. Formal verification and model
checking, for instance, require significant expertise and time
to construct an abstraction model to avoid state explosions;
while dynamic approaches depend heavily on the quality of
test suites, of which a manual construction would often miss
bug-revealing corner cases.
On the other hand, fuzzing is one of the most popular

testing techniques, especially for its ability of automated
exploration of execution state space and rare false alarms [9].
For instance, several works have found over hundreds of bugs
in file systems [16, 34, 64, 65, 68], indicating the practicality
of fuzzing. However, file systems fuzzers specifically target
local file systems (LFSes), which run on a single node. This
paper focuses on a seemingly yet more challenging question:
how canwe adapt the effectiveness of local file system fuzzing to

the complexity of DFS? While directly applying LFS fuzzers to
DFSes might seem intuitive, such an approach is inadequate
for several reasons.
First, existing fuzzing architectures are limited to feed-

ing inputs to, gathering execution states from, and moni-
toring bug exposure within a single execution context (e.g.,
the kernel space in one node). However, DFSes comprise of
components that run across computing nodes and contexts.
Therefore, DFS fuzzing requires a holistic infrastructure to
set up DFSes and feed inputs to them across multiple nodes,
monitor the status of each node, and assert bugs by aggre-
gated state information. Additionally, we need “practical”
representations of the entire DFS execution state for fuzzing

feedback – ones that are easy to instrument, low-overhead
to capture at runtime, and adequate as a state-space approxi-
mation. Furthermore, LFS fuzzers cannot fully explore the
input space of DFSes. Contrary to the conventional (e.g.,
Syzkaller) notion that the input for LFS fuzzing is a sequence
of syscalls, DFSes are designed to take concurrent syscall
sequences and to tolerate random distributed faults. To effec-
tively explore the state space of DFSes, a systematic mutator
that can generate test cases with both syscalls and faults
is essential. Finally, a DFS fuzzer needs bug checkers that
can handle a variety of inputs (e.g., syscalls and faults) and
subsequently deduce whether the concrete execution is spec-
ification (e.g., POSIX) compliant. With such bug checkers,
the fuzzer can find not only memory errors but also semantic
bugs that are traditionally only uncovered via hand-tuned
model checking.
To address the aforementioned issues, we propose

Monarch: a general fuzzing framework for POSIX-
compliant DFSes. As a highlight, Monarch incorporates
the following key designs:
VM-based multi-node fuzzing architecture [§3.1]
Monarch proposes the VM-based controller-worker model
for multi-node DFSes fuzzing. The controller tests DFS
instances in workers with each worker comprising multiple
VMs dedicated to a single DFS instance, together with the
executor, coverage, and checker agent in each VM.
Test case generation [§3.2] Monarch employs a two-step
mutator for testing syscalls in non-fault mode and both
syscalls and faults in fault modes flexibly.
Execution state representation [§3.3, §3.4] Monarch
adopts distinct and practical execution state representations,
uniformly collected across execution contexts, for the fault
and non-fault testing modes. Accordingly, it utilizes a test
case reduction scheme to improve the fuzzing efficiency.
Bug checker [§3.5] Monarch detects memory bugs and
various types of semantic bugs in DFSes using memory bug
detectors and a home-grown semantic checker SymSC.
We evaluate Monarch on six DFSes and found 48 bugs,

including 26 memory bugs triggered by syscalls, 14 memory
bugs triggered by syscalls and faults and eight semantic bugs.
Summary. This paper makes the following contributions:

• Multi-node fuzzing architecture: To the best of our
knowledge, Monarch is the first multi-node DFS fuzzing
framework, includes all the basic building blocks for
fuzzing various POSIX-compliant DFSes.

• Semantic checker for DFSes: We categorize semantic
bugs in DFSes into different types, further, design a new
semantic checker to uncover all of them.

• Impact:Monarch has found 48 bugs in six popularDFSes,
including 40 memory bugs and eight semantic bugs.

Monarch is publically available at https://github.
com/rs3lab/Monarch.

DFS Role Execute Context Backend FTServer Client
GlusterFS SR U U LFS ✓
BeeGFS MR U K LFS ✓
CephFS MR U U, K Own [2] ✓
OrangeFS SR U U, K LFS ×
NFS SR K K LFS ×
Lustre MR K K LFS ✓

Table 1: Different designs of DFSes from various perspectives. SR:
single-role, MR: multi-role. Servers and clients are running in the
execution context either in user space (U), in kernel space (K) or in
both (U,K). For storage backends, servers can use either unmodified
local file systems (LFS) or their own storage backend (Bluestore).
FT represent the support for fault tolerance in a DFS.

2 Background and Motivation

In this section, we briefly introduce diverse architectures
of popular DFSes, summarize common bug types in DFSes
through a sample of bugs found byMonarch, and highlight
the gaps between existing fuzzers and the ideal DFS fuzzer.

2.1 Architectural Diversity in DFSes

ADFS consists of clients and servers in varied configurations.
Clients send requests to servers in the form of file system-
specific operations, while servers respond to clients and com-
municate with each other to manage data and metadata. We
categorize architectural diversity in DFSes in Table 1.

First, based on the server functionality, we classify a DFS
into (1) single-role (SR) architecture, where a server node
manages both data andmetadata [7, 12, 30]; and (2) multi-role
(MR) architecture, where each server node is only responsi-
ble for either data or metadata, but rarely both [20, 44, 57, 62].
Second, DFS components (e.g., a server or a client) can ex-
ecute in either user context or kernel context or both. For
example, GlusterFS is a userspace file system, while NFS and
Lustre are kernel-based ones. CephFS implements the server
logic in userspace, while providing both in-kernel and FUSE-
based userspace clients [62]. Another category is storage
backend, a DFS either use its own backend [62] or an exist-
ing LFS [10, 25]. Finally, in terms of the fail-safe behaviors,
some DFSes provide fault tolerance, a critical requirement for
avoiding data loss and improving availability. For example,
some DFSes [12, 20, 44, 62] employ replication mechanisms
in case any nodes crash or are partitioned from the cluster.

2.2 Bugs in DFSes

There are two main categories of bugs in DFSes. First, many
DFSes are developed with memory-unsafe languages (e.g.,
C/C++) for performance reasons,making them prone tomem-

ory bugs. Second, similar to LFSes, DFSes expose interfaces
(i.e., syscalls) with specified semantics (e.g., POSIX [29]) to

https://github.com/rs3lab/Monarch
https://github.com/rs3lab/Monarch

users. Incorrect implementation of such interfaces can violate
the defined semantics, leading to semantic bugs. Moreover,
the distributed nature of DFS introduces several complex
logic, such as cross-node state sharing, concurrent access,
and fault tolerance. Thus, triggering and detecting both types
of bugs in DFSes pose non-trivial challenges compared with
those in LFSes. We now detail them with examples below.
Memory bugs. Memory bugs (e.g., buffer overflows, use-
after-free) often lead to severe consequences, such as remote
code execution or denial-of-service [59]. Figure 1 illustrates
a use-after-free bug in a userspace client of GlusterFS that
Monarch finds by crashing or disconnecting one of the
two servers before executing removexattr [50]. Although
LFS fuzzers [16, 34, 65] can find and detect memory bugs
[21, 33, 55], they fail to find this bug because (1) they are

not designed for testing multiple cross-node and userspace file

systems, (2) they lack fault injection mechanisms, like node

crashes or network partitions, to trigger such bugs.

1 mkdir("./A", 0777);
2 setxattr("./A", "user.attr", "val", 3, 0);
3 // A server crashes or partitioned from the client.
4 removexattr("./A", "user.attr");
5 // Client crashes during executing removexattr.

Figure 1: A memory bug triggered by syscalls and a fault.

Semantic bugs. The semantics of a DFS are encoded in its
exposed interfaces which, on POSIX systems, are typically
file system-related syscalls. Each syscall is akin to a contract
between a DFS and a user in terms of how the internal file
system state should transit, i.e., when modeling a DFS as a
state machine, a syscall can transit its internal state from s0
to a set of new states {S}. It is a semantic bug if the DFS
lands on state s1 /∈ {S} after the syscall. We now categorize
such bugs into four types.

(1) Semantic violations on in-memory states (SVM).

Every file system maintains in-memory states for reducing
storage media access latency. POSIX specifies the in-memory
state transition for each syscall [52], which must be com-
pleted before a syscall returns.1 File systems violating the
in-memory specifications lead to bugs, which we refer to
as semantic violations on in-memory states (SVM). Figure 2
shows such a violation found by Monarch [47]. If we ex-
ecute an open with O_DIRECTORY|O_CREAT flag in GlusterFS
backed by LFSes, POSIX states that the behavior of this flag
is unspecified [15], resulting in non-deterministic return val-
ues on LFSes. However, GlusterFS assumes this operation
to be deterministic. This leads to an incorrect GlusterFS
in-memory state, causing two consecutive stat to return
different results.

1 open("./file1", O_CREAT|O_DIRECTORY|..., 0330)
2 stat("./file1", stat_buf) // Success
3 stat("./file1", stat_buf) // ENODATA (No data available)

Figure 2: An SVM bug found byMonarch that two consecutive
stat see different results.

1We do not cover asynchronous calls as they are beyond POSIX scope.

(2) Semantic violations on persistent states (SVP). File
systems persist data by flushing the in-memory states to the
disk either periodically or on user-issued persistence syscalls
(e.g., fsync, fdatasync, sync). POSIX specifies that data and
metadata flushed by persistence syscalls need to stay in a
consistent state after a crash and recovery, also known as
crash consistency. Notably, in the context of DFSes, after
a complete (i.e., all-nodes) or partial crash and recovery, a
POSIX-compliant DFS must be crash-consistent though it
may not be fault-tolerant. Violations of such specifications
are semantic violations on persistent states (SVP) or crash
inconsistency bugs, which lead to dire consequences (e.g.,
data loss), and further result in misbehaviors of applications
running on top of the DFS.
Figure 3 illustrates a violation of the crash consistency

property found by Monarch [48]. In this case, we explic-
itly persist a directory (B) onto disk using fsync right before
crashing all servers. However, B still gets lost after recov-
ery from the crash. This bug originates from a flawed im-
plementation in GlusterFS servers, where servers respond
a success to the client regarding the fsync on a directory
without actually flushing the directory onto the disk. While
tools detecting crash consistency bugs are available for LF-
Ses [34, 43, 67], none of them can be directly applied to DFSes
due to the incapability of controlling and testing cross-node

DFSes.
1 // Create a directory named B under the mounted client.
2 mkdir("A/B", 0777);
3 // Persist the mount directory and B.
4 int parent_fd = open("A/", O_RDONLY|O_NONBLOCK);
5 fsync(parent_fd);
6 int dir_fd = open("A/B", O_RDONLY|O_NONBLOCK);
7 fsync(dir_fd);
8 // Crash servers immediately.

Figure 3: An SVP bug detected byMonarch. The directory is lost
after a crash and recovery, even after flushing using fsync.

(3) Semantic violations under fault states (SVF). LF-
Ses follow the fail-stop model. Hence, any fault in a LFS can
corrupt the file system, sometimes leading to entire system
crashes. However, in DFSes, syscalls either proceed according
to POSIX as if no faults are happening, or return errors, de-
pending on the fault state and certain criteria specific to each
DFS (defined as fault models in §3.5). Thus, the semantics
of syscalls under faults are changed and redefined together
by POSIX and DFS fault models. We call violations to such
semantics as semantic violations under fault states (SVF).
Figure 4 presents an SVF with a GlusterFS instance con-

sisting of 3 replica servers [51]. A directory "A" is created
and its extended attribute is set to "user.key:val". Unfortu-
nately, one of the replica servers srv1 crashes soon after that.
According to the fault model in GlusterFS, a syscall proceeds
conforming to POSIX as long as over 51% of replica servers
are online [13]. Therefore, the subsequent removexattr re-
moves the attribute successfully. However, later,when srv1 is
brought back, GlusterFS does not synchronize it with other
nodes to remove the attribute stored on it. That could leave

a possibility that a getxattr on "A" reads the stale attribute
from srv1, violating the semantics specified by both POSIX
and the fault model. Being unaware of fault models, existing

LFS fuzzer cannot detect such bugs.

1 mkdir("./A", 010);
2 setxattr("./A", "user.key", "val", 3, 0);
3 // Replica server 1 crashed
4 removexattr("./A", "user.key"); // Success
5 // Replica server 1 comes back
6 getxattr("./A", "user.key", value, 3); // Success

Figure 4: A SVF manifests under partial faults.
Additionally, to check syscall semantics under different

fault states, we have to inject faults to transit among fault
states, which motivates us to add faults as an input space.

(4) Semantic violations under concurrent executions

(SVC). DFSes, as shared resources, must support concurrent
operations from multiple clients. Thus, in contrast to the per-
syscall state transitions mentioned above, in concurrent exe-
cution, the file system in-memory and persistent state tran-
sits to the next one through a group of concurrent syscalls.
Unfortunately, POSIX does not specify the behavior of con-
current file system operations. Thus, LFS fuzzers, designed
for sequential testing, fail to detect semantic violations under
concurrent executions (SVC).
Figure 5 is an example of SVC in CephFS reported by

Monarch [49]. The bug manifests itself when two clients ex-
ecute syscalls concurrently, and there is such an interleaving
below. When the metadata server receives a chmod request on
inode A from client 1, it creates a projected inode inode A′,
applies a per-inode exclusive lock authlock to and modifies
permissions on inode A′, queues inode A′ for journaling, and
promptly responds to client 1. Subsequently, both clients
send stat requests simultaneously. As client 1 retains the
lock, it can access inode A′ with updated metadata. However,
client 2 retrieves outdated metadata of inode A after fail-
ing to get the authlock instead of waiting for the authlock.
Thus, two clients see inconsistent metadata of file A at the
same time.
1 // client 1 // client 2
2 open("A", O_CREAT|..., 012); open("A", O_RDWR|..., 000);
3 chmod("A", 000);
4 stat("A"); stat("A");
5 // mode: 32768 // mode: 32776

Figure 5: A SVC found by Monarch in CephFS. Two stats read
out different file modes after concurrent executions.

CephFS complies with the strong consistency guarantee in
POSIX specification [5]. Hence, two clients should retrieve
the same file states in the above case. In other words, the
latest state of "A" updated by chmod should be returned to
Client 2 when executing stat. Because stat in Client 2 is is-
sued after chmod. The maintainer has confirmed this bug, and
its patch is under internal review [49]. This inconsistency
among clients can lead to confusion and incorrect workflows
in applications. Similarly, existing tools cannot uncover this
bug, because they are unable to check the semantics of concur-

rent syscalls.

2.3 Fuzzing for DFS: The Missing Pieces

Fuzzing, or fuzz testing, is a dynamic program analysis ap-
proach that has gained traction in finding bugs in large and
complex real-world software. Generally, a fuzzer continu-
ously mutates existing test cases (i.e., seeds), which consist of
inputs to the testing program (e.g., syscalls for file systems),
using predefined rules to generate new test cases. Further,
new test cases are fed to the testing programs (e.g., LFSes)
for executions, during or after which, checkers assert bugs
according to the runtime information. Intuitively, with an
unknown distribution of bugs, the more execution states
explored, the more likely a fuzzer can find a bug. Coverage-
guided fuzzers typically adopt an evolutionary process,which
saves test cases hitting new execution states as seeds for
further mutations on them. Specifically, execution state
representations are expressed as the branch coverage from
single-node and single-context testing programs. Further-
more, to improve mutation and execution efficiency, seeds
are reduced into disjoint and independent pieces, such as
syscall sequences that do not impact the executions of each
other, yet collectively produce the same execution states.
Existing fuzzers are specifically designed for userspace

program [17], kernel and LFSes [16, 34, 64, 65], and network
protocols [8, 45, 54]. Although DFS fuzzing shares the same
workflow described above with them, most building blocks
still need a complete re-design, as detailed below.
Missing piece 1: Multi-node fuzzing architecture. LFS
fuzzers target file systems on a single node. They fail to
set up a DFS and control its concurrent executions across
multiple nodes, as well as monitor the status of nodes for as-
serting bugs. Therefore, it necessitates a multi-node fuzzing
architecture to test all DFS components in a holistic view.
Missing piece 2: Distributed faults as a fuzzing input
space. As the SVM example in Figure 1 and SVF examples
in Figure 4 illustrate, distributed faults, 1) can trigger in-
correct memory bugs in the fault-handling code, 2) enforce
exploring different fault states for exposing semantic bugs.
Unfortunately, none of the existing fuzzers have systemati-
cally explored how to mutate faults and syscalls together.
Missing piece 3: Sufficient and low-overhead represen-
tation of DFS execution states. Programs (e.g., LFSes) that
existing fuzzers target are executed entirely in a single ad-
dress space (i.e., one process in userspace [34, 65] or the
kernel space [16]). Their execution states can be represented
by the entire branch coverage in their own address space.
However, DFSes have multiple cross-node components and
coverage instrumentation on each component brings over-
head. Therefore, a research question comes into the picture:
What would be the “practical” representations of cross-node

and cross-context execution states? Essentially, we need rep-
resentations that are low in runtime overhead and sufficient
for approximating the execution state space. Additionally,
DFS components run either in the user or kernel context. A

DFS fuzzer needs to track code coverage uniformly across
both contexts if multi-component coverages are required.
Missing piece 4: Semantic checker for DFSes. Dis-
tributed faults and concurrent executions across clients bring
semantic bugs unique to DFSes, such as the SVF in Figure 4
and SVC in Figure 5. Detecting these types of bugs requires
a new semantic checker, as none currently exists.

3 Design

We propose Monarch, a fuzzing framework for POSIX-
compliant DFSes, to replicate the success of LFS fuzzing in
a distributed setting. We now discuss how we fill the afore-
mentioned gaps with Monarch for fuzzing DFSes.

3.1 Monarch Architecture
Monarch adopts a VM-based multi-node fuzzing architec-

ture to cover various DFS architectures (refer to Table 1).
Monarch uses VMs rather than containers or library OSes,
as they are incompatible with DFSes. For instance, some DF-
Ses consist of both kernel and userspace modules, which
rules out container-based nodes. Moreover, most DFSes are
multi-processes, as they use a set of daemons to interact
with other nodes [12, 62]; while the current multi-processing
support in library OSes are not mature enough.
Figure 6 illustrates the architecture ofMonarch, which

is based on the controller-workers model. The controller
is a centralized component consisting of (1) a mutator for
generating test cases and distributing them to workers; (2) a
tracker that receives and merges code coverage from work-
ers and performs test case reduction; and (3) a checker that
applies the distributed bug-checking logic, which asserts bugs
by analyzing the collected per-node states from each checker
agent. Each worker sets up a complete DFS instance that
spans across multiple nodes for executions. Each node con-
tains one DFS component (e.g., either a server or a client), an
executor for executing syscalls and launching faults included
in test cases, a coverage agent (coverager) for collecting code
coverage on this node, and a checker agent for monitoring
and extracting node-specific DFS states, such as metadata
associated with the DFS, syscall execution timestamps, or
any process crashes. Notably, executors (1) set up servers
and mount the DFS for clients with predefined configuration
scripts, (2) extract a node-specific slice from the multi-node
test case received by workers, (3) run the tasks dictated in the
test case slice (e.g., faults on servers or syscalls on clients),
and (4) synchronize the execution and tear down nodes.

3.2 Mutating Inputs in a DFS
We segregate inputs to a DFS that impact its states into two
types. The first type is the explicit state modification by
either issuing syscalls or remounting a disk with altered

Figure 6:Monarch architecture. When starting a fuzzing instance,
user has the option to provide test cases for initializing the Corpus
(1). The Mutator (2) mutates a seed selected from the corpus or
generate test cases according to pre-defined syscall dependency
if the corpus is empty. The mutated or generated test cases are
distributed to Executors (3) for testing. During the execution, Cov-
erage (4) collects coverage and finally set back to the Tracker (6)
for selecting seeds. Moreover, Checker Agents (5) forward DFSes
states or crashes to the Checker (7) for reporting bugs to users.

states. Although both have been adopted as testing inputs
in LFS fuzzers [34, 65], syscalls are more critical in DFS be-
cause most DFSes (except CephFS) rely on LFS layer as a
storage backend, which directly interacts with the disk and
has already handled any on-disk states. Thus,Monarch only
uses syscalls. The second is the one that implicitlymodifies
DFS states, such as crashes and network partitions. Over-
all, Monarch broadens the fuzzing scope to include both
explicit (i.e., syscalls) and implicit inputs (i.e., faults).
Monarch generates a test case consisting of sequences of

calls, with each sequence designated for one node. In partic-
ular, each test case includes a set of: 1) file operation syscalls
and 2) pseudo syscalls for fault injection (Table 2). Figure 7
shows a sample test case. Moreover, Monarch combines
both inputs with a two-step mutator, which works as follows:
it first prioritizes syscall mutations and then (optionally) fault
mutations. This approach leads to two fuzzing modes: a non-
fault mode that tests a DFS with syscall mutation only, and
the fault mode that uses both input types.

3.2.1 Syscall mutation

File system syscalls, as user interfaces to DFSes, modify the
DFS in-memory and persistent state of a file with valid argu-
ments. Moreover, syscalls have correlation and data depen-
dencies. For example, syscall write(fd, ...) depends on
the returned file descriptor fd of open("A", ...), mean-
while syscalls open("A", ...) and chmod("A", 0) are
correlated because they operate on the same file and affect
the execution of each other when executing concurrently.

Similar to existing approaches [22],Monarch also adopts
a predefined syscall templates for generating valid syscall
sequences. As a result, templates ensure that the generated
syscall sequence adhere to the dependency and argument
constraints of syscalls specified in the template. Furthermore,
if a test case T discovers new execution states, Monarch

Pseudo syscalls Description

fault_start_barrier_c A client notifies a server for starting
or recovering from a fault. They return
when the server has already started or
recovered from a fault.

fault_stop_barrier_c

fault_start_barrier_s A server starts or recovers from a fault,
either a network partition or node crash,
when notified by all clients.

fault_stop_barrier_s

Table 2: The list of proposed pseudo syscalls inMonarch.
performs one of the following mutations on each syscall
sequence Ti of T : (1) insert a new syscall or remove a syscall
from Ti; (2) mutate arguments of a syscall in Ti; (3) select
another slice Tj from the corpus and splice its partial call
sequence T ′j at a random point of Ti.

Unlike LFSes, concurrent interaction with multiple clients
is common in DFSes, which emphasizes the importance of
generating concurrent syscalls from clients. Rather than con-
structing concurrent test cases from a fine-grained perspec-
tive (e.g., memory accesses) done by prior works [31, 64], we
choose a coarse-grained approach from the semantic per-
spective, which is simple and faster for test case generation.
It utilizes the syscall correlation in DFSes to generate concur-
rent syscalls. As a result,Monarch retains the above genera-
tion and mutation strategies while improving the possibility
that concurrent syscalls share the same file arguments.

3.2.2 Fault mutation

Testing the fault tolerance logic is critical to ensure the ro-
bustness of a DFS. As mentioned before (§2.2), the fault-
tolerance logic is prone to both memory bugs (Figure 1) and
semantic bugs (SVF in Figure 4). However, merely using the
syscall mutation strategy is insufficient to stress the fault
tolerance code. Hence, we design fault injection capability
to alter and explore fault states. We now specify the types of
injected faults and their granularity, and the algorithm.
Fault types. Both memory (Figure 1) and semantic bug
(Figure 4) show that node crashes and network partitions are
the two primary fault types contributing to bug-finding in
DFSes. Our insight aligns with the distributed system bug
characteristics [37]. Thus, Monarch only focuses on net-

work partitions and node crashes as the fault injection types.
Network partition refers to the disconnection between dis-
tributed nodes. It can either be a complete partition that
divides nodes into completely disconnected groups, or a par-
tial one, which separates nodes into indirectly connected
groups. We introduce network partitions between servers
and clients and among servers themselves. However, we
do not introduce them among clients because they do not
communicate. For node crashes, we only crash server nodes,
which can have a significant impact on other nodes as they
interact with each other to provide services to client nodes.
Fault granularity. Faults can occur at any point during
the life cycle of a DFS. Thus, an ideal fault injection strategy

Figure 7: A test case ofMonarch consists of several sequences
of calls, including file operation syscalls and pseudo syscalls (for
fault injections) shown in Table 2. Each call sequence is distributed
to one node for execution. On clients, the call sequence includes
POSIX file operation syscalls and pseudo syscalls. On servers, it
only comprises pseudo syscalls as file operation syscalls are only
executed at clients. For example, fault_start_barrier_s initiates
faults, once it receives notifications from fault_start_barrier_c,
and ensures that faults are launched before fault_start_barrier_c
returns. Likewise, the fault_stop_barrier_s recover DFSes from
faults when it receives notifications from fault_stop_barrier_c.

would be to simulate faults at the network packet boundary,
i.e., disconnect a node before and after sending/receiving a
packet. However, it introduces a huge search space to inject
faults and a much higher performance overhead as the ex-
ecutor needs to pause on every network packet to decide
whether to fault. An alternative approach which Monarch
adopts, is to fault at the boundary of syscalls, i.e., we execute
a syscall entirely inside or outside faults but not partially.
Enabling fault injection at the syscall boundary requires

synchronizing faults with syscall execution. We achieve
this by introducing pseudo-syscalls that act as a barrier
before and after faults for clients and servers (see Table 2).
Figure 7 shows a sample test case, in which two pseudo calls
(fault_start_barrier_c and fault_stop_barrier_c)
at the client synchronize with another two calls
(fault_start_barrier_s, fault_stop_barrier_s) at
servers to start and recover from faults. Finally, considering
the high time cost of launching and recovering from faults,
we limit at most one fault in each server for each test case.
Fault mutation strategy. Similar to the syscall mutation
in §3.2.1, fault mutation is based on the feedback-driven test
case generation principle for fault-state exploration. This
method requires less manual effort compared to existing
works [3, 11, 23, 38, 39, 60], which typically inject faults at
limited points defined by users or heuristics, such as before
or after accessing critical variables. Specifically, we 1) inject
faults to a test case solely including syscalls, and 2) mutate
the fault positions in a test case to generate new test cases if it
hits new execution states during execution. We now present
our simple yet effective algorithm detailing both scenarios.
For test cases without any injected faults, we first ran-

domly choose a set of servers, and inject a fault into each
syscall slice executed on these servers. Figure 7 shows the
created slice for injecting faults (fault_start_barrier_s

and fault_stop_barrier_s) in srv1 and srv2. Later, we
iterate over each syscall for every client to synchronize it
with the injected fault, thereby generating a set of new test
cases. This corresponds to adding fault_start_barrier_c
and fault_stop_barrier_c in the slice executing on client1.
Having only one syscall within the fault period is insufficient
to trigger bugs. We overcome this limitation by including
a random number of syscalls within the fault period that
gets synchronized using the client-specific pseudo syscalls.
If a test case yields new code coverage with injected faults,
it indicates either the faults themselves trigger uncovered
fault tolerance or recovery logic (representing a new fault
state), or the syscalls executed during the faults experience
new execution states. Therefore, we synchronize these faults
with other syscalls in the test case to probe new execution
states. This would be the process of adjusting the position
of pseudo syscalls in the slices executing on the client.

3.3 DFS Execution State Representation

Similar to existing fuzzers,Monarch adopts branch cover-
age as the unit of execution state representation. As raised
in §2.3, a key question is to find a practical representation
of DFS execution states. Given that bugs are scattered in
any component of a DFS, an ideal way is to represent the
execution state with coverages of all components. This can
capture any coverage changes, thereby maximizing the like-
lihood of bug detection. However, it might not always be
the most practical approach in practice. After experiment-
ing with three different execution state representations by
comparing their achieved coverage (see §5.2 for results), we
summarize two findings and utilized them for deciding the
representations in Monarch.

Finding 1: In non-fault mode, the collection of client cov-

erage is a sufficient approximation to represent the execution

states of a DFS. The intuitions behind this are three-fold: 1)
Code pieces for server and client components might have a
one-to-one mapping (i.e., a code execution E1 in the client
corresponds to an execution E2 in the server and vice versa).
2) The client might be dominant in DFSes even for DFSes that
are considered client-light (i.e., the client only wraps syscalls
and bridges the request to servers). For example, the NFS
client has a nearly 2x code size than its server counterpart. 3)
Servers and clients might share some codebases (e.g., Remote
Procedure Call (RPC) libraries). These shared code can be
considered as “explored” from a fuzzing perspective if they
are executed from either side. For Monarch, one branch in
the code is always represented with a fixed ID in any en-
vironment. Thus, client coverage can always represent the
coverage of shared code even if there is no server coverage.

Finding 2: In fault mode, it is necessary to collect coverage

from both servers and clients to represent the DFS execution

states. That is simply because the fault tolerance modules
mostly run on servers that client coverage cannot represent.

Granularity of branch coverage collection. Test cases
hitting new execution states (new branch coverage) are saved
as seeds for future mutations, such as adding new syscalls.
However, this can result in extremely large test cases, which,
however, are of little practical value especially for 1) mu-
tation efficacy, 2) execution efficiency and 3) debug-ability,
which are detailed in §3.4. As a result, most LFS fuzzers (e.g.,
Syzkaller) track not only aggregated coverage of the entire
test case, but also per-syscall coverage to enable dynamic
test case reduction (detailed in §3.4).
Tracking per-syscall coverage is simpler in LFSes, where

a single kernel thread handles each syscall, except in cases
where background kernel threads are involved. In contrast,
in most DFSes, each syscall involves a client thread andmulti-
ple server threads. Thus, tracking per-syscall coverage on the
client side is still achievable. However, it becomes challenging
on servers, as servers handle RPC requests and are typically
not aware of syscalls that issue these RPC requests. Addition-
ally, RPCs requested from clients might subsequently trigger
new RPCs among servers, complicating the tracking. While it
is feasible to instrument both clients and servers heavily for
linking these RPC requests, it results in extra overhead and
further reduces fuzzing efficiency. Thus, Monarch tracks
aggregated coverage per each test case at servers.
To summarize, Monarch tracks per-syscall coverage at

clients, while per the entire test case coverage at servers.
Unified coverage collection. As summarized in §2.1, DF-
Ses consist of cross-context components such as in-kernel
client and userspace server in CephFS. While Kcov [32] can
track code coverage for in-kernel components (both per
syscall and per test case), there is no such coverage collection
scheme for userspace components. Therefore, we propose
Ucov, for collecting both per syscall and per test case cover-
age in userspace DFS components.

(1) Ucov for DFS clients. Generally, DFSes design their
userspace clients using FUSE—a kernel module under the Vir-
tual File System (VFS) layer that forwards file system syscalls
to a userspace client via device /dev/fuse and later receives
the execution result through that device as well. We observe
that the data structure fuse_in_header used between FUSE
and the userspace program has an ID representing the thread
issuing the syscall. This allows Ucov to collect per-syscall
coverage at userspace clients by tracking this ID.

(2) Ucov for DFS servers. For DFS servers executing in
userspace, Ucov builds a memory pool for DFS threads to re-
trieve and release coverage recording memory dynamically.
To make a newly spawned thread aware of the coverage
tracking memory, we instrument a thread-local pointer rep-
resenting the coverage recording memory, which is default
to null in every threads. When appending basic block IDs to
the memory, the instrumentation code retrieves a new chunk
of memory from the pool if the pointer is null. When the
thread exits, the retrieved memory is released by a callback

previously set using pthread_key_create().

3.4 Dynamic Test Case Reduction
Both fuzzers and developers (when triaging bugs) prefer
“small” (less syscalls) test cases. This is beneficial for: (1)
Debug-ability: triaging a bug in hundreds of syscalls is like
finding a needle in a haystack. (2) Mutation efficacy: a longer
syscall sequence implies more mutation points (e.g., all argu-
ments in the syscalls); however, not all mutations are valu-
able, which lowers mutation efficacy. (3) Execution efficiency:
longer syscall sequences imply not only more execution time
on the syscalls themselves, but also more time spent on cov-
erage tracking, merging, and bug checking. This problem is
more severe in DFSes compared to LFSes, due to their higher
syscall execution latency. To alleviate the above concerns, it
is critical to reduce a test case to a disjoint set of minimally

dependent units before putting them into the seed pool.
The abstract model for test case reduction inMonarch is

{test ′1, ..., test ′N}← reduce(test,cov)

where it reduces a test case test into multiple minimal units
test ′∗. Syscalls in a minimal unit dependently contribute to
the discovery of a piece of new coverage, with the help of
tracked code coverage cov (see §3.3 for details).
To illustrate this test case reduction model, take a DFS

instance with one client and one server under the fault mode
as an example. Suppose a test case T uncovers new code
coverage. The client slice of T is a sequence of three syscalls
[open, read, fsetxattr], which, when executed, triggers per
syscall coverage [covopen, covread , covxatrr] at the client-side.
and whole-test coverage covsrv at the server-side. Each cov∗
is a set of IDs representing branches in the DFS codebase.
Furthermore, Monarch notices new coverage when execut-
ing the read and fsetxattr syscall, and denotes the new
coverage as cov∗read (⊆ covread) and cov∗xattr (⊆ covxattr), re-
spectively, as well as new coverage on the server side for
the entire test case denoted as cov∗srv. Had per-syscall cov-
erage not implemented in Monarch, the per-test case new
coverage would be cov∗ = cov∗read ∪ cov∗xattr ∪ cov∗srv.

Obviously, removing openwill likely lead to the disappear-
ance of new coverage, as read and fsetxattr depend on the
fd retunred by open. Thus, for simplicity, we only showcase
two possible reduced test cases, T1:[open, read] and T2:[open,
fsetxattr]. The branch coverage when executing T1 and T2

will be tracked by Monarch and are denoted as covT1∗ and
covT2∗ respectively. And we further use C1 and C2 to denote
two interesting cases:

• C1 = covT1
read ⊇ cov∗read ∧ covT1

srv ⊇ cov∗srv

• C2 = covT2
xattr ⊇ cov∗xattr ∧ covT2

srv ⊇ cov∗srv

• If C1∧C2, T will be reduced to [T1, T2].
• If C1∧¬C2, T will be reduced to [T1, T].
• If ¬C1∧C2, T will be reduced to [T2, T].

Syscalls In-memory state On-disk Fault Collected
state state State

Init state i0.dents = [.] i0.dents = [.]

mkdir A i0.dents = [.] i0.dents = [.]
i1.dents = [., A]

setxattr A i0.dents = [.] i0.dents = [.]
user.key:val i1.dents = [., A]

i0.xattr =
[user.key:val]

fault_start i0.dents = [.] i0.dents = [.] [srv1]
srv1 crashes i1.dents = [., A]

i0.xattr =
[user.key:val]

removexattr A i0.dents = [.] i0.dents = [.] [srv1]
user.key i1.dents = [., A]

i0.xattr = []

fault_stop i0.dents = [.] i0.dents = [.]
srv1 recovers i1.dents = [., A]

i0.xattr = []

getxattr i0.dents = [.] i0.dents = [.] i0.xattr =
user.key i1.dents = [., A] [user.key:val]

i0.xattr = []

Final state i0.dents = [.] i0.dents = [.] i0.dents = [.]
i1.dents = [., A] i1.dents = [., A]
i0.xattr = [] i0.xattr =

[user.key:val]

Table 3: The symbolic emulation procedure of the SVF in Figure 4.
Here, empty fault states indicate no node faults, and empty collected
states imply no data or metadata reading. We omit basic attributes
and file data in this example. fault_start and fault_stop are
fault_start_barrier_c and fault_stop_barrier_c.

In other cases, read and fsetxattr syscalls might somehow
interfere on the DFS and hence T cannot be reduced.

3.5 Memory and Semantic Checker

In this subsection, we apply the distributed bug-checking
logic introduced in §3.1 to the memory and semantic checker.
Memory checker. Checker reports bugs to users once it
receives a crash notification from any CheckerAgents which
monitor process crashes on each node as the bug oracle. For
instance, dynamic memory bug detectors like ASan [55] and
KASan [33] will crash processes or kernels when memory
bugs are found with a detailed report on the memory error.
Semantic checker. We propose a semantic checker—
SymSC—that symbolically emulates syscalls to detect four
kinds of semantic bugs. SymSC compares its generated sym-
bolic states with the collected runtime states for each test
case to report semantic bugs. SymSC maintains the symbolic
representation of DFS states, including in-memory states,
persistent states, and fault states. The in-memory and persis-
tent states represent files and directories in a DFS instance
through inodes with their basic inode attributes (e.g., mode),
extended attributes, file data, and directory entries, whereas
fault states track node crashes and network partitions.

Table 3 presents the symbolic execution of the SVF shown
in Figure 4. Initially, there is only a root directory in the in-
memory and on-disk state. Then, SymSC updates these states

by symbolically executing the syscall on the current state
according to POSIX and the semantics of pseudo syscalls.
For example, mkdir and setxattr update the in-memory
state by adding an inode i1 and setting an extended attribute
“user.key:val” on it. Then, the fault state for srv1 is up-
dated when it is down and recovered by fault_start and
fault_stop. SymSC asserts bugs once there is an inconsis-
tency between the symbolic states and the runtime states
collected by CheckerAgents. The runtime states include (1)
data/metadata returned by syscalls (e.g., getxattr returns
“user.key:val”) and (2) data/metadata of every file and
directory, within the file system instance, extracted after an
execution. The final emulated state, indicated by the last
row and second column, reveals that the extended attribute
“user.key:val” should not exist. However, it is still acces-
sible in the collected runtime state (last column), prompting
SymSC to identify this as a bug.
However, the aforementioned state transition still falls

short in DFSes due to three main issues. We enhance the
state transition to address these issues step by step below.

Issue 1: DFSes might not comply to POSIX spec

strictly. For instance, POSIX mandates strong consistency,
ensuring every read accesses the latest writes, whereas NFS
employs close-to-open consistency, only guaranteeing that
a client can read the data written by another one after the
file is closed on that client.

Solution 1: SymSC is adjusted according to the customiza-

tion over POSIX specifications. For example, to address the cus-
tomized consistency model (i.e., close-to-open consistency)
in NFS, SymSC maintains multiple versions of file data and
metadata. It asserts semantic correctness by checking if the
retrieved runtime data or metadata is one of the versions
between open and close. Additionally, when a GlusterFS
client creates a file A, servers create A′ with the same name
on their underlying LFS in specific configurations. Moreover,
the metadata of A is stored as extended attributes of A′. Users
can retrieve these server-set attributes on A′ by executing
getxattr on A, violating POSIX specification as users do
not set these attributes and therefore should not be able to re-
trieve them. Obviously, developers know it and customize the
behavior of getxattr. To integrate this customization, we
filter out server-set attributes from runtime states in SymSC
when comparing emulated and runtime states.

Issue 2: POSIX spec does not consider fault scenarios.

Unlike LFSes, the (in-memory and on-disk) state transition
in file system given a syscall is not deterministic in DFSes.
As the example shows in Figure 4 in §2, syscalls can operate
normally if the fault state of DFS cluster satisfies certain
criteria (named fault model).

Solution 2: Extending POSIX spec with DFS fault models

Given a fault state and a syscall C on client Ni, if the DFS

is available for C at Ni according to the fault model, we apply

the POSIX semantics on C, otherwise, C returns an error.

We summarize fault models from DFSes and encode them

into SymSC. The exacted fault models can be generalized into
data/metadata distribution and availability mechanism. The
former decides involved nodes when issuing a syscall, while
the latter tells if syscalls can operate normally based on the
states of involved nodes. Generally, DFSes adopt consistent-
hashing-alike algorithms to distribute data/metadata, and
quorum mechanism as availability conditions.

Issue 3: POSIX spec does not specify concurrency be-

haviors.When syscalls are issued frommultiple processes or
client nodes concurrently, their execution periods are either
disjoint or overlapping. Disjoint syscalls are sequentially
orderable based on their invocation and return timestamps,
indicating a specific execution sequence. Conversely, overlap-
ping syscalls are not, because their overlapping timestamps
prevent inferring the actual execution order of inside DFSes.
Overall, concurrent syscalls are partially ordered.

2 Taking the
example below, assume two concurrent append operations
on the same file, "OP1" and "OP2", are issued by two clients,
writing data "AA" and "BB" (2 bytes) respectively, in a DFS
with an atomic write size of 1 byte. If "OP1" returns before
"OP2" is invoked, they are disjoint syscalls. Thus, they are or-
dered, and the file data is "AABB". On the contrary, if "OP2"
is invoked after "OP1" is invoked but before its return, there
is no clearly defined order between them according to the
timestamps. Therefore, they can interleave at the granular-
ity of atomic operations and produce six possible file data
as follows: "AABB", "ABAB", "ABBA", "BBAA", "BABA", or
"BAAB". For example, CephFS allows the write atomicity at
4 MB granularity [5]. Notably, some syscalls themselves are
atomic operations, such as chmod.

Solution 3: Extending POSIX with atomicity guarantees.

For overlapping syscalls, any interleavings among their

atomic operations are allowed.

To construct the partial order relation among syscalls,
CheckerAgents record the timestamp from a clock that is
synchronized to all distributed nodes, before and after the
execution of each syscall, respectively. Thanks to our VM-
backed design running on one physical machine, we get a
monotonically increasing global clock across all the VMs
using the physical timestamp counter. Moreover, we extract
the atomic operations from POSIX and DFS documentation
and encode them within SymSC.

SymSC explores all possible interleavings among the
atomic operations associated with overlapping syscalls. The
exploration process ends when either SymSC finds an in-
terleaving that aligns with the observed runtime state, or it
fails to find one, which results in a semantic bug. We fur-
ther prune the interleaving space with dynamic partial order
reduction (DPOR) [18]. DPOR reduces redundant states by
defining a set of independent events, whose order does not
affect the execution result. In our case, syscalls are defined
as events. We define concurrent syscalls to be independent

2For a given set of events, if any two events can be ordered, they are
totally ordered. Otherwise, they are partially ordered.

Component LoC Language

Compilation & DFS configuration
DFS compiler wrapper 205 C++
DFS configuration scripts 755 bash

Monarch Framework
Fuzzer 5,213 Golang
Executor 600 C++
Coverage collection in userspace (Ucov) 683 C++
Checker & Checker agent 1,594 C++/python

Table 4: Implementation complexity ofMonarch.

based on the following conditions: 1) syscalls on distinct
files; 2) only data/metadata reads on files / directories; and
3) non-conflicting reads and writes on files / directories.

4 Implementation

We implementMonarch based on Syzkaller [16] to reuse its
features like Kcov [32] and syscall mutations. Further, we use
QEMU ivshmem, an inter-VM shared memory device for com-
munication among VM-backed nodes, such as distributing
test cases, collecting coverage, and synchronizations. The
complexity of each component is shown in Table 4. The
remaining components are illustrated below.
Code coverage collection. Coverage tracking logic is
instrumented via the -fsanitize-address flag in GCC.
Monarch only instruments the source code of DFSes and
not other code involved (e.g., ext4). Coverage for kernel com-
ponents is tracked via Kcov [32] while our home-grown Ucov

is used to track coverage in userspace components.
Faults. Fault injections are implemented as pseudo syscalls
within Syzkaller, which are just normal user space functions
but can be integrated into syscall sequences. Specifically,
the node crashes are implemented via sysrq, while network
partitions are realized through iptables.
Synchronization primitives. Multiple bits in the ivshmem
are reserved to represent the states of injected faults, allowing
Monarch to implement pseudo syscalls as listed in Table 2.
Checker. We employ ASan [55] and KAsan [33] for mem-
ory bugs. And we implement SymSC based on SymC3 [34].
To achieve reading the physical TimeStamp Counter (TSC)
from VM guests, we disable VM-exits when executing rdtsc
instructions and set the TSC offset as zero, which hardware
adds to the physical TSC and further returns to the guests.

5 Evaluation

We evaluateMonarch on six DFSes with the goal of answer-
ing the following questions.
Q1. How effective is Monarch in finding bugs? (§5.1)
Q2. What are the practical execution state representations

in DFSes? (§5.2)
Q3. How are the fuzzing speed and semantic checker perfor-

mance? Does reduction improve performance? (§5.3)

DFS Memory Bugs Semantic Bugs

SVM SVP SVF SVC

#C/#D #FC #C/#D #E #C/#D #E #C/#D #E

Lustre 4 / 8 0 0 / 0 0 0 / 0 0 0 / 0 0
GlusterFS 3 / 17 12 1 / 1 2 1 / 1 1 3 / 3 2
OrangeFS 0 / 3 2 0 / 0 0 0 / 0 0 0 / 0 0
BeeGFS 0 / 0 0 0 / 0 0 2 / 2 0 0 / 0 0
CephFS 3 / 4 0 0 / 0 0 0 / 0 0 1 / 1 0
NFS 1 / 8 0 0 / 0 0 0 / 0 0 0 / 0 0

Total 11 / 40 14 1 / 1 2 3 / 3 1 4 / 4 2

C: Confirmed new bugs D: Detected new bugs
FC: New bugs triggered by Faults and Calls E: Existing bugs

Table 5: Monarch found 48 new bugs and 5 existing bugs in
the above six DFSes in every bug category.

Experiment setup. We evaluateMonarch on two 64-core
machines with AMD EPYC 9554 Processor and 755GB mem-
ory. The fuzzing targets consist of six popular DFSes listed
in Table 5. For the evaluations, Monarch deploys VMs of
each fuzzing instance on the same physical machine, and
initializes the corpora as empty when starting fuzzing.

5.1 Bug-Finding Result

New bugs found. After running on six DFSes intermit-
tently for two months,Monarch discovered bugs in every
single DFS and 48 bugs in total as shown in all columns
#D of Table 5, including 40 memory bugs and eight seman-
tic bugs. Additionally,Monarch did not produce any false
positives during our evaluation. DFS developers have con-
firmed 19 out of 48 bugs. The remaining 29 memory bugs are
still under confirmation as developers require deterministic
reproducing steps for acknowledgments. WhileMonarch
frequently triggers these bugs, their complex concurrency
inside DFSes demands significant manual effort to deduce
deterministic reproduction steps. Although not confirmed,
these are real bugs because ASAN [55] and KASAN do not
produce false positives. Interestingly, although some bugs
appear deceptively simple on the surface, they have existed
for a long time. For example, a SVP (crash consistency bug)
in GlusterFS has existed since its initial release. The results
show that Monarch is effective in finding bugs in popu-
lar POSIX-compliant DFSes even if they have already been
tested using rigorous regression testing and comprehensive
unit testing.
Bug characteristics. We now summarize the characteris-
tics of new bugs, found by Monarch, below:

• Faults play a critical role in triggering these bugs. 14 out
of 40 memory bugs require both faults and syscalls as
trigger conditions. Moreover, we find three SVP (crash
consistency bugs), one in GlusterFS, and two in BeeGFS,
which also involve node crash faults. Similarly, in the
existing bugs (illustrated later), the fault, e.g., crashing
partial nodes in GlusterFS, can lead to one SVF (colum
SVF #E in Table 5).

• Vulnerable codes are scattered in both server and client

components. For example, nine memory crashes exposed
in DFS servers, while the remaining occur in clients.
Moreover, all semantic bugs originate from the vulner-
able server code. This characteristic underscores the
importance of testing each DFS component and the
need for distributed bug-checking logic that can detect
bugs across all nodes comprehensively.

• Exposures of new bugs might depend on the DFS config-

uration. The configuration includes file system modes
(e.g., distributed, replicated modes in GlusterFS [12]),
the number of servers and clients. For example, themem-
ory bug we show in Figure 1 requires a GlusterFS in-
stance configured with distributed mode and two server
nodes. Additionally, it requires a fault injected into a
specific instead of a random node. Moreover, the seman-
tic bug illustrated in Figure 5 has to be exposed by the
concurrent execution from two clients rather than one
client.

• Bugs in DFSes can lead to various consequences. The new
bugs Monarch found can potentially lead to data loss,
denial-of-service, potential file system information leak-
age, and privilege escalation.

Evaluation of SymSC on existing bugs. After reviewing
5,900 bug reports and 6,100 git commits filtered by keywords
across six DFSes, we confidently identified 20 semantic bugs;
however, this does not suggest that only 20 bugs exist among
the 5,900 reports. Unlike memory bugs, identifiable through
indications of a memory crash, others lack detailed descrip-
tions, preventing classification. Further, only five out of them
can be reproduced manually as most of them miss detailed
reproducible steps. We show the reproduced five bugs in all
columns #E in Table 5 and detail them in Table 6. Monarch
can reproduce all of them by applying SymSC, which further
indicates the effectiveness ofMonarch.
Comparison with the state-of-the-art LFS fuzzers. Hy-
dra [34] and Syzkaller [16] are two state-of-the-art LFS
fuzzers. Hydra uses a library OS that gets linked with a
fuzzing target. Thus, it cannot test DFSes because most DF-
Ses have multiples of user space processes even for one client.
Meanwhile, Syzkaller only supports fuzzing NFS. Unfortu-
nately, it could not detect any bugs reported byMonarch.
Further, if we enable our multi-node fuzzing architecture
but not Ucov on Syzkaller (named Monarch-Basic), it can
fuzz DFSes that have in-kernel modules (i.e., NFS, CephFS, and
Lustre). It could only find 20 memory bugs. We categorize
the remaining bugs that Monarch-Basic cannot find into
the following groups: (1) Fault as an input space: 17 memory
and semantic bugs involve faults. However,Monarch-Basic
is incapable of injecting faults into DFSes, and thus misses
them. (2) Cross-node and cross-context coverage: 21 memory
bugs occur in the user-space components of DFSes, which
Monarch-Basic cannot detect as it can only test kernel com-
ponents. (3) Semantic checkers: Monarch reports eight se-

Type Description

SVC In a GlusterFS cluster, after client 1 opens an existing file "A"
successfully and get a returned fd1. The open is cached locally
and not sent to the server. Afterward, client 2 deletes "A" with
unlink. Since the open is not sent to servers, servers are aware
of the file references and thus delete it from the DFS. Finally, a
fstat with fd1 on "A" from client 1 results in an ENOENT or
ESTALE error. However, according to POSIX specifications, op-
erations on an opened file descriptor should function normally
until the descriptor is closed [27].

SVC Under specific configurations, GlusterFS does not invalidate
the client cache correctly, leading to the data written from one
client not being seen by another [46].

SVF File system state modification (i.e., extended attributes) dur-
ing the offline of a server is not synchronized to it after it is
recovered, leading to that clients can read stale data from it [51].

SVM When creating a file, atime and mtime are updated with the
timestamp obtained from the Linux, and ctime is updated with
the timestamp from the userspace client modules. 10 Thus, they
are inconsistent, which violates the POSIX specification [28].

SVM GlusterFS does not support O_PATH flag in open [26].

Table 6: Collected existing semantic bugs.

mantic bugs, which Monarch-Basic cannot find due to the
lack of our semantic checkers SymSC.3

5.2 DFS Execution State Representation
To find out the most practical approach to representing ex-
ecution states, we compare the finally achieved coverage
when the execution states inMonarch are represented by
1) both server and client coverage (client+server); 2) server
coverage only (server); 3) client coverage only (client); Re-
garding each representation, we run them for three rounds
with a duration of 48 hours for each round. If the coverage is
not converged after 48 hours, we extend the testing duration
in increments of 12 hours until it converges. For all except
NFS, we set up DFSes with three servers and one client, as
Lustre, BeeGFS, and CephFS each need a management server,
a metadata server, and a data server. For consistency, we
also configure OrangeFS and GlusterFS with three servers,
despite their ability to operate with just one server. After
averaging the coverage from three rounds, the results of fault
and non-fault modes are shown in Figure 8.
Non-fault mode. As depicted in the first row of Figure 8,
in the non-fault mode, representing the execution states
with client coverage yields coverage rates comparable to the
representation with both server and client coverage, which
matches our intuition “Finding 1” in §3.3. However, when
representing execution states with server coverage only, the
achieved coverage is significantly lower than others. It is
because 1) server coverage is less fine-grained than client
coverage. This would result in fewer small seeds and further
decrease mutation efficiency and fuzzing speed, ultimately

3Bugs are counted multiple times across these three categories, as un-
covering a bug might require various conditions.

0.0
1.5
3.0
4.5
6.0
7.5

0 12 24 36 48 60 72
0.0

2.0

4.0

6.0

0 8 16 24 32 40 48
0.0

2.0

4.0

6.0

0 8 16 24 32 40 48
0.0
0.5
1.0
1.5
2.0

0 8 16 24 32 40 48
0.0

0.5

1.0

1.5

0 8 16 24 32 40 48
0.0

0.5

1.0

1.5

0 8 16 24 32 40 48

0.0
5.0
10.0
15.0
20.0

0 12 24 36 48 60 72
0.0

3.0

6.0

9.0

0 8 16 24 32 40 48
0.0
4.0
8.0
12.0
16.0

0 8 16 24 32 40 48
0.0

1.0

2.0

3.0

0 8 16 24 32 40 48
0.0

0.5

1.0

1.5

0 8 16 24 32 40 48
0.0
0.4
0.8
1.2
1.6

0 8 16 24 32 40 48

Br
an
ch

co
v
(1
0K

)

(a) GlusterFS (b) BeeGFS (c) CephFS (d) OrangeFS

client

(e) NFS

server

(f) Lustre

server+client

Time (1 hour) Time (1 hour) Time (1 hour) Time (1 hour) Time (1 hour) Time (1 hour)

Figure 8: Code coverage growth trend when representing DFS execution states with coverage from client + server, client only, and
server only in non-fault mode (the first row) and fault mode (the second row).

leading to lower coverage. 2) Servers cannot fully represent
DFS states compared with clients (See §3.3 “Finding 1”).
Faultmode. In contrast to the non-faultmode, in faultmode
(the second row in Figure 8), representing execution states
with both server and client coverage yields up to 101% higher
coverage than representing the state with either client cover-
age alone or server coverage alone, such as (c) CephFS and (e)
NFS in the second row of Figure 8. This result is consistent
with our intuition that fault injection would activate fault
tolerance components on servers, that can only be captured
through server coverage and not client coverage.

Furthermore, by comparing the achieved coverage in two
rows in Figure 8, faults have the potential to increase code
coverage up to three times, e.g., 61K (non-fault) VS 188K
(fault) in GlusterFS. The codebase sizes and complexities of
DFSes determines how the coverage increases. For example,
CephFS (931K), GlusterFS (556K), and BeeGFS (554K) have
larger code sizes and more complex fault tolerance mecha-
nism compared to NFS (94K) and OrangeFS (360K). Therefore,
the former three DFSes achieve higher code coverage in-
crease when injecting faults.
Comparisonwith LFS fuzzers. Syzkaller andHydra do not
support DFSes, but Syzkaller offers a simple interface for NFS.
Therefore, we only compare Syzkaller andMonarch on NFS.
Unfortunately, Syzkaller covers 99% less code thanMonarch
because it does not set up NFS servers. Further, we enable
the server setup in Syzkaller, but coverage does not increase
because Syzkaller’s mount-during-test model struggles to
generate valid arguments for syz_mount_image$nfs, leading
to mount failures. Finally, we replace its mount-during-test
model with Monarch’s mount-before-test model. Syzkaller
then covers 13,200 branches, close to Monarch’s 13,278.
However, the modified Syzkaller still cannot test NFS with
injected faults, a feature unique to Monarch.

5.3 Performance

Fuzzing speed. The fuzzing speed in non-fault mode varies
from 3 to 15 executions per second across different DF-
Ses, which conforms to the natural performance difference

0

100

200

300

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0
1
2
3
4
5
6

N
um

be
ro

fs
ys
ca
ll
pa
irs

Ch
ec
ki
ng

tim
e
(0
.1
se
c)

Concurrency ratio

Checking time
Disjoint

Overlapped
Overlapped but independent

Figure 9:We group test cases by their concurrency ratio (x-axis)
and calculate the average number of overlapping, disjoint, and in-
dependent but overlapping syscall pairs(left y-axis), along with the
average semantic checking time (right y-axis), inside each group.

among DFSes. The fuzzing speed is not as fast as LFS fuzzing
(e.g., around 30 exec/sec in Syzkaller), but it makes sense
considering DFSes need to synchronize states across nodes
through network communication, inherently causing higher
latency than LFSes. Further, if we enable fault injections, the
fuzzing speed decreases to around 2 execs/sec, as it is time-
consuming to launch and recover from faults. Wewill explore
techniques for improving the fuzzing speed of distributed
systems in the future, such as optimizing the network stacks
under testing scenarios and fast fault injection and recovery.
Performance improvement from test case reduction.
To show that test case reduction improves execution effi-
ciency and mutation efficacy as mentioned in §3.4, we run
Monarch on six DFSes by enabling and disabling test case
reduction and set the maximum number of syscalls per test
case as 100. Other configurations are the same as §5.2. When
enabling test case reduction,Monarch exhibits a notewor-
thy 75% reduction in execution time and 93% less syscalls
per test case at least, showing the improvements in execu-
tion efficiency. Further, coverage, as a symptom of mutation
efficacy, is improved in the range of 1% to 31% among six
DFSes. This can be attributed to the reduction of syscalls
per test case, which subsequently reduces the non-valuable
mutation space and thus advances the mutation efficacy.
Semantic checker performance. The length of each
syscall sequence and their difference within test cases domi-
nate the number of overlapping syscalls, and further, both
affect the semantic checking time. Therefore, it is less in-

formative to simply average these numbers from test cases.
Instead, we group test cases according to their concurrency
ratio calculated by the following formula, further average
the evaluation numbers in each group.

ratio = (∑n
i=1 ti/MAX)∗ (1−min1≤i< j≤n |t j− ti|/∑

n
i=1 ti)

where, ti is the number of syscalls in the i-th syscall se-
quence of a test case, and MAX is the predefined upper limit
for the number of syscalls in a test case. This formula is based
on the intuition that test cases withmore syscalls and smaller
variance in the length of their syscall sequences should have
a higher concurrency ratio.

Figure 9 shows the number of disjoint, overlapping syscall
pairs, overlapping but independent syscall pairs, and the se-
mantic checking time in each concurrency ratio. From the
result, we can see that as the concurrency ratio increases,
(1) the number of disjoint and overlapping syscall pairs in-
creases, but the space of interleaving exploration (i.e., the
difference between overlapping and overlapping but inde-
pendent syscall pairs) keeps almost constant; (2) the time
for semantic checking increases due to the length of syscall
sequences instead of the number of interleaving exploration
space, but it always finishes in around half a second.

6 Discussion

Being the first fuzzer for DFSes,Monarch is far from com-
plete. In this seciton, we discuss the limitation of Monarch
and promising future directions.
Scheduling as an input source. Although Monarch can
execute syscalls concurrently to find concurrency bugs, it
does not explicitly schedule threads in clients and servers,
leading to incomplete exploration of the interleaving space
and thus bug misses. Additionally, even finding concurrency
bugs, it cannot provide sufficient details for deterministic
reproduction, which impedes the bug-fix process. We will
extendMonarch in this direction.
Porting to other distributed systems. Though specifi-
cally designed for POSIX-compliant DFSes,Monarch can be
adapted to fuzz other distributed systems, such as databases
(e.g., Cassandra [19]), and object storage (e.g., Ceph RA-
DOS [62]), as well as non-POSIX file systems (e.g.,HDFS [57]),
by plugging-in their API mutator and checkers.

7 Related Work

Bug-finding techniques in distributed systems. Model
checking, such as Modist [66] and SAMC [36], enumerate
event orderings (e.g., user operations and faults) to expose
bugs. Even after adopting partial order reductions to reduce
the enumeration space, they still face the state explosion
problem in complex cases. Another technique is formal ver-
ification [24, 63], which expects users to provide domain-

specific knowledge, thereby impeding its popularity and effi-
ciency as a testing method in practice. Dynamic testing, such
as Jepsen [60], is also widely adopted, especially in the dis-
tributed database area. Compared with Jepsen, Monarch is
unique in three ways: 1) Automatic testing from both explicit

test cases and implicit faults: Jepsen is a pure fault injection
tool, in which users must provide manually constructed test
cases and fault injection schemes to explore the fault space. In
contrast, Monarch automatically produces both syscall se-
quences and faults based on coverage-guidedmutation. It does
not require any manual effort from users during testing. 2)
Cross-context testing: Jepsen exclusively targets userspace ap-
plications (i.e., MongoDB and Redis), whileMonarch, being
more comprehensive, handles both in-kernel and userspace
distributed systems. 3) Semantic checker tailored for DFSes:
Monarch is equipped with our DFS checker—SYMSC—that
detects unique DFS semantic bugs (see §2.2 and §3.5). How-
ever, Jepsen only provides the database transactional consis-
tency checker Elle [35], which does not apply to DFSes.
Fault injection in distributed systems. Most existing
works inject faults at points specified by users [3, 60] or
heuristics [11, 23, 38, 39]. Molly [4] and Mallory [42] ad-
vanced these works by utilizing lineage-driven and timeline-
driven, respectively, to inject faults adaptively. However, they
concentrate on fault injection for specific user inputs, rather
than automatically exploring the execution state space of
distributed systems from both explicit user inputs and faults.

8 Conclusion

This paper introducesMonarch, the first multi-node fuzzing
framework for finding memory and semantic bugs in POSIX-
compliant distributed file systems, through the following
novel designs: 1) Testing all components ofDFSes holistically;
2) Testing from both explicit inputs “syscalls” and implicit
inputs “faults” with a two-step mutator; 3) Adopting prac-
tical execution state representations for fault and non-fault
testing modes by measuring different choices, and proposing
a unified coverage collection scheme for both user and kernel
contexts; 4) Designing a semantic checker SymSC for captur-
ing all types of semantic bugs in DFSes. So far, Monarch
has identified 48 bugs in six popular DFSes.

Acknowledgments

We thank the anonymous shepherd and reviewers for their
helpful feedback. We also thankManuel Egele and Gwangmu
Lee for joining the project discussion at the early stage. This
project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation program (grant agreement No. 850868)
and SNSF PCEGP2_186974.

References

[1] Ace computers, beegfs streamline cluster workflow for elite
defense contractor. https://www.beegfs.io/docs/flyers/
Ace%20Computers-Case%20Study-Defense%20Contractor-
BeeGFS.pdf.

[2] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson, Gre-
gory R Ganger, and George Amvrosiadis. File systems unfit as dis-
tributed storage backends: lessons from 10 years of ceph evolution. In
Proceedings of the 27th ACM Symposium on Operating Systems Princi-

ples (SOSP), Ontario, Canada, October 2019.
[3] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer

Al-Kiswany. An analysis of network-partitioning failures in cloud
systems. In Proceedings of the 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), Carlsbad, CA, October
2018.

[4] Peter Alvaro, Joshua Rosen, and Joseph M Hellerstein. Lineage-driven
fault injection. In Proceedings of the 2015 ACM SIGMOD/PODS Confer-

ence, Melbourne, Victoria, Australia, May 2015.
[5] Ceph authors and contributors. Ceph posix compatibility. https:
//docs.ceph.com/en/reef/cephfs/posix.

[6] Ceph authors and contributors. Cephunit tests. https://docs.ceph.
com/en/quincy/dev/developer_guide/tests-unit-tests/.

[7] OrangeFS authors. The orangefs project. http://www.orangefs.
org/.

[8] Jinsheng Ba,Marcel Böhme, ZahraMirzamomen, andAbhik Roychoud-
hury. Stateful greybox fuzzing. In Proceedings of the 31th USENIX

Security Symposium (Security), Boston, MA, August 2022.
[9] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. Fuzzing:

Challenges and reflections. IEEE Softw., 38(3):79–86, 2021.
[10] Mingming Cao, Suparna Bhattacharya, and Ted Ts’o. Ext4: The next

generation of ext2/3 filesystem. In LSF, 2007.
[11] Haicheng Chen, Wensheng Dou, Dong Wang, and Feng Qin. Cofi:

consistency-guided fault injection for cloud systems. In Proceedings

of the 35rd International Conference on Computer Aided Verification

(CAV), Virtual Event, Australia, September 2020.
[12] Gluster community. Glusterfs. https://docs.gluster.org/en/

main/Quick-Start-Guide/Architecture/.
[13] Gluster community. Glusterfs replica 3 volume and quorum.

https://docs.gluster.org/en/main/Administrator-
Guide/Split-brain-and-ways-to-deal-with-it/#client-
quorum-in-replica-2-volumes.

[14] Gluster community. Regression testing in glusterfs.
https://docs.gluster.org/en/main/Developer-guide/
Development-Workflow/#auto-triggered-tests.

[15] Jonathan Corbet. The curious case of o_directory|o_creat. https:
//lwn.net/Articles/926782/.

[16] David Drysdale. Coverage-guided kernel fuzzing with syzkaller, 2016.
[17] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.

AFL++: Combining incremental steps of fuzzing research. In 14th

USENIX Workshop on Offensive Technologies (WOOT 20). USENIX As-
sociation, August 2020.

[18] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduc-
tion for model checking software. ACM Sigplan Notices, 40(1):110–121,
2005.

[19] Apache Software Foundation. Apache cassandra. https://
cassandra.apache.org/_/index.html.

[20] ThinkParQ GmbH. Beegfs. https://www.beegfs.io/.
[21] Google. Kernelmemorysanitizer, a detector of uses of uninitialized

memory in the linux kernel. https://github.com/google/kmsan.
[22] Google. Syzlang: syscall description language. https:

//github.com/google/syzkaller/blob/master/docs/
syscall_descriptions_syntax.md.

[23] Haryadi S Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M
Hellerstein, Andrea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau,
Koushik Sen, and Dhruba Borthakur. Fate and destini: A framework
for cloud recovery testing. In Proceedings of the 8th USENIX Sympo-

sium on Networked Systems Design and Implementation (NSDI), Boston,
USA, March 2011.

[24] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan
Parno, Michael L Roberts, Srinath Setty, and Brian Zill. Ironfleet: prov-
ing practical distributed systems correct. In Proceedings of the 25th

ACM Symposium on Operating Systems Principles (SOSP), Monterey,
CA, October 2015.

[25] Christoph Hellwig. Xfs: the big storage file system for linux. The

magazine of USENIX & SAGE, 34(5):10–18, 2009.
[26] Xavi Hernandez,AmarTumballi, , andMohit. Glusterfs doesn’t support

o_path flag in open. https://github.com/gluster/glusterfs/
issues/2717.

[27] Xavi Hernandez, Amar Tumballi, and Mohit. Open-behind should be
disabled by default. https://github.com/gluster/glusterfs/
issues/3785.

[28] Kotresh HR. Ctime: Fix ctime inconsisteny with utimensat. https:
//github.com/gluster/glusterfs/commit/1dec1d6.

[29] IEEE. Posix specification. https://pubs.opengroup.org/
onlinepubs/9699919799.2018edition/.

[30] Internet Engineering Task Force (IETF). Network file system (nfs)
version 4 protocol. https://www.rfc-editor.org/rfc/rfc7530.
html.

[31] Dae R Jeong, Byoungyoung Lee, Insik Shin, and Youngjin Kwon. Seg-
fuzz: Segmentizing thread interleaving to discover kernel concurrency
bugs through fuzzing. In 2023 IEEE Symposium on Security and Privacy

(SP), pages 2104–2121. IEEE Computer Society, 2023.
[32] The kernel development community. Kcov: code coverage for fuzzing.

https://docs.kernel.org/dev-tools/kcov.html.
[33] The kernel development community. The kernel address sani-

tizer (kasan). https://www.kernel.org/doc/html/latest/dev-
tools/kasan.html.

[34] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu,
and Taesoo Kim. Finding Semantic Bugs in File Systems with an Exten-
sible Fuzzing Framework. In Proceedings of the 27th ACM Symposium

on Operating Systems Principles (SOSP), Ontario, Canada, October 2019.
[35] Kyle Kingsbury and Peter Alvaro. Elle: Inferring isolation anomalies

from experimental observations. arXiv preprint arXiv:2003.10554, 2020.
[36] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F

Lukman, andHaryadi S Gunawi. SAMC: Semantic-aware model check-
ing for fast discovery of deep bugs in cloud systems. In Proceedings of

the 11th USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI), Broomfield, Colorado, October 2014.
[37] Tanakorn Leesatapornwongsa, Jeffrey F Lukman, Shan Lu, and

Haryadi S Gunawi. Taxdc: A taxonomy of non-deterministic con-
currency bugs in datacenter distributed systems. In Proceedings of

the 21st ACM International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), Atlanta, GA,
April 2016.

[38] Haopeng Liu, XuWang, Guangpu Li, Shan Lu, Feng Ye, and Chen Tian.
Fcatch: Automatically detecting time-of-fault bugs in cloud systems. In
Proceedings of the 23rd ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS),
Williamsburg, VA, March 2018.

[39] Jie Lu, Chen Liu, Lian Li, Xiaobing Feng, Feng Tan, Jun Yang, and Liang
You. Crashtuner: detecting crash-recovery bugs in cloud systems via
meta-info analysis. In Proceedings of the 27th ACM Symposium on

Operating Systems Principles (SOSP), Ontario, Canada, October 2019.

https://www.beegfs.io/docs/flyers/Ace%20Computers-Case%20Study-Defense%20Contractor-BeeGFS.pdf
https://www.beegfs.io/docs/flyers/Ace%20Computers-Case%20Study-Defense%20Contractor-BeeGFS.pdf
https://www.beegfs.io/docs/flyers/Ace%20Computers-Case%20Study-Defense%20Contractor-BeeGFS.pdf
https://docs.ceph.com/en/reef/cephfs/posix
https://docs.ceph.com/en/reef/cephfs/posix
https://docs.ceph.com/en/quincy/dev/developer_guide/tests-unit-tests/
https://docs.ceph.com/en/quincy/dev/developer_guide/tests-unit-tests/
http://www.orangefs.org/
http://www.orangefs.org/
https://docs.gluster.org/en/main/Quick-Start-Guide/Architecture/
https://docs.gluster.org/en/main/Quick-Start-Guide/Architecture/
https://docs.gluster.org/en/main/Administrator-Guide/Split-brain-and-ways-to-deal-with-it/#client-quorum-in-replica-2-volumes
https://docs.gluster.org/en/main/Administrator-Guide/Split-brain-and-ways-to-deal-with-it/#client-quorum-in-replica-2-volumes
https://docs.gluster.org/en/main/Administrator-Guide/Split-brain-and-ways-to-deal-with-it/#client-quorum-in-replica-2-volumes
https://docs.gluster.org/en/main/Developer-guide/Development-Workflow/#auto-triggered-tests
https://docs.gluster.org/en/main/Developer-guide/Development-Workflow/#auto-triggered-tests
https://lwn.net/Articles/926782/
https://lwn.net/Articles/926782/
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://www.beegfs.io/
https://github.com/google/kmsan
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://github.com/gluster/glusterfs/issues/2717
https://github.com/gluster/glusterfs/issues/2717
https://github.com/gluster/glusterfs/issues/3785
https://github.com/gluster/glusterfs/issues/3785
https://github.com/gluster/glusterfs/commit/1dec1d6
https://github.com/gluster/glusterfs/commit/1dec1d6
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://www.rfc-editor.org/rfc/rfc7530.html
https://www.rfc-editor.org/rfc/rfc7530.html
https://docs.kernel.org/dev-tools/kcov.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html

[40] Sage McTaggart. Cve-2018-10927. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2018-10927.

[41] Sage McTaggart. Cve-2022-3650. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2022-3650.

[42] Ruijie Meng, George Pîrlea, Abhik Roychoudhury, and Ilya Sergey.
Greybox fuzzing of distributed systems. In Proceedings of the 30th

ACM Conference on Computer and Communications Security (CCS),
Copenhagen, Denmark, November 2023.

[43] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian
Raju, and Vijay Chidambaram. Finding crash-consistency bugs with
bounded black-box crash testing. In Proceedings of the 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI),
Carlsbad, CA, October 2018.

[44] OpenSFS and EOFS. Lustre. https://www.lustre.org/.
[45] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. Aflnet: a

greybox fuzzer for network protocols. In 2020 IEEE 13th International

Conference on Software Testing, Validation and Verification (ICST), pages
460–465. IEEE, 2020.

[46] Philipspencer and Mohit. Fuse mount cache invalidation does not
work with stat-prefetch disabled. https://github.com/gluster/
glusterfs/issues/4281.

[47] Lyu, Tao and Karampuri, Kumar Pranith. A semantic violation
on in-memory states (SVM) in GlusterFS. https://github.com/
gluster/glusterfs/issues/3624.

[48] Lyu, Tao and Karampuri, Kumar Pranith. A semantic violation on per-
sistent states (SVP) in GlusterFS. https://github.com/gluster/
glusterfs/issues/3983.

[49] Lyu, Tao and Li, Xiubo. A semantic violation under concurrent ex-
ecutions (SVC) in CephFS. https://tracker.ceph.com/issues/
63906.

[50] Lyu, Tao and Mohit. A use-after-free bug in GlusterFS. https:
//github.com/gluster/glusterfs/issues/3732.

[51] Rofman, Sason Barak and Mohit and Karampuri, Kumar Pranith. A
semantic violation under fault states (SVF) in GlusterFS. https:
//github.com/gluster/glusterfs/issues/1324.

[52] Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano, Anil Mad-
havapeddy, and Peter Sewell. Sibylfs: formal specification and oracle-
based testing for posix and real-world file systems. In Proceedings

of the 25th ACM Symposium on Operating Systems Principles (SOSP),
Monterey, CA, October 2015.

[53] Pedro Sampaio. Cve-2018-1088. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2018-1088.

[54] Sergej Schumilo, Cornelius Aschermann, Andrea Jemmett, Ali Abbasi,
and Thorsten Holz. Nyx-net: network fuzzing with incremental snap-
shots. In Proceedings of the 17th European Conference on Computer

Systems (EuroSys), RENNES, France, April 2022.
[55] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and

Dmitry Vyukov. Addresssanitizer: A fast address sanity checker. In
Proceedings of the 2012 USENIX Annual Technical Conference (ATC),
Boston, MA, June 2012.

[56] Amazon Web Services. Using amazon fsx for lustre for genomics
workflows on aws, 2020. https://aws.amazon.com/blogs/
storage/using-amazon-fsx-for-lustre-for-genomics-
workflows-on-aws.

[57] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The hadoop distributed file system. In 2010 IEEE 26th

symposium on mass storage systems and technologies (MSST), pages
1–10. Ieee, 2010.

[58] Andriy Skulysh. Rpc resend may corrupt the data. https:
//jira.whamcloud.com/browse/LU-11444?jql=text%20~%20%
22data%20corruption%22.

[59] Laszlo Szekeres, Mathias Payer, TaoWei, and Dawn Song. Sok: Eternal
war in memory. In 2013 IEEE Symposium on Security and Privacy,
pages 48–62. IEEE, 2013.

[60] Jepsen team. Jepsen. https://jepsen.io/.
[61] PyTorch team. Training a 1 trillion parameter model with pytorch

fully sharded data parallel on aws. https://medium.com/pytorch/
training-a-1-trillion-parameter-model-with-pytorch-
fully-sharded-data-parallel-on-aws-3ac13aa96cff.

[62] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and
Carlos Maltzahn. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), Seattle, WA, November
2006.

[63] James R Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock,
Xi Wang, Michael D Ernst, and Thomas Anderson. Verdi: a frame-
work for implementing and formally verifying distributed systems.
In Proceedings of the 2015 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), Portland, OR, June 2015.
[64] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. Krace:

Data Race Fuzzing for Kernel File Systems. In Proceedings of the 41st

IEEE Symposium on Security and Privacy (Oakland), San Francisco, CA,
May 2020.

[65] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and
Taesoo Kim. Fuzzing File Systems via Two-Dimensional Input Space
Exploration. In Proceedings of the 40th IEEE Symposium on Security

and Privacy (Oakland), San Francisco, CA, May 2019.
[66] Junfeng Yang, Tisheng Chen,MingWu,Zhilei Xu,Xuezheng Liu,Haox-

iang Lin,Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. Modist:
Transparent model checking of unmodified distributed systems. In
Proceedings of the 6th USENIX Symposium on Networked Systems Design

and Implementation (NSDI), Boston, MA, April 2009.
[67] Junfeng Yang, Can Sar, and Dawson Engler. Explode: a lightweight,

general system for finding serious storage system errors. In Proceed-

ings of the 7th USENIX Symposium on Operating Systems Design and

Implementation (OSDI), Seattle, WA, November 2006.
[68] Xiaochen Zou, Guoren Li, Weiteng Chen, Hang Zhang, and Zhiyun

Qian. Syzscope: Revealing high-risk security impacts of fuzzer-
exposed bugs in linux kernel. In Proceedings of the 31th USENIX

Security Symposium (Security), Boston, MA, August 2022.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10927
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10927
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-3650
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-3650
https://www.lustre.org/
https://github.com/gluster/glusterfs/issues/4281
https://github.com/gluster/glusterfs/issues/4281
https://github.com/gluster/glusterfs/issues/3624
https://github.com/gluster/glusterfs/issues/3624
https://github.com/gluster/glusterfs/issues/3983
https://github.com/gluster/glusterfs/issues/3983
https://tracker.ceph.com/issues/63906
https://tracker.ceph.com/issues/63906
https://github.com/gluster/glusterfs/issues/3732
https://github.com/gluster/glusterfs/issues/3732
https://github.com/gluster/glusterfs/issues/1324
https://github.com/gluster/glusterfs/issues/1324
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1088
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1088
https://aws.amazon.com/blogs/storage/using-amazon-fsx-for-lustre-for-genomics-workflows-on-aws
https://aws.amazon.com/blogs/storage/using-amazon-fsx-for-lustre-for-genomics-workflows-on-aws
https://aws.amazon.com/blogs/storage/using-amazon-fsx-for-lustre-for-genomics-workflows-on-aws
https://jira.whamcloud.com/browse/LU-11444?jql=text%20~%20%22data%20corruption%22
https://jira.whamcloud.com/browse/LU-11444?jql=text%20~%20%22data%20corruption%22
https://jira.whamcloud.com/browse/LU-11444?jql=text%20~%20%22data%20corruption%22
https://jepsen.io/
https://medium.com/pytorch/training-a-1-trillion-parameter-model-with-pytorch-fully-sharded-data-parallel-on-aws-3ac13aa96cff
https://medium.com/pytorch/training-a-1-trillion-parameter-model-with-pytorch-fully-sharded-data-parallel-on-aws-3ac13aa96cff
https://medium.com/pytorch/training-a-1-trillion-parameter-model-with-pytorch-fully-sharded-data-parallel-on-aws-3ac13aa96cff

	Introduction
	Background and Motivation
	Architectural Diversity in DFSes
	Bugs in DFSes
	Fuzzing for DFS: The Missing Pieces

	Design
	Monarch Architecture
	Mutating Inputs in a DFS
	Syscall mutation
	Fault mutation

	DFS Execution State Representation
	Dynamic Test Case Reduction
	Memory and Semantic Checker

	Implementation
	Evaluation
	Bug-Finding Result
	DFS Execution State Representation
	Performance

	Discussion
	Related Work
	Conclusion

