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Abstract—A virtual machine interacts with its host environment
through virtual devices, driven by virtual device messages, e.g.,
I/O operations. By issuing crafted messages, an adversary can
exploit a vulnerability in a virtual device to escape the virtual
machine, gaining host access. Even though hundreds of bugs
in virtual devices have been discovered, coverage-based virtual
device fuzzers hardly consider intra-message dependencies (a
field in a virtual device message may be dependent on another
field) and inter-message dependencies (a message may depend on
a previously issued message), thus resulting in limited scalability
or efficiency.

VIDEZZO, our new dependency-aware fuzzing framework
for virtual devices, overcomes the limitations of existing virtual
device fuzzers by annotating intra-message dependencies with
a lightweight grammar, and by self-learning inter-message
dependencies with new mutation rules. Specifically, VIDEZZO
annotates message dependencies and applies three categories of
message mutators. This approach avoids heavy manual effort
to analyze specifications and speeds up the slow exploration
by satisfying dependencies, resulting in a scalable and efficient
fuzzer that boosts bug discovery in virtual devices.

In our evaluation, VIDEZZO covers two hypervisors, four
architectures, five device categories, and 28 virtual devices,
and reaches competitive coverage faster. Moreover, VIDEZZO
successfully finds 24 existing and 28 new bugs across diverse
bug types. We are actively engaging with the community with
7 of our submitted patches already accepted.

1. Introduction
Hypervisors (virtual machine monitors—VMMs) are

widely deployed in cloud infrastructure. They transfer data
and instructions from guest operating systems to the host
environment through virtual devices that are driven by I/O
operations (Port I/O—PIO or Memory-Mapped I/O—MMIO).
These I/O operations follow specific protocols and thus are
called virtual device messages.

Virtual devices are the most prominent attack surface in
hypervisors. Hypervisors isolate an untrusted guest from the
hypervisor and all other virtual machines. A key security
property is that a guest cannot escape from its virtual machine.
However, hypervisors are complex pieces of software and
researchers have discovered ways to escape them (e.g.,
QEMU, VirtualBox, and VMWare), with 41.5% (22/53) of
these escapes due to bugs in virtual devices [1]. According to
our CVE survey [2], 57.4% (252/439) of the vulnerabilities
in QEMU were found in virtual devices.

The security of virtual devices has been under heavy
scrutiny [3], [4], [5], [6], [7], [8], [9], [10]. Since VFD [7]
in 2017, fuzzing has become the dominant approach as
it implicitly abstracts device complexity through concrete
executions, outperforming symbolic approaches. Later, a
platform-independent black-box hypervisor fuzzer [8] dis-
covered multiple bugs due to its high throughput and multi-
dimension inputs. Fuzzing of virtual devices advanced further
when started considering coverage feedback [9] and guest-
provided data through DMA channels [9], [10], [11].

Despite hundreds of bugs in virtual devices, existing so-
lutions are limited due to two, so far, overlooked challenges.

Intra-Message Dependency: a field in a virtual device
message may be dependent on another field. Guests
communicate with virtual devices through virtual device
messages. Each virtual device message follows a given
message structure and encodes message fields that have
different semantics, e.g., a four-byte scalar or a pointer.
Particularly, a field may be dependent on another field. For
example, a bit in a data field may tell a virtual device the
type of pointer field. Virtual device fuzzers unaware of the
dependencies are slower in reaching certain code or may
even miss critical functionalities.

Inter-Message Dependency: a message may depend
on a previously issued message. A virtual device message
may modify the internal state of a virtual device and can
be chained to form a sequence of complex interactions. In
a virtual device, two messages might go through different
paths but are entangled by the device-internal state, which
implies an ordered sequence of messages. Mutators unaware
of these dependencies may violate order constraints, which
wastes time and hardware resources.

Existing solutions have shown the importance of virtual
device fuzzing but were unaware of these two challenges
and suffered from either limited scalability or efficiency.

Scalability. A scalable virtual device fuzzer requires
low manual effort and a flexible system design to support
different hypervisors, architectures, and virtual device cat-
egories. NYX [9] introduces two configurations based on
the same frontend: NYX-LEGACY and NYX-SPEC (If an
argument applies to both NYX-LEGACY and NYX-SPEC, we
refer to NYX). Compared to the former that only involves
regular PIO/MMIO operations, the latter adds a manually
encoded data structure to support object manipulation, e.g.,
adding allocation of linked lists for XHCI. Specifically, when
handling guest-provided data through DMA channels, NYX-
SPEC requires human effort to encode the specification of a
given virtual device, achieving high code coverage quickly
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for supported targets but involving significant human effort
for new virtual devices.

Efficiency. An efficient virtual device fuzzer must quickly
explore code coverage. Besides considering specifications to
speed up code coverage exploration, NYX, V-SHUTTLE [10],
and MORPHUZZ [11] miss other opportunities because
they suffer from either too large or too small mutation
granularity. In particular, NYX uses a generic graph that
encodes multiple virtual device messages in each node. Since
it avoids crossover mutation among nodes, this approach
limits NYX in exploring more interleaved behaviors. V-
SHUTTLE and MORPHUZZ, instead, mutate bytes randomly,
thus violating the semantics of two consecutive messages
since they ignore their structural representation.

Our goal is to overcome the two challenges and achieve
both scalability and efficiency in fuzzing virtual devices based
on two observations. First, we notice that source code encodes
message semantics, serving as a reference for message
structures. Widely-used hypervisors (QEMU and VirtualBox)
are open-source, encoding abundant information about how
to interact with virtual devices. Moreover, source code is
amenable to automatic analysis and inherently less labor-
intensive to validate than complex specifications. Second,
well-formed messages exercise more coverage and provide
better feedback to the fuzzer for future mutations.

Our Approach. We introduce a new dependency-aware
virtual device fuzzing framework VIDEZZO (Virtual Device
Fuzzer), which considers both intra-message and inter-
message dependencies.

Lightweight Intra-Message Annotation. To support intra-
message dependencies, we design a novel and lightweight de-
scriptive grammar (Section 3.1). When reviewing the source
code, a security analyst of a virtual device may record intra-
message annotation with our descriptive grammar to allow a
fuzzer to know how to handle intra-message dependencies.
We argue that our lightweight grammar is a good trade-off
between the full grammar implementation from the hardware
specification used in NYX-SPEC and the heuristic-based
approach used in V-SHUTTLE and MORPHUZZ. We semi-
automate the annotation extraction. Low manual effort here
supports the scalability.

Novel Inter-Message Mutators. To handle inter-message
dependencies, we design three new categories of mutators
based on a virtual device message as a mutation atom.
These mutators create a single message or form message
sequences leveraging the genetic nature of fuzzers to provide
consistency (message-level), diversity (sequence-level), and
semantics (group-level) (Section 3.2). These message-aware
mutators not only self-learn the inter-message dependencies
but also keep the advantages of different mutation granularity.

Based on the above two techniques, we present the
design of VIDEZZO in Section 4. VIDEZZO has two
parts: VIDEZZO-CORE and VIDEZZO-VMM bindings. The
former manages fuzzing input, parses it into virtual device
messages, and processes these messages according to our
design. The latter, VIDEZZO-VMM, registers targeted vir-
tual devices, initializes the guest VMM without running any
operating system, and dispatches VMM-specific messages.

VIDEZZO-CORE is VMM-agnostic, while VIDEZZO-VMM
requires customization for each new VMM. The flexible
system design enables the scalability of VIDEZZO.

Importantly, VIDEZZO-CORE enables persistent mode,
avoiding a heavy fork server to improve performance. We
leverage reflective delta-debugging to address side effects
due to the accumulated internal state. Specifically, VIDEZZO
stores all intermediate test cases and supports delta debug-
ging [12] to reduce the collected seeds to a minimal stable
Proof of Concept (PoC).

Compared to previous work, VIDEZZO is both scalable
and efficient. VIDEZZO currently supports two hypervisors,
i.e., QEMU and VirtualBox, four architectures, i.e., i386,
x86 64, AArch32, AArch64, 28 virtual devices in five
device categories, i.e., USB, net, display, audio, and storage,
and reaches competitive coverage faster. VIDEZZO is also
effective in finding bugs. We successfully reproduced 24
existing bugs and found 28 new bugs across diverse bug
types with 1 CVE assigned so far. We have been actively
engaging with the QEMU and VirtualBox communities and
provided 7 accepted patches.
Contributions. VIDEZZO’s main contributions are:
• Design of a new scalable, efficient, and dependency-aware

virtual device fuzzing framework that fully explores intra-
and inter-message dependencies.

• A descriptive grammar to encode intra-message dependen-
cies and three new categories of message-aware mutators
for inter-message dependencies, boosting virtual device
coverage and fuzzing speed.

• Instruction of persistent fuzzing for virtual devices
while handling aggregate state through reflective delta-
debugging.

• Evaluation of VIDEZZO against the state-of-the-art. In
addition to deep coverage, we have discovered 28 new
bugs, together with 7 accepted patches.

2. Background and Motivation
Hardware interacts with software through hardware reg-

isters and interrupts. The hardware registers are mapped to
PIO or/and MMIO space, allowing software to control the
hardware via PIO/MMIO read/write operations, i.e., in/out
and load/store. Interrupts, in reverse, are signals from the
hardware that inform the software of asynchronous tasks
requiring attention. A heavy asynchronous task is to transfer
a large chunk of data between the hardware and the main
memory through DMA channels.

Virtual devices implement I/O requests. Specifically, the
hypervisor intercepts PIO and MMIO operations from the
guest and forwards their requests to predefined callbacks
in the virtual device. For instance, the MMIO write oper-
ation of an EHCI register is redirected into the callback
ehci_opreg_write() in QEMU, as shown in Figure 1. Next,
the control flow goes to different specialized handlers based
on the value of addr. Importantly, the hidden implementation
definitely encodes the information about how hardware works,
which is helpful for virtual device fuzzing. PIO and MMIO
operations follow protocols to drive virtual devices and thus
can be called virtual device messages.
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Messages Description

PIO ops PIO read/write operations
MMIO ops MMIO read/write operations
Memory ops Memory allocation, read/write, or free
Clock ops Time adjustments

TABLE 1: Virtual device messages and their descriptions.

2.1. Virtual Device Messages
A virtual device message, e.g., an MMIO write operation,

defines how a guest communicates with a virtual device. As
shown in Table 1, besides PIO and MMIO messages, virtual
device messages also include memory-related operations
to manipulate the main memory space, and clock-related
messages to adjust the current time [11].

Messages define their own message structure and message
fields. Figure 2 shows the structure of an MMIO write
message with four fields: a type field E_TYPE and three
parameter fields: ADDR, SIZE, and VALUE. Moreover, VALUE

contains formatted sub-fields with additional information.
Multiple messages compose message sequences that must
follow a specific order.

Leveraging virtual device messages for fuzzing brings
three key benefits. First, with clear formats, a fuzzer has a
precise view of inputs and thus can support fine-grained
dependencies. Second, virtual device messages allow a
fuzzer to build up the internal state of a virtual device by
manipulating the order of message sequences. Third, a fuzzer
can minimize a PoC by removing unnecessary virtual device
messages to find interesting message sequences.

2.2. Motivation and Challenges
Prior work [9], [10], [11] demonstrates that coverage-

based fuzzers are applicable to virtual devices. However, two
challenges were overlooked from the perspective of virtual
device messages: intra- and inter-message dependencies.

Intra-message Dependencies. A virtual device message
usually contains multiple fields. These fields may be de-
pendent on each other. This is usually true when virtual
devices heavily interact with main memory through DMA
channels [10] that can process large blocks of data. For
example, Figure 3 shows a loading into tx at line 7. The
switch at line 8 then decides the type of array_addr by
checking the first three bits in command. Awareness of such
dependencies reduces the search space (we only mutate the
first three bits of command), which precludes random guessing
from the fuzzer side to satisfy complicated constraints (we
know array_addr is either a MacAddr or a TxConfig).

Inter-message Dependencies. Virtual device messages can
be chained, building up complex virtual device state. Due to

1 void ehci_opreg_write(
2 physaddr addr, uint64_t val, uint32_t size) {
3 switch (addr) {
4 case USBCMD: // do something
5 case PERIODICLISTBASE: // do something
6 case ASYNCLISTADDR: // do something

Figure 1: An example of I/O callback in a virtual device.

...

SIZE

E_MMIOR E_MMIOW E_PIOR

E_TYPE ADDR VALUE

Structual Input

SubField0
SubField1

Figure 2: Virtual device messages and a structural input.

1 typedef struct {
2 uint32_t command; uint32_t array_addr; } tx_t;
3 void action_command(physaddr addr) {
4 tx_t tx;
5 MacAddr macaddr;
6 TxConfig config;
7 dma_read(/*addr=*/addr, /*dst=*/&tx);
8 switch (tx.command & COMMAND/*=7*/) {
9 case CmdIASetup/*=1*/:

10 dma_read(tx.array_addr, &macaddr); break;
11 case CmdConfigure/*=2*/:
12 dma_read(tx.array_addr, &config); break;

Figure 3: Field array_addr can point to different buffers
when flag bits in field command are different.

the narrow set of registers, interactions with devices often
require multiple interactions. Figure 4 demonstrates how a
specific sequence of messages triggers the code at line 10.

2.3. Threat Model
We share the same threat model as previous work [9],

[10], [11]. Specifically, the attacker creates a virtual machine
in a cloud and controls the operating system. The attacker’s
goal is to compromise the hypervisor and take over other
virtual machines. This setup is realistic since cloud providers
grant tenants full control over the operating system of the
created virtual machines.

3. Dependency-Aware Message Model
Our dependency-aware message model addresses both

intra- and inter-message dependencies. Intra-message depen-
dencies are best covered by a lightweight descriptive grammar
(Section 3.1) and inter-message dependencies through a set
of specialized message mutators (Section 3.2).

3.1. Intra-Message Annotation
For intra-message dependencies, we propose a novel

lightweight descriptive grammar, which is exemplified in
Figure 5. VIDEZZO uses the grammar to generate virtual
device messages that satisfy intra-message dependencies.
Since the annotation is device dependent, we develop an
annotation inference engine that extracts specifications from
the virtual device source code (Section 5.1).

Unlike the Syscall description language (Syzlang) [13],
each virtual device follows ad-hoc protocols built on top
of simple interfaces (e.g., only four types of messages in
Table 1), which can be easily modeled by a generic grammar.
To the best of our knowledge, we are the first to apply this
technique to the virtual device domain. Unlike NYX-SPEC,
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1 typedef GlobalState {
2 uint32 internal_state; } GlobalState;
3 GlobalState gs;
4 void mmio_write_dword(
5 physaddr addr, uint64_t val) {
6 switch (addr) {
7 case 0x0:
8 gs->internal_state = val; break;
9 case 0x4:

10 if (!gs->internal_state) break;
11 // do something and break

Figure 4: A specific ordered message sequence, i.e.,
{addr: 0x0, val: rand()}, {addr: 0x4,
val: rand()}, triggers the code at line 10.

analysts do not require intricate knowledge of the com-
plex hardware-level specification. Compared to specification-
agnostic fuzzers, such as V-SHUTTLE or MORPHUZZ, our
lightweight grammar results in higher quality seeds.

We base our grammar on the analysis of 18 devices across
five categories. The grammar relies on a small type system,
APIs, and statement rules. The type system and the APIs
cover three requirements, i.e., field-awareness, bit-awareness,
and context-awareness. The statement rules define how to
develop annotations.

Type System. The grammar has a type system to reflect
the field- and bit-awareness of a virtual device message,
which is first introduced systematically in our study.

Field-Awareness. A virtual device message is field-aware
if it defines boundaries and types for its fields and sub-
fields. Specifically, sub-fields are sub-components of data
fields, as shown in Figure 2. Sub-fields should be considered
standalone and can either contain data or pointers. The value
of a data field can be random or constant; while pointer
fields chain nested objects [10]. For instance, in Figure 3,
command and array_addr are both four bytes. The former is
a data field and the latter is a pointer field. Our grammar
allows us to explicitly annotate this information.

Bit-Awareness. The fields of a virtual message are bit-
aware if they define constraints at bit granularity. For instance,
some bits of data fields are used as flags, as shown on line 8 in
Figure 3. Likewise, pointers often include extra information
in some, e.g., lower, bits as tags.

This grammar (from line 2) first defines four basic field
types with an orthogonal symbol each, i.e., RANDOM for a
variable with a random value, CONSTANT for a constant,
POINTER for a pointer, and FLAG for a variable with flag bits.
Due to the orthogonality, a tagged pointer can be POINTER |

FLAG. The grammar then defines a FIELD that is decided by
its field name and field size. For example, FIELD command is
command#0x4. Next, it defines how to express flag bits, i.e.,
FLAG_LEN_PAIR. For example, command’s first three bits are
0: 3@7, if the initial value of these three bits is 7. In general,
0: 3 means the initial value of these bits is random.

APIs and Context-Awareness. Our grammar provides
APIs to annotate intra-message dependencies. add_struct()
defines each field in a virtual device message, add_flag()
defines the flag bits, and add_constant() defines the candi-
date value set for a constant field. Furthermore, we can define

1 // type system
2 FIELD_TYPE: RANDOM | CONSTANT | POINTER | FLAG
3

4 FIELDNAME: NAME
5 FIELD : FIELDNAME ’#’ SIZE
6 typedef uint8_t BEGIN
7 typedef uint8_t LENGTH
8 typedef uint32_t INITVALUE
9 FLAG_LEN_PAIR: BEGIN ’:’ LENGTH [ ’@’ INITVALUE ]

10

11 // APIs
12 STRUCTNAME: NAME
13 STRUCT_SET: ’[’ STRUCTNAME+ ’]’
14 FIELD_INDEX : STRUCTNAME ’.’ FIELDNAME
15 FIELD_TYPE_PAIR: FIELD ’:’ FIELD_TYPE
16 FIELD_SET: ’{’ FIELD_TYPE_PAIR+ ’}’
17 FLAG_SET: ’{’ FLAG_LEN_PAIR+ ’}’
18 CONDIDATES: ’[’ uint32_t+ ’]’
19 POINT_TO_SET: ’[’ FIELD_INDEX+ ’]’
20 CONDITION: FIELD_INDEX ’.’ BEGIN
21 CONDITION_SET: ’[’ CONDITION+ ’]’
22

23 def add_struct(
24 name :-> STRUCTNAME, fields :-> FIELD_SET)
25 def add_flag(
26 field :-> FIELD_INDEX, flags :-> FLAG_SET)
27 def add_constant
28 field :-> FIELD_INDEX,
29 condidates :-> CONDIDATES)
30

31 def add_head(structs :-> STRUCT_SET)
32 def add_point_to(
33 field :-> FIELD_INDEX,
34 point_to :-> POINT_TO_SET,
35 condition :-> CONDITION_SET,
36 ALIGNMENT :-> uint8_t)
37

38 def add_point_to_linked_list(
39 head :-> FIELD_INDEX, tail :-> FIELD_INDEX,
40 point_to :-> POINT_TO_SET, links :-> FIELD_SET,
41 condition :-> CONDITION_SET,
42 ALIGNMENT :-> uint8_t)
43

44 // statements and programming model
45 MODELNAME: NAME
46 model: ’Model(’ MODELNAME ’,’ MODELID ’)’
47 api_add_field:
48 add_flag | add_constant | add_point_to
49 statement: add_struct add_field+
50 statements: model statement+ add_head

Figure 5: The grammar for intra-message dependencies.

tree-like objects (where each node contains a link pointer to
the next node [10]) through add_head() to define the head
(root) object and add_point_to() to define the descendants.

In addition to the aforementioned rules, we identify three
novel types of context-aware dependencies. Specifically, a
virtual device message may be context-aware, i.e., fields in
virtual devices have specific dependencies. We identify three
context-aware scenarios as explained in the following.

Head-Tail-Pointers Context. A pointer can point to a
single object or a linked list of objects. Linked lists may
require an additional pointer field to indicate the list’s tail
(Appendix Figure 14), which is reasonable since some
virtual devices can handle a sequence (or ring) of com-
mands in one message. We support this through an API
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1 vd0 = Model(’tx’, 0)
2 vd0.add_head([’tx_t’])
3 vd0.add_struct(’tx_t’, {
4 ’command#0x4’: ’FLAG’,
5 ’array_addr#0x4’: ’POINTER’})
6 vd0.add_flag(’tx_t.command’, {0: 3})
7 vd0.add_point_to(’tx_t.array_addr’,
8 [None, ’macaddr’, ’config’, None, None, None,
9 //if 0 1 2 3 4 5

10 None, None], condition=[’tx_t.command.0’])
11 // 6 7 == tx_t.command.0

Figure 6: Intra-message annotation with our grammar. The
value of tx_t.command.0 decides tx_t.array_addr’s type.

named add_point_to_linked_list(), which is similar to
add_point_to() but explicitly defines a linked list.

Flag/Tag-Pointer Context. Flag bits in a field may affect
the fuzzing execution paths and the corresponding pointers
have different types. Both data and pointer fields can have
flag bits. This dependency starts from a bit-wise data field
and ends with a multi-typed pointer field. Figure 3 shows an
example. To support this dependency, we add a new param-
eter condition :-> CONDITION_SET to add_point_to() and
add_point_to_linked_list(). This parameter shows which
bits will decide the type of the corresponding pointer field.

Len-Buffer Context. A random data field may have
specific semantics to indicate how long a buffer is. This de-
pendency is required only when the virtual device checks the
length of a buffer like a checksum algorithm. Appendix Fig-
ure 15 shows an example. To support this dependency, we
adjust the type of the data field from RANDOM to CONSTANT

and put the length of the buffer to the candidate value list.
Our grammar may be extended as long as backward

compatibility is kept. Appendix A.3 lists additional intra-
message dependencies.

Statements and Programming Model. Besides the
type system and APIs, we introduce a programming model
(from line 45) for analysts to develop the intra-message
annotation. Each virtual device is encoded with a or multiple
Models that wrap the intra-message dependencies. Analysts
can extend a Model by including a head object (add_head()),
structures (add_struct()), and fields (add_field()). In this
way, a buffer tree is built to support field-awareness, bit-
awareness, and context-awareness. Figure 6 shows the intra-
message annotation for Figure 3.

Fully automating the annotation extraction is challenging.
Our partial annotation inference vastly reduces human effort,
which is a more scalable solution to support new virtual
devices than manual inspection of the device specifications.
We summarize the implementation in Section 5.1 and the
uncertainty of the automation in Section 6.1.

3.2. Inter-Message Mutators

To tackle inter-message dependencies, we propose three
new categories of message mutators that infer inter-message
dependencies by composing messages and sequences of
messages (Table 2). Our automatic approach overcomes
tedious manual tracing and modeling [14].

Our mutators provide consistency (message-level), diver-
sity (sequence-level), and semantics (group-level). To the
best of our knowledge, we are the first to apply this technique
to the virtual device domain. Our mutator design follows this
intuition: once the fuzzing engine finds an interesting seed,
it keeps the seed in the corpus, and consistently mutates it
in the next fuzzing loop. In other words, the inter-message
dependencies are not specifically defined but are gradually
learned. We detail the mutators in the following.

Message-Level Mutators. We define six message-level
message mutators that modify the content of a message,
which ensures consistency between the original and the
mutated message. For instance, the change of MMIO address
can generate a sequential visit to a virtual device. Specifically,
we define five primary mutators (ID 1–5) and one extensive
mutator (ID 6). Mutators 1–3 modify each parameter within
a message to keep the message well-balanced. Mutators 4–5
randomly delete and insert a message to adjust the length of
the input. The extensive mutator (ID 6) adds several repeated
messages. We observed that ID 6 would increase or decrease
variables in a virtual device, allowing the fuzzer to bypass
boundary checks.

Sequence-Level Mutators. We define six sequence-level
message mutators that add or delete messages in a sequence.
Along with local modifications via message-level mutators,
this causes a higher probability of dramatic changes across
message sequences to bypass hard checks [15]. Specifically,
Mutators 7–9 update messages within a sequence, and
mutators 10–12 handle sequences.

Group Mutator. We define the new “group mutator”
category, whose purpose is to cluster dependent messages
into a so-called GROUP_MESSAGE. Grouped messages remain
intact during subsequent mutation steps. These mutators
are built on top of a trigger-action protocol, which relies
on feedback (trigger) from the virtual device and a handler
(action) to decide whether to group the messages. Section 4.3
details our two types of group mutators.

4. VIDEZZO System Design
VIDEZZO (Figure 8) consists of two components:

VIDEZZO-CORE, which is VMM-agnostic and provides
inputs consisting of virtual device messages, and VIDEZZO-
VMM, which is VMM-specific and interacts with the virtual
ID Lvl Mutators Description

1

ML

ChangeValue Mutate the value of a message
2 ChangeAddr Mutate the address of a message
3 ChangeSize Mutate the size if not fixed
4 EraseMessage Randomly erase a message
5 InsertMessage Insert one new message
6 InsertRptdMessage Insert multple new messages

7

SL

ShuffleMessages Shuffle a sequence of messages
8 CopyPartOfSequence Copy messages from a sequence to another
9 CrossOverSequence Exchange messages between two sequences

10 EraseSequence Randomly erase part of a sequence
11 InsertSequence Insert a sequence randomly
12 ShuffleSequence Shuffle all messages in a sequence

13 GL GroupMessage Group messages for future re-use

TABLE 2: Multi-level mutators and their description. Legend:
ML: Message-level, SL: Sequence-level, GL: Group-level.
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Figure 7: The workflow of ViDeZZo in a mutation-based greybox fuzzer. M: Message.
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Figure 8: System design of ViDeZZo.

devices. Specifically, first, VIDEZZO picks an input, i.e., a
message sequence, from the queue and passes it to message-
and sequence-level mutators (Section 4.1). Next, to dispatch
the messages, VIDEZZO obtains the real physical addresses
from the shared testing interface array and invokes the
corresponding dispatching methods (Section 4.2). Then,
VIDEZZO uses feedback from the virtual device to exer-
cise a trigger-action protocol. Following this protocol, the
group mutators cluster messages (Section 4.3) that, e.g., are
generated from the intra-message annotation (Section 4.4).

Figure 7 shows the fuzzing loop workflow. In the be-
ginning, the fuzzer selects a seed from a corpus. If the
corpus is empty, the first seed is empty. In the example, the
seed consists of four messages, Messages 1–4. We hide their
internal formats for simplicity. Then, the seed is mutated into
a test case: Message 1 is kept; a parameter marked in the dark
grey area of Message 2 is updated to another value (Mutator 1,
2, or 3); Message 3 is deleted (Mutator 4); Message 4 is
kept; another Message 1 with different parameters is added
(Mutator 5). After seed mutation, the fuzzer sequentially
dispatches the messages to the target virtual device. In the
example, Message 1 and Message 2 are dispatched first.
Next, a trigger informs the fuzzer that Message 4 is about to
load data from the main memory. Followed by an action, the
fuzzer generates and injects Messages 5 and 6 to set up the
main memory before Message 4 consumes them. Note that
the injected message and the trigger message are locked and
mutated as a group in the next fuzzing loop (Mutator 13).
At this point, the fuzzer dispatches the last Message 1 and
finishes exercising the test case. Finally, if the test case
discovers new coverage, the fuzzer saves the mutated seed
into the corpus and repeats the loop.

4.1. Input Parsing and Mutations

VIDEZZO-CORE parses a byte-array seed into message
sequences through serialization and deserialization. Next, our
message- and sequence-level mutators generate a new input.
Section 5.2 shows the implementation.

4.2. Interface and Dispatching Methods
After the mutation (message- and sequence-level muta-

tors), the fuzzer dispatches each virtual device message by
invoking the corresponding VMM-specific dispatch methods.
Specifically, VIDEZZO-CORE defines a set of high-level
dispatch methods that are instantiated in VIDEZZO-VMM.
This method-based abstraction allows VIDEZZO to read
and write the internal state of a virtual device, facilitating
VIDEZZO to scale to more virtual device categories, archi-
tectures, and hypervisors.

This mechanism uses testing interface arrays to define
what messages are allowed and how they are dispatched. For
instance, if an interface of a virtual device describes a four-
byte aligned MMIO area from 0xe0001000 to 0xe0001200,
the guest is allowed to issue MMIO read and write messages
within that range. Note that requests must be four-byte
aligned. Several testing interfaces form the testing interface
array that is defined in VIDEZZO-CORE and instantiated
in VIDEZZO-VMM. The array includes dynamic interfaces
and predefined interfaces that are described below.

Dynamic Interface. For each fuzzing instance, VIDEZZO
fuzzes one virtual device, which improves the utilization
of virtual device messages. For the target virtual device,
VIDEZZO finds and extracts its memory regions, which
define PIO or MMIO memory spaces with the information
of the starting address, size, and alignment, which is feasible
since each VMM sets up a well-defined struct when register-
ing a virtual device. Obtaining this information via VMM-
specific APIs needs predefined interface signatures. For
example, the EHCI capability memory region is associated
with the string “capabilities” that serves as a signature.

Predefined Interfaces. VIDEZZO defines several inter-
faces that cannot be identified automatically, such as memory
allocation, read and write, and free interfaces. Specifically,
except for PIO and MMIO related interfaces, we encode
the interfaces for memory and clock-related messages. The
number of these fixed interfaces is limited, and once defined,
VIDEZZO uses them across different targets.

We associate each virtual device message with a given
interface through an extra interface_id field. When dis-
patching a message, the dispatcher looks up the proper
interface via interface_id from the testing interface array,
adjusts the target address, aligns the data, and then invokes
the corresponding dispatching methods.

4.3. Group Mutator
VIDEZZO proposes two group mutators: Load Miss

Mutator and Record Start-End Mutator. Group mutators are
instantiated over a newly proposed trigger-action protocol.
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The protocol has a well-defined trigger (feedback) and
an action (handler) attached to the trigger. This protocol
behaves as an interrupt service routine and enables a context
switch between VIDEZZO-VMM and VIDEZZO-CORE.
We distinguish three phases. First, when feedback is hit,
the fuzzer stops the current execution and goes to the
handler. Second, the handler groups related messages into a
GROUP_MESSAGE. Finally, the handler returns and the fuzzer
resumes the driver execution.

Load Miss Mutator. Some virtual devices expect groups
of messages linked to each other [10]. We introduce the
Load Miss Mutator to handle this condition. Figure 7 shows
an example: after Message 4 is issued, a pci_dma_read() is
invoked. However, VIDEZZO must inject Messages 5 and
6 to satisfy the intra-message dependencies, otherwise, the
virtual device will read meaningless information.

For the feedback, we intercept the load instruction
when the virtual device attempts to load data from guest
memory. We call this feedback Load Miss. For the action,
the mutator implements a handler, named Load Miss Handler
that requires the destination address of load. In the handler,
VIDEZZO generates a set of messages linked to the original
one (Section 4.4).

Record Start-End Mutator. Some virtual devices require
a list of messages in a given order, as shown at line 10 in
Figure 4. To address this requirement, we introduce a Record
Start-End Mutator, that records ordered messages sharing
variables, e.g., gs->internal_state.

We define two points of feedback: start and end. The start
feedback is triggered when the shared variable is written,
and the end feedback is when the shared variable is used. On
start, the group mutator will record all following messages
until the end is triggered. As an action, VIDEZZO groups
the recorded messages and keeps them intact.

Note that group mutators work together with the other
two levels of mutators to learn inter-message dependencies
automatically. Currently, we support two group mutators.
Nevertheless, a developer can implement other feedback and
handlers on top of our trigger-action protocol. For example,
a group mutator could group a set of fixed virtual device
messages to reset a virtual device.

4.4. Intra-Message Annotation to Messages
Algorithm 1 shows how to leverage the intra-message

annotation to generate virtual device messages to support
intra-message dependencies. For better understanding, we
define three high-level conceptual messages: alloc, fillup, and
free. Each of them consists of one or several basic messages
defined in Table 1.

The construction starts from the head object (line 17–
20), which invokes Alloc(), Fillup(), and Free() in order.
Alloc() (line 1–2) appends the virtual device message
memalloc (e.g., Message 5 in Figure 7) to the message set M.
Moreover, Alloc() allocates a buffer in the guest memory.
Fillup() (line 3–14) adds memwrite (e.g., Message 6 in
Figure 7) to write a specific or random value to each field
in the head object. If a field is a flag or a pointer, Fillup()

Algorithm 1: Annotation-to-Message Construction
Input: Intra-Message Annotation D
Input: Message memalloc, memread, memwrite, memfree
Result: Messages M = {m 1, m 2, . . . , m n}

1 Function Alloc(Size):
2 M.append (memalloc (Size));

3 Function Fillup(Object):
4 foreach Field← Object.F ields do
5 Metadata← Field.Metadata
6 switch Field.Type do
7 case FLAG do
8 M.append(memwrite(gen flag(Matadata)));

break;
9 case CONSTANT do

10 M.append(memwrite(Field.V alue));
break;

11 case RANDOM do
12 M.append(memwrite(rand())); break;

13 case POINTER do
14 M.append(memwrite(gen pointer(Matadata)));

break;

15 Function Free(Addres):
16 M.append(memfree(Address));

17 Head← D.Head
18 HeadAddress← Alloc (sizeof (Head));
19 Fillup (Head);
20 Free (HeadAddress);

sets its value according to its annotation. For example, a
flag, whose flag-len-pairs are 0 : 16, 16 : 16, has the value
(rand() && 0xff) | ((rand() && 0xff) � 16). If a field
is a pointer, Fillup() obtains its point-to objects, checks if
there exist conditional fields to be referenced, and invokes
Alloc() and Fillup() recursively to generate a normal object
or a linked list. After the allocation and the fillup, Free()
(line 15–16) frees the head object. Note that, to simplify the
algorithm, we assume that no-longer-used objects are freed
to avoid running out of guest memory.

5. Implementation
We implement the automated annotation extraction

with 364 lines of CodeQL, intra-message annotation with 812
lines of Python, VIDEZZO-CORE with 1,855 lines of C and
518 lines of Python, VIDEZZO-QEMU with 1,503 lines
of C, and VIDEZZO-VIRTUALBOX with 1,165 lines of C.
VIDEZZO supports the latest QEMU and VirtualBox. We
release our tool at https://github.com/HexHive/ViDeZZo. In
the following, we discuss specific VIDEZZO modules.

5.1. Semi-Automatic Intra-message Annotation

To aid analysts, we introduce an inference engine for
intra-message dependencies. Our tool generates a standalone
text file with a baseline annotation for the field- and bit-
awareness. An analyst can refine the baseline later. We
develop the engine based on CODEQL, which integrates
data-flow and taint analysis.

Field-awareness. Starting from a DMA read access, e.g.,
pci_dma_read(), our tool extracts the struct definition of
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the destination buffer. For each field in the struct, the tool
checks if it is a pointer by checking whether the field flows
into DMA accesses code like pci_dma_[read|write]() via
taint analysis. If the field is a pointer, the tool further obtains
its type when available. In few cases, virtual devices use
byte arrays and do not use any casting for the destination
buffers, which forbids explicit struct definitions. This struct
reconstruction needs extra models to map the real struct
definition to arrays. Instead of a heavy model, we develop
a Python script to split the small byte array (less than or
equal to 32 bytes according to our experience) into four byte
chunks and mark each chunk as data.

Bit-awareness. Starting from the struct definition obtained
above, our tool traverses all binary operations with the access
of a struct field as an operand. The tool parses the binary
operations and identifies which bits should be considered.

5.2. VIDEZZO-CORE

VIDEZZO-CORE is VMM-agnostic and is in charge of
decoding and encoding input and mutating virtual device
messages. We base our VIDEZZO-CORE implementation on
libFuzzer. Supporting an alternative frontend (e.g., AFL++)
remains a future engineering extension.

Input Parser. In Table 3, we list the format of all the
messages defined in Table 1. Each message contains two
bytes that define the message type and its interface. Usually,
addr is eight bytes and size is four bytes. As for value,
most are eight bytes, but for MEM_[READ/WRITE], the size
of value depends on the dedicated size field. The reason
for this implementation is to pre-allocate a large buffer and
reduce memory allocation overheads. Finally, to decode and
encode an input, we implement a serializer and a deserializer
through next_##size##_bytes() helpers.

Message-level and Sequence-level Mutators. We imple-
ment our mutators in C by hooking the LLVMFuzzerCustom-

Muatator() in libFuzzer. First, we deserialize the binary
input into messages and directly operate on them. After the
mutation, we serialize the messages to a new binary input.
Since we perform de/serialization only once for each input,
the mutation operation is cheap.

Group Mutator. The trigger-action protocol has two parts.
The first part is the trigger instrumentation in the target
virtual device, and the second part is the implementation of
the corresponding action handlers in VIDEZZO-CORE. For
the first part, we build a Clang-based instrumentation pass
that leverages the annotations of the security analyst in the
target virtual device. For the second part, an analyst should
develop their own handlers.

Figure 9 shows the implementation of the Load Miss Mu-
tator. The Load Miss is detected by hooking pci_dma_read()

Message Type TYPE INTERFACE ID ADDR SIZE VALUE

[MMIO/PIO] READ 1 1 8 4 —
[MMIO/PIO] WRITE 1 1 8 4 8
MEM [READ/WRITE] 1 1 8 4 SIZE
MEM [ALLOC/FREE] 1 1 — — 8
CLOCK STEP 1 1 — — 8

TABLE 3: Bytes of each field in each message.

1 static int __wrap_pci_dma_read(
2 uint32_t addr, void *buf, size_t size) {
3 /*handler*/LoadMissHandler(addr);
4 return REAL(pci_dma_read)(addr, buf, size);
5 }
6

7 void ehci_state_fetchqh(EHCIState *ehci) {
8 EHCIqh qh;
9 /*feedback*/WARP(pci_dma_read)(

10 addr, &qh, sizeof(EHCIqh));

Figure 9: Instrumentation of Load Miss Mutator. We use
pci dma read() to be consistent with the paper jargon, while
we instrument get dword() in the implementation.

1 void mmio_write_dword(
2 physaddr addr, uint64_t val) {
3 switch (addr) {
4 case 0x0:
5 gs->internal_state = val; break;
6 /*feedback*/Record(0, /*mode=*/"start");
7 case 0x4:
8 if (!gs->internal_state) break;
9 /*feedback*/Record(0, /*mode=*/"end");

10 // do something and break

Figure 10: Instrumentation of Record Start-End Mutator.

in QEMU and PDMDevHlpPCIPhysRead() in VirtualBox. The
address of the destination buffer is passed to the Load Miss
Handler. This handler is VMM-agnostic and implemented
in VIDEZZO-CORE. Finally, we resume the control flow to
the virtual device.

Figure 10 shows the implementation of the Record Start-
End Mutator. We introduce an API named Record(int id,

char *mode) whose first argument is a unique identifier,
the second parameter indicates whether to start or end the
recording. The Record() functions traces all the messages
and groups them when the record ends.

In our prototype, all feedback is visited by automatically
generated virtual device messages. An alternative strategy
would require carefully manually crafted messages. However,
we consider this approach infeasible because a virtual device
might require a long list of messages that fulfill complex
inter-message dependencies. Instead, our trigger-action pro-
tocol avoids this challenge and simplifies both design and
implementation. Furthermore, based on our protocol, the
saved crashing test case is complete and does not require
regeneration [10] or message reordering [11].

Intra-Message Annotation to Messages. Following Al-
gorithm 1, we implement a grammar interpreter in Python,
which translates the encoded descriptions automatically into
low-level message generators in C code. These generators
are then compiled together with the VIDEZZO-CORE.

Persistent Fuzzing. Restarting virtual machines is a
costly heavy-weight operation and limits the performance
of a fuzzer. To overcome this limitation, we implement
an in-process persistent fuzzer. However, persistent fuzzers
accumulate previous states when executing test cases. The
accumulation may cause unreproducible crashes as a bug
may result from multiple previous test cases. Therefore, we
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modify libFuzzer to optionally record all intermediate test
cases (similar to Syzkaller). We then implement a delta-
debugging approach with Picire [12] to infer the test cases
responsible for the bug, and with the remaining test cases, the
virtual device messages responsible for the same bug. Delta-
debugging performs a binary search on sequential seeds and
messages to establish the minimum crashing seed, reducing
the effort to analyze messages. Based on our experience,
minimized seeds are usually less than 80 messages (see last
column in Appendix Table 10).

5.3. VIDEZZO-VMM

VIDEZZO-VMM is VMM-specific, however, it follows a
fixed template. VIDEZZO-VMM has four steps: (1) register
the targeted virtual devices, (2) initialize the VM, (3) set
up the shared interface array with real physical addresses,
and (4) implement VMM-specific dispatching methods. The
summarized template highlights necessary knowledge to scale
to a new VMM and relative virtual devices, avoiding the
developer getting lost in the huge code space of hypervisors.
Currently, VIDEZZO supports QEMU and VirtualBox. In
the following, we detail these steps.

Targeted Virtual Device Registration. To register a tar-
geted virtual device, VIDEZZO-VMM provides the corre-
sponding specification: architecture, the launch command
line, and the signature of fuzzing interfaces. Most impor-
tantly, the launch command lines are target-specific, and the
signatures of the testing interfaces depend on the hypervisor.
For the specification format, we adjust the existing implemen-
tation in QEMUFuzzer [16] by adding a new field mrnames

as the signatures of testing interfaces. We have added virtual
devices covering different categories and architectures for
each hypervisor, as the evaluation shows.

VMM Initialization and Interface Identification. To ini-
tialize a VMM, we pass the launch command line in the
fuzz target specification to the main() function of a VMM.
Then, to identify the non-predefined testing interface in a
virtual device, we scan all registered PIO and MMIO memory
regions and choose the matched ones with the interface
signatures. Finally, we extract the metadata (e.g., the physical
addresses of the chosen PIO or MMIO memory region) and
fill the metadata into the shared interface array. We reuse
the code in QEMUFuzzer [16] for VIDEZZO-QEMU and
implement similar functions for VIDEZZO-VIRTUALBOX.

VMM Specific Message Dispatching Methods. We use
the QTest APIs for VIDEZZO-QEMU. QTest is an in-
process testing framework based on QEMU Message Protocol
(QMP). QTest can access guest memory directly and scales to
multiple virtual devices and architectures. We also implement
a similar functionality for VIDEZZO-VIRTUALBOX.

6. Evaluation
This section presents the evaluation of VIDEZZO, which

we design to answer the following four research questions.
• RQ1: What is the overall efficiency of VIDEZZO com-

pared to other virtual device fuzzers?

• RQ2: What is the difference in coverage and overhead of
VIDEZZO compared to dependency-agnostic fuzzers?

• RQ3: What are the advantages of VIDEZZO to discover
existing bugs compared to existing tools?

• RQ4: How does VIDEZZO behave to discover new bugs?
Fuzzer and Hypervisor Settings. For RQ1–RQ3, we

port (i) NYX (both NYX-LEGACY and NYX-SPEC), QE-
MUFUZZER (the “industry” version of MORPHUZZ), and
VIDEZZO to QEMU 5.1.0 and (ii) VIDEZZO to Virtual-
Box 6.1.14. Currently, part of NYX, MORPHUZZ, and V-
SHUTTLE (also known as V-SHUTTLE-S) are open-source.
NYX and MORPHUZZ support recent QEMU, but they do not
support VirtualBox. V-SHUTTLE supports QEMU 5.1.0 and
VirtualBox 6.1.14. For RQ4, we upgrade VIDEZZO to the
latest QEMU and VirtualBox. We compile all hypervisors
with Clang; we do not use any starting seeds for each fuzzer.

Virtual Device Fuzzing Settings. For RQ1 and RQ2,
we select 28 virtual devices, covering five virtual device
categories (USB, net, display, audio, and storage), four
architectures (i386, x86 64, AArch32, AArch64), and two
hypervisors (QEMU and VirtualBox).

Coverage and Bug Detector Settings: For RQ1 and RQ2,
we rely on Clang source code coverage profiling [17]. Except
for Nyx, we use a signal handler to dump live coverage.
Specifically, we dump coverage every second to monitor
the rapid coverage change over the first 10 minutes and
then dump every 10 mins to save space. For Nyx, we re-
execute all seeds to collect offline coverage. To remove the
interference of early crashes, we disable all sanitizers, remove
all asserts and abort(), and patch any bugs found in the
fuzz targets. Note that we use the same patched QEMU and
VirtualBox for all fuzzers. We further dump the coverage
when the hypervisor crashes or times out to guarantee reliable
coverage collection. For RQ3 and RQ4, we disable coverage
profiling, enable sanitizers, i.e., ASan and UBSan, and keep
all asserts and abort() to capture more bugs.

Server Resources: For RQ1–4, we conduct all experi-
ments on six servers with hyper-threading disabled, each with
16 Intel Xeon Gold 5218 CPU (2.30GHz) cores, 64GB RAM,
and Ubuntu 20.04. We fuzz each virtual device from scratch
on one core for 24 hours, and we repeat each experiment
ten times for statistical significance [18].

6.1. Expressive Grammar Limits Manual Effort
We execute our inference engine tool (Section 5.1) over

18 QEMU virtual devices (Appendix Table 8). The analysis
automatically extracts 93% of struct definitions, determines
80% of the pointers, and finds 70% of the flags. Regarding
the missing information, we identify three causes intrinsically
related to static-analysis limitations.

Unnamed types. CODEQL 2.10.5 cannot infer the defi-
nition of unnamed structs/unions. To address this issue, the
tool reports the source code location where structs/unions
are defined and then relies on manual confirmation. In total,
we find four unnamed structs and three unnamed unions.

State-aware executions. Two disjointed control-flow seg-
ments of a virtual device can be connected only when the
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virtual device reaches specific internal states, for instance,
by exercising two or more messages. Without specific
knowledge, CODEQL’s taint analysis shows its limitation
in propagating information among disjointed control flows.
In our prototype, we manually address this issue. Another
viable option is to employ type-sensitive algorithms [19] that
infer control-flow segments controlled by variables of the
same type, e.g., global structures used in switch statements.
In total, we observe six structs covering four virtual devices.

Context-aware dependencies. Static analysis struggles
when extracting complex data relations such as linked lists.
In these cases, we fall back to manual analysis. During our
evaluation, we encounter only five virtual devices (out of
18) falling in this category.

With the support of our inference engine, we model
18 QEMU virtual devices, while NYX-SPEC models only
XHCI (out of 16 QEMU virtual devices). Appendix Table 8
details the results. Moreover, to quantify the manual effort,
Appendix Table 9 estimates average times for each case for
the support of annotation, hypervisor and group mutator.

6.2. Efficiency
We demonstrate that VIDEZZO supports different cate-

gories of virtual devices, and reaches competitive coverage
compared with state-of-the-art virtual device fuzzers.

Scalability. Table 4 shows that VIDEZZO scales to 28
virtual devices covering five device categories, four architec-
tures, and two hypervisors. The scalability is due to three
reasons. First, our flexible design abstracts the fuzzing logic
(VIDEZZO-CORE) from VMM implementation (VIDEZZO-
VMM), thus simplifying the porting of VIDEZZO-CORE
over different virtual devices, device categories, architec-
tures, and hypervisors. Second, our lightweight annotation
allows adapting new virtual devices to VIDEZZO. Third,
virtual devices already annotated can be tested over different
hypervisors, thus further reducing the porting effort.

Final Coverage. For rows in Table 4 with two or more
colored numbers, i.e., where we replicated related work, we
observe VIDEZZO reaches competitive (8/22) or even higher
(14/22) coverage.

Nyx. NYX-LEGACY works better for storage devices,
while VIDEZZO works better for audio, network, and USB
devices. VIDEZZO works better than NYX-SPEC in 24 hours.

V-Shuttle. VIDEZZO works better for USB devices than
V-SHUTTLE. Regarding the measured results, V-SHUTTLE
(without seeds) cannot reach coverage as high as other tools
due to two reasons. First, the coverage is influenced by the
initial corpus. The authors of V-SHUTTLE also mentioned
that initial seeds can “improve the fuzzing efficiency further”.
V-SHUTTLE uses seeds collected when the BIOS and the
guest kernel initialize the virtual device. We speculate
those seeds encode intra-message dependencies that improve
the final coverage and speed. Conversely, we did not use
initial seeds when reproducing V-SHUTTLE results. The
comparison between VIDEZZO and V-SHUTTLE indicates
that VIDEZZO produces higher quality seeds that cover more
interesting test cases autonomously. Second, the authors of

Device VDF HYPERCUBE Nyx-Legacy V-SHUTTLE QEMUFuzzer VIDEZZO

QEMU-x86 Audio

AC97 53.0% 100% 94.04% — 95.93% 95.90%
CS4231a 56.0% 74.76% 75.36% 85.80% 94.06% 92.61%
ES1370 72.7% 91.38% 89.69% 91.91% 88.40% 91.36%
Intel-HDA 58.6% 79.17% 62.61% 78.30% 65.87% 64.78%
SB16 81.0% 83.80% 83.12% 81.52% 84.15% 87.54%

QEMU-x86 Storage

AHCI — — — 61.60% 49.89% 62.06%
FDC 70.5% 84.51% 70.06% — 69.23% 69.72%
Megasas — — — 58.50% 58.67% 76.74%
SDHCI 90.5% 81.15% 73.58% — 71.34% 68.52%
VirtIO-BLK — — — — 30.55% 55.39%

QEMU-x86 Network

E1000 81.6% 66.08% 53.36% 74.50% 35.32% 82.27%
E1000E (1/2)1 — — — — 63.12% 60.94%
E1000E (2/2)1 — — — — 35.48% 40.84%
EEPro100 75.4% 83.32% 82.12% — 82.13% 90.46%
NE2000 71.7% 71.89% 74.35% 71.90% 75.09% 94.00%
PCNET 36.1% 78.81% 78.87% 88.90% 93.27% 92.10%
RTL8139 63.0% 74.68% 83.33% 80.82% 83.06% 77.46%

QEMU-x86 Display

ATI-VGA (1/2)2 — — — 79.40% — 80.69%
ATI-VGA (2/2)2 — — — — — 85.67%
CIRRUS-VGA — — — — 88.65% 89.68%

QEMU-x86 USB

EHCI — — — 31.19% 71.84% 71.96%
OHCI — — — 36.62% 77.33% 83.99%
UHCI — — — 22.27% 55.90% 72.00%
XHCI — 64.40% 63.24% — 52.92% 81.63%

Nyx-Spec
XHCI 77.12%

QEMU-x86 64

VirtIO-BLK — — — — — 55.39%

QEMU-AArch32

PL041 (Audio) — — — — — 83.91%
SMC91C111 (Net) — — — — 92.14% 92.98%
TC6393XB (Display) — — — — — 76.38%

QEMU-AArch64

XLNX-ZYNQMP-CAN — — — — — 70.42%
XLNX-DP (Display) — — — — — 90.42%

VirtualBox x86 64

SB16 — — — — — 61.33%
FDC — — — — — 39.32%
PCNET — — — — — 48.35%
OHCI — — — — — 36.13%
1 We collected the coverage in e1000e.c and e1000e_core.c, respectively.
2 We collected the coverage in ati.c and ati_2d.c, respectively. V-SHUTTLE authors confirmed that they did not
consider ati_2d.c. Therefore, it shows — in the table.

TABLE 4: Results of final coverage over 6 fuzzers, i.e., VDF,
HYPERCUBE, NYX (NYX-SPEC only supports XHCI), V-
SHUTTLE, QEMUFUZZER, and VIDEZZO. “—” indicates
lack of support for the virtual device. Colored numbers
report average coverage across ten runs for 24 hours from
our evaluation, other numbers are from corresponding papers.

V-SHUTTLE confirm that they manually performed actions
of storing and loading a VMM, thus adding and deleting a
device to cover code that otherwise would not be reached,
which implies that the final results reported in their paper are
probably higher than those without manual intervention. To
make the comparison fair, we did not perform these actions
when reproducing V-SHUTTLE results.

QEMUFuzzer. VIDEZZO works better than QEMU-
FUZZER for storage, network, and USB virtual devices that
have more annotations. We attribute QEMUFUZZER’s high
final coverage to its DMA access pattern support during
fuzzing as these simple patterns can slowly guess partial
intra-message dependencies.

Importantly, no fuzzer can reach 100% coverage as some
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10s1m 10m1h 24h
0%

20%

40%

60%

80%

100%

Br
an

ch
 C

ov
er

ag
e

ViDeZZo
QEMUFuzzer
NYX (Legacy)
NYX (Spec)

(l) XHCI

Figure 11: Branch coverage over 24 hours of virtual devices fuzzed by NYX , V-SHUTTLE , QEMUFUZZER , and
VIDEZZO . The shadows show the minimum/maximum coverage, and the black lines show the average coverage.

code is never reachable in the evaluated environment due
to: (1) conditional compilation flags; (2) configuration error
handlers; (3) migration callbacks; (4) cleaning up functions.
For instance, compared to QEMU, the basic block coverage
of VirtualBox virtual devices is lower and one of the reasons
is more unreachable functions.

Branch Coverage over Time. Figure 11 shows that, during
the first ten seconds, the coverage reached by VIDEZZO
sharply increases, then reaches a plateau within one hour.
Even though NYX-LEGACY has higher coverage at the begin-
ning, VIDEZZO catches up in seconds. In general, VIDEZZO
achieves competitive final coverage results faster than NYX-
LEGACY, QEMUFUZZER, and V-SHUTTLE. Interestingly,
code with deeper callstacks (Figure 11g) is more slowly
explored compared to shallower code (Figure 11f).

6.3. Sensitivity Analysis of Design Choices

We conduct a sensitivity analysis of our design choices
in terms of coverage and overhead. Specifically, we design
four VIDEZZO variants with a suffix indicating the enabled
features, i.e., intrA-message annotation (A), inteR-message
mutators (R), and Persistent fuzzing (P). For example,
VIDEZZO-ARP shows results with all three features enabled.
VIDEZZO-AP does not have inter-message mutators but

Variants IntrA-Message
Dependency

InteR-Message
Dependency

Persistent
Fuzzing

VIDEZZO-ARP 3 3 3
VIDEZZO-AP 3 N/A 3
VIDEZZO-RP N/A 3 3
VIDEZZO-P N/A N/A 3
QEMUFUZZER N/A N/A N/A
V-SHUTTLE N/A N/A N/A
NYX-SPEC 3 3 N/A
VIDEZZO++-ARP 3 3 3

TABLE 5: VIDEZZO variants and baselines. Specifically,
VIDEZZO-ARP keeps all our design options and techniques,
e.g., intrA-message annotation (A), inteR-message mutators
(R) and Persistent fuzzing (P). Furthermore, we test QEMU-
FUZZER, V-SHUTTLE, NYX-SPEC, and VIDEZZO++.

enables byte mutations in libFuzzer. In general, these variants
show the impact of each feature independently and combined.

Table 5 shows the setting. We select QEMUFUZZER
and V-SHUTTLE as baselines, and include NYX-SPEC
and VIDEZZO++ to evaluate statefulness. We implement
VIDEZZO++ based on ViDeZZo-ARP, which contains a
simple state-aware mechanism similar to FUZZUSB (see
Appendix A.4). VIDEZZO and QEMUFUZZER supports all
four controllers, V-SHUTTLE does not support XHCI, while
NYX-SPEC and VIDEZZO++ only support XHCI.

Efficient Dependency-aware Fuzzing. Figure 12 presents
four insights. First, the difference between VIDEZZO-ARP
and VIDEZZO-AP indicates our inter-message mutators
contribute to both new coverage and coverage speed over
time. Second, the difference between VIDEZZO-ARP and
VIDEZZO-RP indicates our intra-message annotations have
more impact on the new coverage. Third, the differences
among VIDEZZO-ARP, VIDEZZO-RP, and VIDEZZO-P
indicate our inter-message mutators are more effective when
intra-message annotations are enabled. The third observation
is expected since, without intra-message dependencies, the
fuzzer is spinning in the shallow code space. Fourth, the slight
difference between VIDEZZO and VIDEZZO++ shows that
state awareness does not significantly increase code coverage.
Later shown in Figure 13b, however, VIDEZZO++ finds
different state transitions (paths), i.e., different coverage,
presenting a distince exploration angle to find new bugs.

Overhead. Table 6 shows the executions per second.
Here, we observe three insights. First, VIDEZZO is generally
faster than QEMFUZZER. Second, the performance of intra-
message annotations appears to be target dependent. Third,

Fuzzer EHCI OHCI UHCI XHCI

Average Speed (exec/s)

VIDEZZO-ARP 3,679.18 763.77 4,263.97 4,350.51
VIDEZZO-AP 1,135.82 198.69 850.31 1,111.21
VIDEZZO-RP 3,221.41 6,735.11 3,006.41 5,393.13
VIDEZZO-P 1,135.20 1,358.38 820.81 1,136.90
QEMUFuzzer 120.38 141.70 93.27 169.54

TABLE 6: Overhead of VIDEZZO variants over 24 hours.
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Figure 12: Branch coverage of VIDEZZO variants and baselines.

10s 1m 10m 1h 24h
0

10

20

30

Co
un

t

ViDeZZo
ViDeZZo++
NYX (Spec)

(a) State coverage

10s 1m 10m 1h 24h
0

50

100

150

200
Co

un
t

ViDeZZo
ViDeZZo++
NYX (Spec)

(b) Transition coverage

Figure 13: State and transition coverage over 24 hours.

inter-message mutators increase the speed by four to five
times due to a reduced number of mutations per iteration.

State Coverage. In the following, we show the number of
states (e.g., QEMU XHCI has 33 distinct states) and of state
transitions (the state transition space is 33× 33) over time
of NYX-SPEC, VIDEZZO, and VIDEZZO++. As shown
in Figure 13a, VIDEZZO and VIDEZZO++ cover states
faster than NYX-SPEC. Conversely, VIDEZZO++ performs
slightly better than VIDEZZO in Figure 13b, which is
expected since the former is state-aware. We further include
the final state machines in Appendix Figure 19a, Figure 19b
and Figure 19c.

6.4. Quick Discovery of Existing Bugs
Table 7 shows the comparison how well V-SHUTTLE,

QEMUFUZZER, and VIDEZZO discover the five bugs listed
in the V-SHUTTLE paper. We execute each trial 10 times for
at most 24 hours and then average the number of executions
to discover the bugs. Initially, we fail to reproduce CVE-
2020-25085 in 24 hours because due to a not annotated a
12-bit sub-field. We address this issue by manually annotating
the sub-field, thus allowing VIDEZZO to bypass the block.

6.5. Discovery of Bugs in Long-time Running
We run VIDEZZO for 24 hours and successfully repro-

duce 24 existing bugs and found 28 new bugs on and above
Bug Description V-SHUTTLE QEMFUZZER VIDEZZO

CVE-2020-11869 ATI-VGA IO 35.6M — 782K (98.0K–2.85M)

CVE-2020-25084 EHCI UAF 79.4M 1.80M (1.36–2.23M) 44.0M (11.7M–88.8M)

CVE-2020-25085 SDHCI HBO 8.88M 1.58M (1.28M–1.85M) 32.3M (1.74M–114M)

CVE-2020-25625 OHCI IL 40.5M TIMEOUT 2.22K (1.02K–6.22K)

CVE-2021-20257 E1000 IL 235K TIMEOUT 283K (101K–618K)

TABLE 7: Average number of, along with minimum and
maximum, executions that a virtual device fuzzer requires to
trigger a vulnerability. “–” indicate a lack of support. Colored
numbers are from our evaluation and uncolored ones are
from corresponding papers. IO: integer overflow, UAF: use
after free, HBO: heap buffer overflow, IL: infinite loop.

QEMU 6.1.50 and on VirtualBox 7.0.0 (Appendix Table 10).
Specifically, we fuzz every virtual device for 24 hours, with
one core each. Whenever a crash appears, we consider it
as a bug, triage it, and report it. Moreover, we are actively
engaging the QEMU and VirtualBox communities to patch
existing and newly found bugs.

Impact Analysis. Appendix Table 10 shows that virtual
devices have different types of bugs, including not only
missing or faulty checks, but also spatial and temporal
memory corruption. Assertion failures and aborts represent
59.61% (31/52), causing a denial of service on Ubuntu which
enables assertions in its QEMU binary. In the discovered
bugs, we obtain 1 CVE recognized and provide 7 accepted
patches. Bugs in virtual devices are common. Bugs diversity
(virtio/non-virtio) in virtual devices enriches the attack
primitives and reduces the attack difficulty.

The following two case studies show why the intra-
message annotation and inter-message mutator matter.

Case Study 1. VIDEZZO triggers a previously known
user-after-free in the QEMU EHCI controller (CVE-2020-
25084). Having a minimized PoC, we reached the following
two conclusions. The inter-message mutators automatically
picked up a “write and wait” message sequence pattern. The
first stage of the PoC sets up the internal state of EHCI
with multiple write messages. The sequence ends with a
clock_step message, that advances the system time, forces
the expiration of all timers, and activates the asynchronous
ehci_work_bh to process USB packets. This “write and
wait” pattern is common in driver development. The intra-
message annotation affects the control flow resulting in
a UAF bug. The second stage of the PoC loads a buffer
from the physical memory. EHCI reaches different states
according to the previous internal state and the values
in the buffer. Then, EHCI tries to map a USB packet
via usb_packet_map() to the host address space but fails.
The error handler, i.e., usb_packet_unmap(), rolls back the
previous mappings. However, EHCI does not synchronize the
mapping failure. Therefore, usb_packet_unmap() is invoked
again, thus resulting in a use-after-free bug.

Case Study 2. VIDEZZO triggers a previously unknown
inconsistency bug inside a QEMU USB storage device by
fuzzing the QEMU OHCI controller. Specifically, in the
storage device, USB MSDM DATATOUT conflicts with
SCSI XFER FROM DEV. This inconsistency triggers an
assertion failure in the storage device.

We constructed a minimized PoC benefiting from intra-
message annotation and inter-message mutators: (1) The
intra-message annotation helps pass critical constraint checks.
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Specifically, VIDEZZO models endpoint descriptors chains
and transfers descriptors chains of OHCI [20] through flag
and pointer fields, guaranteeing that the OHCI traverses the
descriptors and allowing the storage device to access the
data inside the descriptors themselves. Using the constraints
enables VIDEZZO to produce a correct SCSI command with
a state SCSI XFER FROM DEV. (2) The inter-message mu-
tators select a specific message sequence allowing the storage
device to reach the buggy state. In particular, the storage de-
vice must traverse multiple stages from USB MSDM CBW
to USB MSDM DATAOUT, which is achieved via the inter-
message mutators that gradually learn the message order.

7. Discussion
Testing Instruction Emulation. VIDEZZO targets virtual

devices; we consider testing instruction emulation orthogonal
work. Recent achievements on this topic [21], [22], [23],
[24] also show that it needs specific techniques to overcome
the high overhead and the difficulty of constructing more
semantic-aware instructions.

Testing Closed-source VMMs. VIDEZZO relies on source
code to annotate virtual device messages and, at first approx-
imation, does not support closed-source virtual devices like
EHCI in VirtualBox and devices in VMWare. Nevertheless,
VIDEZZO shows that reusing existing annotations for the
same virtual device for different hypervisors is feasible. The
remaining future work is to identify testing interfaces in the
closed-source virtual device via a reverse engineering.

Probing Hypervisor Internal State. In our implementation,
we removed the heavy fork server and let the fuzzed virtual
device accumulate its internal state in the fashion of persistent
fuzzing. V-SHUTTLE [10] claims that this approach limits
the effectiveness of fuzzing. However, as demonstrated in
our paper, combining dedicated dependency-aware mutators
and delta-debugging mitigates unwanted side effects.

8. Related Work
Virtual Device Security Analysis. To our best knowledge,

Ormandy et al. first discussed the problems of hypervisor
security in 2007 [3]. Ormandy et al. developed a tool
generating random I/O port activities to test virtual de-
vices. Later, Yu et al. used static analysis and differential
testing to build a virtual device testing framework named
VDTEST [5] and showed that with more meaningful analysis,
the testing results outperform random testing [3]. Tang et
al. tried to fuzz virtual devices [6] and then Deng et al.
published a tool named VDF on fuzzing virtual devices [7].
VDF records initialization MMIO messages as seed inputs,
mutates them, and then dispatches them via “record and
replay”. Increasing the testing interfaces of VDF, later,
Schumilo et al. proposed HYPERCUBE which shows the
improvement via multiple testing interfaces even without
coverage feedback [8]. Schumilo et al. extended their work
through NYX by introducing coverage feedback and a new
mutation engine to generate more grammar-aware inputs [9].
Conversely, our approach is more scalable than NYX-SPEC

due to our lightweight intra-message annotation. Pan et
al. propose V-SHUTTLE to handle DMA accesses and
design a seed pool to feed the virtual devices [10]. At
the same time, MORPHUZZ also observes handling DMA
accesses is essential. Even though VIDEZZO is concurrently
proposed, we go further than V-SHUTTLE and MORPHUZZ
by supporting intra-message dependencies (by our grammar)
and inter-message dependencies (by our mutators).

Grammar and Format-based Mutation. Mutation-based
fuzzing is one of the most effective techniques to discover
bugs in complex software. These fuzzers leverage different
mutators to generate inputs and increase code coverage. For
non-structural inputs, the mutators operate random bits or
bytes [25], [26], however, these techniques are ineffective
with structured inputs. Grammar-aware mutators operate
on nodes or subtrees in the AST [27], [28], [29], [30],
[31], [32], [15] to generate valid inputs. To improve the
effectiveness of current grammar-aware fuzzers, Prashast et
al. leverage grammar automatons and redesign the grammar-
aware mutators to change inputs at a large-scale [15]. Format-
aware mutators usually operate on each field of the test
case [33], [34], [35], [36]. Van-Thuan et al. design several
high-level mutators to add, delete, and splice mutatable
fields [33]. VIDEZZO takes virtual messages as input and
mutates the whole input sequence, which is different from the
above approaches. Like Syzcaller [37], our mutators handle
inter-message dependencies. We are the first to apply such
mutators to fuzz virtual devices.

9. Conclusion

Virtual device fuzzing remains challenging as fuzzers
must keep track of intra-message and inter-message depen-
dencies. We propose a dependency-aware fuzzing framework
VIDEZZO for virtual devices combining both of the de-
pendencies. In this framework, a lightweight grammar, and
three categories of new message mutation rules are presented,
working together boosting to the fuzzing results. Compared
to previous work, VIDEZZO is both scalable (covering two
hypervisors, four architectures, five device categories, and
28 virtual devices) and efficient (hitting competitive code
coverage faster). We successfully reproduced 24 existing bugs
and found 28 new bugs with 1 CVE assigned covering diverse
bug types. We have provided 7 accepted patches. VIDEZZO
is available at https://github.com/HexHive/ViDeZZo.
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Appendix A.

A.1. Head-Tail-Pointers Context

Figure 14 shows how pointer fields collaborate. Pointer
field head and tail point to the head and the tail of a
singly linked list of td_t. Fuzzers hooking each dma read
API [10], [11] cannot handle this because they do not know
dependencies across dma read APIs. If the context is not
handled, the while loop in line 10 cannot terminate because
random head and tail are unlikely equal.
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1 typedef struct {
2 uint32_t head; uint32_t tail;
3 } ed_t;
4 typedef struct {
5 uint32_t next;
6 } td_t;
7 void handle_end_descriptor(physaddr head)
8 ed_t ed;
9 dma_read(/*addr=*/head, /*dst=*/&ed)

10 while ((ed.head & 0xffffff00) != ed.tail) {
11 td_t td;
12 phsyaddr addr = ed->head & 0xffffff00;
13 if (ed.head & 0x1) /* be invalid and return */
14 dma_read(/*addr=*/addr, /*dst=*/&td);
15 ed->head |= td.next & 0xfffffff00;
16 //---------
17 vd1 = Model(’ed’, 1)
18 vd1.add_head([’ed_t’])
19 vd1.add_struct(’ed_t’, {
20 ’head#0x4’: POINTER|FLAG,
21 ’tail#0x4’: ’POINTER’})
22 vd1.add_flag(’ed_t.head’, {0: 1@0})
23 vd1.add_struct(’td_t’, {’next#0x4’: ’POINTER’})
24 vd1.add_linked_list(
25 ’ed_t.head’, ’ed_t.tail’,
26 [’td_t’], [’next’], alignment=8)
27 vd1.add_head([’ed_t’])

Figure 14: Example of Head-Tail-Pointers Context.

1 typedef {
2 uint64_t addr1; uint32_t len;
3 } bpl_t;
4 void handle_hda(physaddr addr0)
5 bpl_t bpl;
6 dma_read(/*addr=*/addr0, /*dst=*/&bpl);
7 int n_copied = custom_memcpy(
8 /*src=*/bpl.addr1, /*dst=*/buf);
9 if (bpl.len == n_copied) {

10 // do something
11 //----------
12 vd2 = Model(’bpl’, 2)
13 vd2.add_head(’bpl_t’)
14 vd2.add_struct(’bpl_t’, {
15 ’addr1#0x8’: ’POINTER’, ’len#0x4’: ’CONSTANT’})
16 vd2.add_strcut(’bpl_buf’, {
17 ’buf#0x1000’: ’RANDOM’})
18 vd2.add_point_to(’bpl_t.addr1’, [’bpl_buf’])
19 vd2.add_constant(’bpl_buf.len’, [0x1000])

Figure 15: Example of Len-Buffer Context.

A.2. Len-Buffer Context
Figure 15 shows how a data field collaborates with a

pointer field. If a fuzzer does not control the value of len,
the branch at line 9 is unlikely to be token.

A.3. Intra-message Dependency in MMIO Accesses
Figure 16 shows other intra-message dependencies when

handling MMIO accesses. First, line 7 requires reg and val

that are fields of a MMIO write message to be both equal
to zero. If not, xhci_process_commands() is unlikely to be
taken. Second, line 11 highlights the sub-fields in val.

A.4. Implementation of VIDEZZO++

1 static void xhci_doorbell_write(
2 void *ptr, hwaddr reg,
3 uint64_t val, unsigned size) {
4 reg >>= 2;
5 if (reg == 0) {
6 if (val == 0) {
7 xhci_process_commands(xhci);
8 } else {
9 epid = val & 0xff;

10 streamid = (val >> 16) & 0xffff;
11 xhci_kick_ep(xhci, reg, epid, streamid);
12 }
13 //----------
14 vd3 = Model(’xhci_doorbell_write_0’, 3)
15 vd3.add_head(’mmio_write’)
16 vd3.add_struct(’mmio_write’, {
17 ’addr#0x8’: ’CONSTANT’, ’len#0x4’: ’CONSTANT’,
18 ’valu#0x8’: ’CONSTNAT’})
19 vd3.add_constant(’mmio_write.addr’, 0x0)
20 vd3.add_constant(’mmio_write.len’, 0x4)
21 vd3.add_constant(’mmio_write.valu’, 0x0)
22

23 vd4 = Model(’xhci_doorbell_write_!0’, 4)
24 vd4.add_head(’mmio_write’)
25 vd4.add_struct(’mmio_write’, {
26 ’addr#0x8’: ’CONSTANT’, ’len#0x4’: ’CONSTANT’,
27 ’valu#0x8’: ’FLAG’})
28 vd4.add_constant(’mmio_write.addr’, [
29 i for i in range(4, 0x20)])
30 vd3.add_constant(’mmio_write.len’, 0x4)
31 vd4.add_flag(’mmio_write.valu’, {
32 0: 8, 8: 16, 16: 32, 32: 64@0})

Figure 16: Intra-message Dependency in MMIO Accesses.

1 while (1) {
2 TRBType type;
3 pci_dma_read(
4 pci_dev, ring->dequeue, trb, TRB_SIZE);
5 + __sanitizer_cov_trace_state(0, 1);
6 trb->addr = ring->dequeue;
7 trb->ccs = ring->ccs;

Figure 17: State Instrumentation in QEMU XHCI.

VIDEZZO++ mimics FUZZUSB to support state and
state transition feedback in QEMU XHCI (currently,
VIDEZZO++ only supports QEMU XHCI). First, like
FUZZUSB, a state transition point is defined as a DMA
access, e.g, pci_dma_read(). Then, whenever a state tran-
sition point is visited, the virtual device enter into a new
state. Next, we manually instrument QEMU XHCI, with
__sanitizer_cov_trace_state() whose first argument is
always 0 for QEMU XHCI and second arugment is the
identifier of the new state, to explicitly pass the new state after
the transition point to libFuzzer (Figure 17). We implemented
two bytemaps (the first is of one dimension for states and
the other is of two dimensions for state transitions) to count
how many times (at most 255) a state or a state transition is
encountered. Besides, the two byte maps are involved into
the libFuzzer’s feature collection. If covering any new state
or state transition, this seed will be added to the corpus.
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Device Generic Struct # of
Flags

# of
Pointers

# of
Fields

# of Context
-Awareness

AC97 AC97 BD.8.A 2/2 1/1 2/2 —
AC97 AC97 TMPBUF.8.A — — 1/1 —
CS4231a CS4231A BUF0.8.A — — 1/0 —
ES1370 ES1370 TMPBUF.8.A — — 1/1 —
Intel-HDA INTEL HDA BUF0.8.A 1/0 1/0 3/4 III
Intel-HDA INTEL HDA VERB.32 1/1 — 1/1 —
SB16 SB16 BUF0.8.A — — 1/0 —

AHCI AHCI CMFIS.8.A 2/0 — 37/32 —
AHCI AHCI SG.S — 1/1 3/3 —
AHCI AHCI RESFIS.8.A — — 1/1 —
AHCI AHCI LST.8.A — — 1/1 —
FDC FLOPPY BUF.8.A — — 1/0 —
MEGASAS MEGASAS REPLY QUEUE TAIL.32 — — 1/1 —
MEGASAS MEGASAS REPLY QUEUE HEAD.32 — — 1/1 —
MEGASAS MEGASAS MFI FRAME HEADER SENSE.64 — — 1/2 —
MEGASAS MEGASAS MFI INIT QINFO.S 1/1 — 5/5 —
MEGASAS MEGASAS MFI FRAME INIT.S 1/1 2/1 15/15 II
MEGASAS MEGASAS MFI FRAME DCMD.S 1/1 — 17/17 II
MEGASAS MEGASAS MFI FRAME ABORT.S 1/1 — 15/17 II
MEGASAS MEGASAS MFI FRAME SCSI.S 1/1 — 12/12 II
MEGASAS MEGASAS MFI FRAME IO.S 1/1 1/1 17/17 II
SDHCI SDHCI FIFO BUFFER0.8.A — — 1/1 —
SDHCI SDHCI FIFO BUFFER1.8.A — — 1/1 —
SDHCI SDHCI ADMA2.64 0/1 1/1 4/2 —
SDHCI SDHCI ADMA1.32 1/1 1/1 1/1 —
SDHCI SDHCI ADMA2 64.64 — 1/1 4/2 —

E1000 E1000 RX DESC.S 2/1 1/1 6/6 —
E1000 E1000 TX DESC0.S 2/2 1/1 3/3 —
E1000E E1000 TX DESC0.S 2/2 1/1 3/3 II
E1000E E1000 CONTEXT DESC.S 4/4 — 4/0 II
E1000E E1000E READ RX DESC.8.A — 1/0 4/4 —
EEPRO100 MAC ADDR0.8.A 0/1 — 6/6 II
EEPRO100 CONFIGURATION.8.A 22/2 — 22/22 II
EEPRO100 TX BUFFER ADDRESS.32 — 1/1 1/1 II
EEPRO100 TX BUFFER SIZE.16 — — 1/1 II
EEPRO100 TX BUFFER EL.16 0/1 — 1/1 II
EEPRO100 EEPRO100 TX.S 4/0 3/0 11/4 —
EEPRO100 MAC ADDR1.8.A — — 6/6 —
EEPRO100 EEPRO100 RX.S 2/0 1/0 6/4 —
PCNET PCNET XDA.S 2/0 — 3/2 —
PCNET PCNET TMD.S 2/3 1/1 5/5 —
PCNET PCNET RDA.S 2/0 — 3/2 —
PCNET PCNET RMD.S 3/4 1/0 5/5 —
PCNET PCNET INITBLK32.S 10/12 — 13/13 —
PCNET PCNET INITBLK16.S 3/10 — 10/10 —
RTL8139 RTL8139 RX RING DESC RXDW0.32 1/1 — 1/1 —
RTL8139 RTL8139 RX RING DESC RXDW1.32 1/0 — 1/1 —
RTL8139 RTL8139 RX RING DESC RXBUFLO.32 — 1/1 1/1 —
RTL8139 RTL8139 RX RING DESC RXBUFHI.32 — — 1/1 —
RTL8139 RTL8139 TXBUFFER.8.A — — 1/1 —
RTL8139 RTL8139 TX RING DESC TXDW0.32 1/1 — 1/1 —
RTL8139 RTL8139 TX RING DESC TXDW1.32 1/1 — 1/1 —
RTL8139 RTL8139 TX RING DESC TXBUFLO.32 — 1/1 1/1 —
RTL8139 RTL8139 TX RING DESC TXBUFHI.32 — — 1/1 —

EHCI entry.32 1/1 1/0 1/1 —
EHCI EHCIqtd.S 3/4 7/7 8/8 —
EHCI EHCIqh.S 6/7 9/4 12/12 —
EHCI EHCIitd.S 11/11 8/15 16/16 —
EHCI EHCIsitd.S 3/1 1/0 7/7 —
OHCI OHCI HCCA.S — 32/32 35/35 —
OHCI OHCI ED.S 3/3 3/2 4/4 I
OHCI OHCI TD.S 4/4 3/1 4/4 I
OHCI OHCI ISO TD.S 3/3 1/1 12/12 I
UHCI link.32 1/1 1/1 1/1 —
UHCI UHCI QH.S 2/2 2/2 2/2 —
UHCI UHCI TD.S 3/3 2/2 4/4 —
XHCI XHCITRB0.S 2/2 1/3 5/5 —
XHCI XHCIEvRingSeg.S 1/0 1/0 3/3 —
XHCI XHCI POCTX.64 — 1/1 1/1 —
XHCI XHCI CTX.32.A 1/1 — 2/2 —
XHCI XHCI SLOT CTX.32.A 4/4 — 4/4 —
XHCI XHCI EP0 CTX.32.A 3/3 — 5/5 —

Missing (False Negative) 38/128 19/95 27/396
29.69% 20.00% 6.82%

Wrong (False Positive) 16/128 9/95 4/396
12.50% 9.47% 1.01%

TABLE 8: Statistics of semi-automatic intra-message annota-
tion. We list the supported generic structs (we use different
suffixes to tell the difference, e.g., S for struct, A for array,
32 for uint32 t), the number of flag fields, pointer fields, all
fields of the structs (verified results v.s. automatic results),
also the context-awareness for a virtual device (I is for Head-
Tail-Pointer Context, II is for Flag/Tag-Pointer Context, and
III is for Len-Buffer Context).
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(i) SDHCI
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(l) E1000E Core
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(p) RTL8139
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10s1m 10m1h 24h
0%

20%

40%

60%

80%

100%

Br
an

ch
 C

ov
er

ag
e

ViDeZZo
QEMUFuzzer

(s) CIRRUS-VGA

10s1m 10m1h 24h
0%

20%

40%

60%

80%

100%

Br
an

ch
 C

ov
er

ag
e

ViDeZZo
QEMUFuzzer
V-Shuttle-S

(t) EHCI

10s1m 10m1h 24h
0%

20%

40%

60%

80%

100%

Br
an

ch
 C

ov
er

ag
e

ViDeZZo
QEMUFuzzer
V-Shuttle-S
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(v) UHCI

10s1m 10m1h 24h
0%

20%

40%

60%

80%

100%

Br
an

ch
 C

ov
er

ag
e

ViDeZZo
QEMUFuzzer
NYX (Legacy)
NYX (Spec)

(w) XHCI
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Figure 18: A full version of the branch coverage over 24
hours of the virtual devices fuzzed by NYX , V-SHUTTLE ,
QEMUFUZZER , and VIDEZZO . The shadow shows the

minimum and the maximum coverage, and the black line
shows the average coverage.
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Step (where in the text) Manual effort Estimated average time

Add a new VMM (Section 5.3)

Register a virtual device by searching its architecture, the launch command line, and the
signature of PIO/MMIO regions. 10 minutes per virtual device

Initialize a VMM and identify the testing interfaces by following the main() in an existing
VMM frontend.

A week per VMM (up to two
weeks for debugging)

Decide and implement the dispatching methods by looking for guest memory access functions. An hour per VMM

Finish the rest of the annotation
extraction after scanning the
source code of a virtual device
with our static analysis engine
(Section 6.1)

Extract the definition of unnamed types by looking at the source code. Two minutes per case

Match two taint analysis results touching the same variable due to disjointed control flow by
reading the source code. 15 minutes per case

Extract the head-tail pointer context by reading the source code. 10 minutes per case

Extract the flag/tag pointer context by reading the source code. 20 minutes per case

Extract the length and buffer context by reading the source code. Five minutes per case

Add a new group mutator (end
of Section 4.3)

Obtain the insight about what group mutator is necessary by fuzzing virtual devices. N/A

Decide the feedback and develop the handler with the help of our action-trigger protocol. Hours per case (up to two days
for debugging)

TABLE 9: During the whole process of the virtual device fuzzing, three steps are manual, i.e., adding a new VMM, addressing
the uncertainty of the static analysis, and adding a new group mutator. For each step, this table details the necessary manual
effort and the estimated average time. Note that our week has 40 working hours.
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Figure 19: State and state transition coverage.
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Id Target Category VMM Version Arch Short Description # of Messages Reported By Status

1 ac97 audio qemu 7.0.94 i386 Abort in audio calloc() 1 An, Vi Fixed
2 am53c974 storage qemu 6.1.50 i386 Null pointer access in do busid cmd() N/A An Fixed
3 ati display qemu 6.1.50 i386 Out of bounds write in ati 2d blt() N/A VS Fixed
4 ati display qemu 7.0.94 i386 Out of bounds write in ati 2d blt() 4 Vi F̃ ixed

5 cadence uart serial qemu 7.2.50 aarch64 Devision by zero in uart parameters setup() 2 Vi F̃ ixed
6 dwc2 usb qemu 6.1.50 aarch32 Assertion failed in hw/usb/core.c from dwc2 N/A Vi Patch submitted
7 e1000 net qemu 6.1.50 i386 Infinite loop in process tx desc() N/A Ny, VS, QF Fixed
8 ehci usb qemu 6.1.50 i386 Abort in usb ep get() N/A Ny, VS, QF Patch submitted
9 ehci usb qemu 6.1.50 i386 Assertion failure in address space unmap() N/A Ny, VS, QF Fixed

10 exynos421 fimd display qemu 7.2.50 aarch32 Assertion failure in fimd update memory section() 2 Vi Open
11 ftgmac100 net qemu 7.2.50 aarch32 Heap buffer overflow in aspeed smc flash do select() 2 Vi Open
12 imx usb phy usb qemu 7.2.50 aarch32 Out of bounds in imx usbphy read() 1 Vi F̃ ixed
13 intel-hda audio vbox 7.0.7 i386 Global buffer overflow in hdaMmioWrite() 1 Vi Open
14 lan9118 net qemu 7.2.50 aarch32 Out of bounds read in lan9118 535 Vi Open

15 lan9118 net qemu 7.2.50 aarch32 Abort in lan9118 16bit mode read() 1 Vi ˜Fixed(us)
16 lsi53c895a storage qemu 6.1.50 i386 Assertion failure in lsi53c810 emulator N/A Ny, VS, QF, An, Vi Fixed
17 megasas storage qemu 6.1.50 i386 Assertion failure in scsi dma complete() N/A QF Fixed
18 megasas storage qemu 6.1.50 i386 Assertion failure in bdrv co write req prepare() N/A QF Fixed

19 nvme storage qemu 6.1.50 i386 Null pointer access in memory region set enabled() 1 Vi ˜Fixed(us)

20 ohci usb qemu 7.0.50 i386 Assertion failure in usb msd transfer data() 29 Vi F̃ ixed

21 ohci usb qemu 7.0.50 i386 Abort in ohci frame boundary() 8 VS, QF, Vi ˜Fixed(us)
22 ohci usb qemu 7.0.50 i386 Heap use after free in usb cancel packet() 67 Vi Open
23 ohci usb qemu 7.0.91 i386 Assertion failure in usb cancel packet() 79 An Open
24 omap dss display qemu 7.2.50 aarch32 Out of memory in hw/omap-dss for aarch32 3 Vi Open
25 pl041 audio qemu 7.0.94 aarch32 Abort in audio bug() triggered by pl041 1 An Fixed
26 pl041 audio qemu 7.0.94 aarch32 Abort in audio bug() triggered by pl041 2 An Fixed
27 sb16 audio qemu 6.1.50 i386 Assertion failure in audio calloc() caused by sb16 N/A An Fixed

28 sb16 audio qemu 6.1.50 i386 Abort in audio calloc() 4 Vi ˜Fixed(us)
29 sdhci storage qemu 7.1.50 i386 Heap buffer overflow in sdhci read dataport() 9 QF Fixed
30 smc91c111 net qemu 7.1.93 aarch32 Out of bounds read/write in smc91c111 5 Vi Open
31 tc6393xb display qemu 7.2.50 aarch32 negative-size-param in nand blk load 512() 23 Vi Open
32 tc6393xb display qemu 7.2.50 aarch32 Heap buffer overflow in nand blk write 512() 7 Vi Open
33 virtio-blk storage qemu 7.0.94 i386 Assertion failure in address space stw le cached() 5 An Fixed
34 virtio-blk storage qemu 7.0.94 i386 Infinite loop in virtio blk handle vq() 16 An Fixed
35 vmxnet3 net qemu 6.1.50 i386 Code should not be reached vmxnet3 io bar1 write() N/A VS, Vi Fixed
36 vmxnet3 net qemu 6.1.50 i386 Three hw error() in vmxnet3 validate queues() N/A QF Fixed
37 vmxnet3 net qemu 6.1.50 i386 Assertion failed in vmxnet3 io bar0 write() N/A QF Fixed
38 vmxnet3 net qemu 6.1.50 i386 Out of memory net tx pkt init() N/A QF, VS Fixed
39 vmxnet3 net qemu 6.1.50 i386 Assertion failure in net tx pkt reset() N/A QF Fixed
40 vmxnet3 net qemu 6.1.50 i386 eth get gso type: code should not be reached N/A QF, VS Fixed

41 xhci usb qemu 7.0.94 i386 Abort in xhci find stream() 56 Vi ˜Fixed(us)

42 xlnx dp display qemu 7.0.91 aarch64 Abort in xlnx dp aux set command() 1 Vi ˜Fixed(us)

43 xlnx dp display qemu 6.1.50 aarch64 Out of bounds read in xlnx dp read() 1 Vi ˜Fixed(us)
44 xlnx dp display qemu 6.1.50 aarch64 Out of bounds in xlnx dp vblend read() N/A An Fixed
45 xlnx dp display qemu 7.2.50 aarch64 Overflow in xlnx dp aux push rx fifo() 3 Vi Patch submitted
46 xlnx dp display qemu 7.2.50 aarch64 Abort in xlnx dp change graphic fmt() 1 Vi Patch submitted
47 xlnx dp display qemu 7.2.50 aarch64 Underflow in xlnx dp aux pop tx fifo() 1 Vi Patch submitted
48 xlnx dp display qemu 7.2.50 aarch64 Overflow in xlnx dp aux push tx fifo() 17 Vi Patch submitted
49 xlnx zynqmp can net qemu 7.2.50 aarch64 Fifo underflow in transfer fifo() 2 Vi Open
50 xlnx zynqmp can net qemu 7.2.50 aarch64 Fifo overflow in transfer fifo() 291 Vi Open
51 xlnx zynqmp qspips spi qemu 7.2.50 aarch64 Out of bound in xilinx spips write() 1 Vi Open
52 xlnx zynqmp qspips spi qemu 7.2.50 aarch64 Underflow in xlnx dp aux push rx fifo() 2 Vi Open

TABLE 10: List of QEMU and VirtualBox bugs. For column “# of Messages”, we present the least number of messages to
trigger this bug with the help of the delta debugging. If the bug has been fixed, we do not do the delta debugging and mark
the cell “N/A”. For column “Reported-By”, if a previously known bug, we list the tool names that triggered the bug, i.e.,
NYX (Ny), VSHUTTLE (VS), QEMUFUZZER (QF), and VIDEZZO (Vi), and we use ANONYMOUS (An) for these tools we
do not know. For column “Status”, if a bug does not have patch, we mark it Open; if we submit a patch, we mark it “Patch
submitted”; if a bug has been fixed and we are not involved, we mark it “Fixed”; if we are involved, we mark it “F̃ ixed”;
particularly, if our patch is accepted, we mark it ˜Fixed(us).
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