
WarpAttack: Bypassing CFI through Compiler-Introduced Double-Fetches

Jianhao Xu∗†, Luca Di Bartolomeo†, Flavio Toffalini†, Bing Mao∗, Mathias Payer†
State Key Laboratory for Novel Software Technology, Nanjing University∗, EPFL†

Abstract—Code-reuse attacks are dangerous threats that at-
tracted the attention of the security community for years. These
attacks aim at corrupting important control-flow transfers for
taking control of a process without injecting code. Nowadays,
the combinations of multiple mitigations (e.g., ASLR, DEP, and
CFI) drastically reduced this attack surface, making running
code-reuse exploits more challenging.

Unfortunately, security mitigations are combined with com-
piler optimizations, that do not distinguish between security-
related and application code. Blindly deploying code optimiza-
tions over code-reuse mitigations may undermine their security
guarantees. For instance, compilers may introduce double-
fetch vulnerabilities that lead to concurrency issues such as
Time-Of-Check to Time-Of-Use (TOCTTOU) attacks.

In this work, we propose a new attack vector, called
WarpAttack, that exploits compiler-introduced double-fetch
optimizations to mount TOCTTOU attacks and bypass code-
reuse mitigations. We study the mechanism underlying this
attack and present a practical proof-of-concept exploit against
the last version of Firefox. Additionally, we propose a
lightweight analysis to locate vulnerable double-fetch code
(with 3% false positives) and conduct research over six popular
applications, five operating systems, and four architectures (32
and 64 bits) to study the diffusion of this threat. Moreover,
we study the implication of our attack against six CFI imple-
mentations. Finally, we investigate possible research lines for
addressing this threat and propose practical solutions to be
deployed in existing projects.

1. Introduction

Most software running on today’s systems is written
in low-level languages like C or C++. As these languages
are prone to memory corruption bugs that often enable
attackers to launch powerful code execution attacks, the
applications need to be thoroughly tested to remove as many
bugs as possible. As testing is generally incomplete due to
state explosion, mitigations are added to the code to make
exploitation more challenging [1].

Widely deployed mitigations such as Address Space
Layout Randomization (ASLR) [2], stack canaries [3], and
data execution prevention (DEP) [4] lower the exploitabil-
ity of bugs. However, code-reuse attacks such as Return-
Oriented Programming (ROP) [5–9] remain effective under
all these mitigations. These attacks redirect control flow to
execute legitimate instruction sequences in program memory
for malicious purposes.

Control-Flow Integrity (CFI) [10, 11], widely recognized
as a key mitigation to stop code-reuse attacks, restricts
control-flow transfers to strictly follow some benign pro-
gram execution. Specifically, CFI first statically computes
the program’s control-flow graph (CFG) and determines all
legitimate targets of control-flow transfers. Then, CFI in-
struments the code with checks to validate each control-flow
transfer at run-time. CFI is practical: CFI implementations
are readily available in production compilers and have been
widely deployed, with some trade-offs between granularity
and performance. For example, the Android ecosystem de-
ployed LLVM-CFI [12, 13] in Android 9’s kernel [14], and
Windows applications are widely protected by Microsoft’s
Control Flow Guard [15].

Despite the advance of modern CFIs, they cannot stop
all the attacks. In practice, not all code may be protected
through CFI [16] since their precision is limited by the target
sets size. In an ideal scenario, only one possible target is
valid for each indirect control-flow transfer, however, CFI
checks indirect transfers against a set of targets. Therefore,
attackers may choose any target in this set, allowing some
deviation from a benign execution. This deviation may be
sufficient for an attack. Still, the key advantage of CFI is that
the size of the target set is generally small (between many
targets with under ten targets and few targets at around 100
targets even for complex applications) [17]. Without CFI
any executable byte is a valid target, resulting in millions of
targets. CFI is therefore believed to practically stop code
reuse attacks or, at least, make it almost impossible to
bypass. Mitigations are generally implemented as compiler
passes (or, rarely, as static binary rewriting passes). How-
ever, compilers currently are unaware of security checks
inserted by mitigations and consider them just code that
undergoes the same optimizations as all non-privileged code.
For example, the compiler may spill sensitive variables
used for security checks [18] that suffer from double-fetch
vulnerabilities (a variable is read multiple times without
integrity checks). When these cases appear, they may leave
room for a race condition and resulting in Time-of-Check to
Time-Of-Use [19] (TOCTTOU) opportunities for attackers.

In this work, we present WarpAttack: a novel attack
that bypasses strong anti-code-reuse mitigations and grants
arbitrary code execution to adversaries. Our attack ex-
ploits a misalignment between CFI implementations and
assumptions of C/C++ compilers when translating switch
statements to jump tables (or multiple checks against one
target). The CFI threat model assumes that adversaries can
modify arbitrary data including function pointers but not

code [20–23]. Therefore, CFI implementations assume that
a combination of storing jump tables in read-only memory
and bound checking the indirect control flow transfer will
sufficiently protect the jump tables. However, compilers are
unaware of CFI’s security assumptions and optimize code,
which results in double fetch vulnerabilities and TOCTTOU
attacks between the bound check and the indirect jump.
The code for computing indirect jumps in switch statements
often follows this pattern: given a jump table and an index,
the program first fetches the index value to validate the
bound check against the jump table size, then, it fetches the
index value again for processing the actual jump. Since the
index is loaded (fetched) multiple times, an adversary may
race against the bound check and overwrite the index value
after the bound check itself, finally allowing arbitrary jumps
outside the jump table. The attacker may lose the race by
changing the target value too early or too late. If the value is
changed before the bounds check, the switch statement will
likely revert to the default case. If the value is changed after
the jump, it will likely overwrite a stale value. Similar issues
were investigated by previous reports [24], that describe
double-fetches near bound-checked indirect jump to a jump
table but, so far, were considered a concurrency bug [25].

Through our study, we research TOCTTOU security
issues introduced by double-fetches. More precisely, we aim
at demonstrating: (a) how compilers regularly insert double-
fetches of sensitive variables, (b) how to automatically find
these cases, (c) discuss their presence in sensitive software,
and (d) show practical exploits in commercial applications.

To evaluate our new attack WarpAttack, we imple-
ment (and release as open-source) a proof-of-concept attack
against Firefox to demonstrate WarpAttack is practical under
a realistic adversary model. Our PoC shows how to win
the race condition and take control of the victim program.
Additionally, we implement a lightweight binary analysis
to detect compiler-introduced double-fetches in widely used
C/C++ programs on multiple platforms (with a false-positive
rate of 3%). Our results show that (i) mainstream compilers
including Clang, MSVC, and GCC generate such victim
code patterns in sensitive situations, (ii) most CFI imple-
mentations are vulnerable to our attack, (iii) widely used
C/C++ programs like Firefox and Chrome present such vic-
tim code patterns; (iv) these code patterns can be found on
different platforms including Linux, Windows, and Mac OS
and cross-architecture (i.e., x86/64, ARM, MIPS, RISCV).
Finally, we discuss possible mitigations and propose future
research directions to cope with WarpAttack.

In summary, our contributions are:
• We introduce WarpAttack, a new attack to bypass code-

reuse mitigations and grant arbitrary code execution to
adversaries.

• We show a working proof-of-concept example of
WarpAttack against Firefox.

• We conduct a comprehensive research on compiler-
introduced double-fetch code samples in popular ap-
plications across multiple OSs and architectures.

• We perform a study of different compilers and CFI
implementations to demonstrate the magnitude of our

attack has real-world impact.
• We design (and implement) a new lightweight binary

analysis to detect victim code (which is available at
https://github.com/HexHive/WarpAttack).

2. Background

This section introduces background information for un-
derstanding WarpAttack.

2.1. Code reuse attacks and mitigations

Code reuse attacks use memory corruptions to overwrite
indirect forward edges (e.g., call/jumps) or backward edges
(e.g., return instructions) for taking control of the program
execution (thus granting arbitrary code execution to the at-
tacker). Once a code reuse payload is injected and activated,
it diverges the normal execution flow of a program into one
attacker-controlled. The core idea is to stitch together small
pieces of code, called gadgets, in so-called chains. In the
literature, there are plenty of techniques to create and inject
code reuse payloads that target either backward (ROP [6])
and forward jumps (JOP [8] or vtable [26]). Regardless the
technique used, the chain is injected through the memory
corruption vulnerability and set such that, when the target
indirect jump is traversed, the control-flow is transferred to
the first gadget of the chain, finally triggering the attack.

For mitigating code reuse attacks, researchers propose
solutions to guarantee the correct execution of the program
at runtime (i.e., allowing only “benign” execution flows).
This is usually implemented through control-flow integrity
checks (CFIs), that model all the correct program executions
via a control-flow graph (CFG) and enforce correct execu-
tion through different policies. Generally, we consider CFIs
for protecting forward [12] or backward jumps [27]. In this
work, we mainly focus on CFI for forward jumps, however,
we show WarpAttack can bypass any CFI that fulfill our
requirements. Enforcing perfect CFIs require inferring all
the correct executions of a program, thus ensuring that (at
runtime) any indirect control-flow transfer lands on one sin-
gle target. However, enforcing this property is impracticable
since it requires one to infer all the possible execution flows.
In practice, CFIs adopt an approximation that allow indirect
jumps to land over a set of valid targets (instead of a single
one). Even though this leaves room for attacks [28, 29], it
has been proved the target sets are small enough to make
code reuse attacks generally challenging [17].

2.2. CFI bypassing methods

Current offensive research lines for bypassing CFIs fo-
cus on different angles, that we classify in two main cate-
gories: targeting policy, or targeting implementation issues.
In the first category, a CFI may implement a too loose target
set, that de-facto allows an attacker to bend the execution
flow while remaining undetected. Alternatively, if the target
set is strict enough and no jumps are overwritten, adversaries

https://github.com/HexHive/WarpAttack

proposed novel techniques, called data-only attacks [30],
to perpetrate malicious actions without breaking the CFI
policy. In the second category, attackers exploit CFI imple-
mentation errors. For instance, by taking advantage of low-
level code optimizations (e.g., spilled registers [27]), that
temporary move critical values (e.g., the target set) from
registers to memory, thus leaving room to an adversary to
overwrite the protections; or else, using code motion [31].

This work shows a novel attack to bypass CFI implemen-
tations by targeting specific low-level code optimizations
that conflict with CFI security assumptions. More precisely,
we hijack the execution-flow without tampering with the
CFI policy.

2.3. Double-fetch

Double-fetch bugs occur when a privilege system reads
a variable (from a memory location) multiple times, but
the fetched value is inconsistent due to concurrency is-
sues [19, 25, 32, 33]. Figure 1 exemplifies a double-fetch
bug in which the victim thread reads (fetches) the variable
A from the memory twice (i.e., Check([A]) and var
:= [A]). Contemporaneously, an attacker thread manages
to win the race condition by exploiting the time window
in between the two fetches (i.e., [A] := 0xdeadbeef)
and pass the victim thread check (i.e., Check([A])).
More precisely, the first fetch correctly checks the value of
A, while the use of var (i.e., Use(var)) works on the
injected value 0xdeadbeef.

Double-fetch issues have been deeply studied in the
community and many mitigations/detections have been pro-
posed as well [19, 25, 32, 33]. In general, the threat model
faced by these works only consider concurrency issues,
without taking in account possible memory overwrite vul-
nerabilities. Moreover, current detections of double-fetch
bugs look for different code patterns, e.g., shared structures
between processes. Conversely, we deal with very specific
patterns that appear as result of compiler optimizations (e.g.,
register spilling), thus requiring ad-hoc studies.

Victim thread

Check([A])

 var := [A]

Use(var)

Error()

 Memory state

[A] = 12

[A] = 0xdeadbeef

[A] = 0xdeadbeef

Attacker thread

[A] := 0xdeadbeef

Figure 1. An example of double-fetch error.

2.4. Bound-Checked Jump Table

Compilers generally translate switch statements (and
similar branching code) into jump tables. The compiler

checks if the targets are dense enough, i.e., the resulting
switch table would be compact with not too many empty
entries. Alternatively, the compiler may use a set of branches
(translating into nested if statements). A jump table allows
O(1) lookup of the target while nested if statements result
in O(logN) lookup time. Note that the compiler may fill
empty slots and adjust the base and power of the index. For
example, a switch statement with cases for 8, 16, 24 and
default can be expressed by a switch table with 4 entries
where the index is adjusted and shifted. The code for a
jump table lookup consists of a bound check, followed
by an indirect jump whose address is computed with the
checked value. Most of the time, the value remains in one
register, remaining immutable between the bound check
and the computation of the jump address. Therefore, the
indirect jump is secure in this situation, as long as the
register cannot be corrupted. Mitigations against control-
flow hijacking (including CFI) therefore do not pay special
attention to such a bound-checked indirect jumps.

Here we give an example of such a bound-checked
jump table generated from a switch statement. As shown in
Figure 2, the checked object is fetched once at line 8. The
fetched value in ecx is checked and then used at line 10 and
line 13. Attackers cannot control the indirect jump as long
as the register value cannot be overwritten after the check
at line 10.

1 ;switch(obj->type) {
2 ; case 0:
3 ; ...
4 ; default:
5 ; ...
6 ;}
7 mov rax, rdi
8 mov eax, DWORD PTR [rdi+0x30]
9 add eax, 0xffffffff

10 cmp eax, 0x11 ;the bound check
11 ja 401163 ;default branch
12 lea rdi, [rax+0x30]
13 jmp QWORD PTR [rax*8+0x402008]

Figure 2. An example bound-checked jump table

Consecutive if statement. Besides switch statements,
C/C++ compilers can also generate jump tables for certain
code with multiple if statements. We refer to such situations
as “Consecutive If statement”. Such kind of if statements
may be replaced with a switch statement without changing
the meaning of the source code. From the perspective of
our attack model, we claim that the binary code from such
“Consecutive if statement” is equivalent to that from a
switch statement. That is because they are all the same
at the binary level and protections of control-flow transfers
like CFI do not need to specially take care of any of them.

3. Threat Model

Our threat model follows the one introduced for CFI [10]
and is in line with prior offensive works [18, 26, 34].
The attacker holds the following adversarial capabilities and
faces the following defensive assumptions. The goal of the
attacker is to hijack control flow to a particular location.

Adversarial Capabilities.
• Arbitrary read-write: The attacker holds a memory-

corruption vulnerability (such as a use-after-free error)
that empowers them to read/write arbitrary memory.
C/C++ programs are prone to such vulnerabilities,
which is one of the reasons why CFI [10] was de-
veloped.

• Thread control: The attacker is in active control of a
thread within the same address space as the program
being attacked. This requirement is satisfied, e.g., when
the victim browses an attacker-controlled website [35]
with malicious JS code, spawning attacker-controlled
threads through Web workers [36].

• Gadgets: The victim program contains sufficient gad-
get code snippets i.e., the switch jump table with a
compiler-introduced double-fetch. This is not rare and
we have found several mainstream compilers generate
such gadgets with given compilation configurations.

Defensive Assumptions.
• Non-Executable Memory: The victim program enforces

Data Execution Prevention (DEP) [4]. That is, the
attacker cannot execute any injected “code” and must
perform code-reuse attacks.

• Randomization: The victim program applies random-
ization protections such as address space layout ran-
domization (ASLR [2]).

• Control Flow Protection: The victim program applies
a fully precise static CFI with both forward-edge and
backward-edge (such as a ShadowStack [37]) protec-
tion. CFI itself is properly configured and correctly
implemented.

Difference to the CFI attacker model. Our attacker model
requires two changes: (i) The adversary requires a trigger-
able compiler-introduced double-fetch gadget. As we show
in § 7, such gadgets can be found in the x86/64 binary of
many real-world C/C++ programs compiled by mainstreams
compilers. Note that our attack is not restricted to compiler-
based CFI but also applies to binary-only CFI, although we
need compiler-introduced gadgets. That is because, ignoring
orthogonal compiler optimizations, vulnerable CFI imple-
mentations do not protect bound-checked indirect jumps.
(ii) Optional capabilities. Even though the CFI threat model
assumes an attacker with arbitrary read capabilities. Our
scenario does not strictly require this feature. Orthogonally,
arbitrary read capabilities may simplify end-to-end exploits
or improve the success rate.

4. Compiler-Introduced Double-Fetch

Compilers are free to optimize code according to the
model of the underlying programming language semantics.
For C/C++, these semantics do not discuss code how to
handle code of mixed sensitivity. Mitigations enforce a
security policy for the code they protect. One could argue
that mitigations therefore require higher privileges as they
are critical to the security guarantees they provide. Com-
pilers are unaware of this special nature of mitigations and

may break inherent assumptions of the mitigation during
optimization.

As we have discussed in § 2.4, bound-checked indirect
jumps are secure as long as the checked value and the
value to calculate the jump address is consistent. However,
the consistence can be vulnerable to an attacker when the
compiler introduces a double-fetch: the first time for the
bound check and the second time for the jump address
calculation.

4.1. Vulnerable Double-Fetch

When double-fetched, the checked value of the bound-
checked indirect jump is vulnerable. That is because then
there will be a TOCTTOU issue, i.e., it will leave a time
window for the attacker to rewrite the checked value after
the bound check and control the target of the indirect jump.
Definition of Vulnerable Double-Fetch. Two memory
reads are vulnerable to our double-fetch attack if they satisfy
the following conditions:

• The first memory read targets a bounds check, e.g.,
implemented through a branch. If satisfied, execution
continues to an indirect control-flow transfer, e.g.,
through a jump table. If not satisfied, the default case
will be triggered.

• The second memory read (of the same address) deter-
mines the target address of the control-flow transfer,
e.g., by specifying the index into the jump table and
loading the target address from the table.

• These two memory reads should be performed on the
same value. Note that the two reads do not need to be
performed on the same memory address. For example,
the second read can be performed on the memory object
where the value of the first read is spilled.

• The memory object of the second read should be
writable.

Variant 1: fetch-fetch. The compiler generates code that
fetches the checked value directly from memory for two
times. As shown in Figure 3, the binary code fetches
[r13 + 0x118] the first time at line 11 to do the check
and then fetches it another time at line 15. The second
fetched value is used to calculate (line 17) the indirect jump
at line 19.
Variant 2: fetch-spill-fetch. The compiler sometimes will
produce code that first fetches the value from memory to
do the check, then spills the value to another place on the
stack, and finally loads it from the stack to calculate the
jump target. As shown in Figure 4, the binary code fetches
the value to check at line 3, then the value is spilled on
stack ([rbp - 0x150]) at line 4. The first fetched value is
checked at line 5. Then the code fetches the spilled value
at line 7 to calculate the jump target of the indirect jump at
line 11.
Why it hurts code reuse defense. Compilers introducing
such double-fetches open loopholes for code reuse defenses
such as CFI that validate control-flow transfers. These vul-
nerabilities are caused by a misalignment between CFI

1 ;switch (mca_p->port_format) {
2 ;case SDP_PORT_NUM_ONLY:
3 ; SDP_PRINT("Port num %d, ", mca_p->port);
4 ; break;
5 ;...
6 ;default:
7 ; SDP_PRINT("Port format not valid, ");
8 ; break;
9 ;}

10

11 cmp dword [r13 + 0x118], 6
12 pop rcx
13 pop rsi
14 ja 0x9d6720
15 mov eax, dword [r13 + 0x118]
16 lea rdx, [0x04fee16c]
17 movsxd rax, dword [rdx + rax*4]
18 add rax, rdx
19 jmp rax

Figure 3. An example compiler-introduced double-fetch of a switch jump
table

1 mov byte [rbp - 0x12d], al
2 mov qword [rbp - 0x138], rsi
3 movzx eax, byte [rbp - 0x12d]
4 mov qword [rbp - 0x150], rax
5 sub rax, 4
6 ja 0x80ac3d
7 mov rax, qword [rbp - 0x150]
8 lea rcx, [0x00233d40]
9 movsxd rax, dword [rcx + rax*4]

10 add rax, rcx
11 jmp rax

Figure 4. A variant of compiler-introduced double-fetch of a switch jump
table

mechanisms and compiler optimizations. As we have dis-
cussed above, the compiler-introduced double-fetch leaves
a time window for the attacker to modify the memory and
corrupt the target of the indirect jump. Specifically, such
code can be exploited in the attack model of a CFI and no
CFI provides customized protection for such situation.

5. Attack Methodology

This section presents our methodology to perform at-
tacks against applications protected with CFIs. It begins with
a high-level demonstration of how the attack works (§ 5.1),
then dive into the details by showing the implementation
of a Proof-of-Concept attack against Firefox (§ 5.2). Note
that our attack does not depend on any specific feature of
LLVM-CFI and can bypass other CFI implementations as
we demonstrate in the PoC example.

5.1. High-level Methodology

At a high level, our attack takes advantage of one type of
compiler-introduced gadget code (double-fetch) that cannot
be protected by any CFI implementation. This is a design
weakness of CFI: the side effects of compiler transforma-
tions on the security assumptions of CFI are overlooked.
With such gadget code and the same capabilities as outlined
in the original CFI paper [10], the attacker can therefore
hijack the control flow. The details of the adversarial capa-
bilities of attackers are shown in § 3.

Specifically, our attack exploits the compiler-introduced
double-fetch of a bound-checked indirect jump with a jump
table. Regardless of compiler optimizations, the indirect
jump is immune to code reuse attacks and does not need
a CFI protection. However, as described in § 4.1, once the
compiler introduces an extra fetch and uses the fetched value
to calculate the jump target, the bound check of the index
of the jump table can be bypassed by an attacker to gain
control over the instruction pointer.

Figure 5 illustrates the timeline of the attack. We use
x86/64 assembly-like pseudo code to represent the victim
code. Note that real victim code may be more complex but
should include all the components shown here.

1) The attacker rewrites the checked object to avoid lead-
ing the execution to the default branch; the attacker
rewrites a controlled object to the address of a mali-
cious target.

2) The victim thread fetches the index object from mem-
ory and performs the bounds check on it.

3) The attacker rewrites the object that will be fetched
later. For Variant 1 (fetch-fetch), this is the same object
of the checked object. For Variant 2 (fetch-spill-fetch),
this is the spilled object.

4) The victim thread does the second fetch, reading the
attacker-corrupted value.

5) The victim thread loads the address of the jump target.
Normally, it should be loaded from the jump table.
However, as the computation of the address is based on
the corrupted value, the victim thread reads the indirect
jump address from the controlled memory object. Fi-
nally, the victim thread executes the indirect jump and
lands on the malicious target.

 mov r1, [A]
 cmp r1, imm
 ; may mov [A'], r1
 ja 0xdef

 mov r2, [A]/[A']
 mov r2, [r3+ r2*4]
 add r2, r3
 jmp r2

 ;0xdef: default branch

Attacker

Rewrite A: ensure
not default branch

Rewrite A/A':
 let the jump fetch
address from B

Rewrite B:
address to the

malicious target

2

4

5

Memory

B: Controlled Object

1

1

3

A: Checked Object

A': Spilled Object

Jump Table

;0xdeadbeef: malicious
 target

Figure 5. The timeline of exploiting the double-fetch to hijack control flow.
r1,r2,r3 means registers, imm means some random value and [A]/[A’]
means memory access of A or A’.

5.2. Proof-of-Concept Exploit

We demonstrate the effectiveness of our attack through
a working exploit on a real-world program. For our proof-
of-concept, we chose the Firefox Web browser because it
is a complex and realistic target available for all common
operating systems. We stress that our attacks also apply to
other applications that provide the adversarial capabilities
outlined in § 3.

In our PoC, we choose the last available version of
Firefox at writing time (106.0.1) from the Fedora package
manager, which is built by GCC (12.1.1). Our attack per-
forms the following steps:

1) Gain arbitrary read/write capabilities.
2) Leak ASLR bases for both libxul.so and the stack.
3) Find double-fetch gadgets of bound-checked indirect

jumps.
4) Find a way to reach one of the victim’s vulnerable

indirect jumps.
5) Orchestrate the thread scheduling to win the data race.
6) Overwrite the checked object and hijack the control

flow.
Gaining arbitrary read and write capabilities. Attack-
ers often obtain these capabilities from memory corrup-
tion vulnerabilities such as a use-after-free bugs [38] (e.g.,
CVE-2022-26485 for Firefox). We consider finding such
vulnerability out-of-scope for this study, and assume the
attacker can already read or write arbitrary addresses. Sim-
ilar to previous work [18], we reintroduce a vulnerability
in the browser. Specifically, we chose an out-of-bound bug
that grants arbitrary read/write capabilities to the adversary
through ArrayBuffers instances. The vulnerability is
inspired from Capture-The-Flag competitions [39].
Gadget code detection. Based on the definition of vulnera-
ble gadget code in §4.1, we implement a lightweight binary
analysis tool based on Radare2 [40] to detect gadget code
in a given binary. § 6.1 illustrates the specific pattern used
to detect vulnerable gadgets.
Leak libxul.so base and stack address. The attacker
requires to know the memory location of three objects: the
address of the fetched object, the address of the victim jump
table, and the address of one writeable memory region. The
address of the fetched object is on the stack, the victim
jump table is in the .rodata section of libxul.so.
We then use the .bss section of libxul as a writeable
section. To leak the necessary information, we rely on the
_elements field of an ArrayBuffer, which contains a
pointer to a predictable offset inside libxul. The pointer can
be leaked through an out-of-bounds read from an adjacent
Uint8Array, giving us the base address of libxul.so.
With this information, we identify a double-pointer, called
__environ, stored in the libc .got section and that points
to the begin of the stack. By dereferencing those pointers,
an attacker has all the leaks necessary for the exploit.
Reaching gadget code. The attacker just needs to reach
one of the gadget code to attack successfully. While in
our study we demonstrate that gadgets are common in
real-world binaries (Table 2), they might be buried in
complex logic. Therefore, finding a stable way to trigger
one given gadget might be challenging (especially for a
program as complex as a browser). We set up an experiment
to find gadgets that can be easily triggered. Specifically,
we add scripted breakpoints in GDB that log each time a
vulnerable gadget is executed. We then use the browser like
a regular user (e.g., navigating popular websites, watching
videos). For browsers with hundreds of gadgets like

Firefox, it took seconds to gather thousands of hits in the
logs which we then analyze manually. We pick a Variant
1 type gadget in libxul’s TraceJitActivation()
which fires the JIT compilation when a given JavaScript
trace has been executed frequently. This gadget is
frequently activated at a fixed stack address, thus stabilizing
our exploit. After some testing, we found out that a
reliable way of triggering the vulnerable gadget was calling
document.getElementById(’textarea’).value
+= x in a loop, modifying the value of x each time. Note
that, for our PoC, we chose difficult-to-exploit gadget
to demonstrate the feasibility of our attack in adverse
conditions. More precisely, the chosen gadget shows the
following characteristics:

• The TOCTTOU time window is small: only 2 instruc-
tions;

• If the overwriting happens too early inside the function
containing the vulnerable jump table (i.e., before the
double fetch gadget), the control flow will go into the
default case and call MOZ_CRASH(), thus immediately
crashing Firefox.

In real-world scenarios, adversaries may target more pow-
erful gadgets to improve the success rate, e.g., gadgets with
longer TOCTTOU time windows (such as those with a
jump or call between fetches) or more robust to a failed
overwrite (such as Variant 2 gadgets).
Thread scheduling. Since our attack exploits the incon-
sistency between the check and use sites of the compiler-
introduced double-fetch, the attacker thread needs to over-
write the value of the checked value inside a certain time
window. For Variant 1 (fetch-fetch), the time window is
between the first fetch and the second fetch (between line 11
and line 15 in Figure 3); for Variant 2 (fetch-spill-fetch), the
time window is between the spilling and the second fetch
(between line 4 and line 7 in Figure 4). The time window can
be as short as a few cycles. The most reliable way to win the
race is constantly trying by putting both the victim thread
and the attacker thread in a loop with different iteration
speeds.
Overwriting. We note that, if the stack object address is
disclosed correctly, multiple consecutive attempts of over-
writing within one attack are usually possible, as failed
trials incur no adverse changes (for Variant 2 gadgets) or
lead the victim thread to the default branch of the switch
statement (for Variant 1 gadgets). Furthermore, we propose
a method to improve the robustness of failed overwriting.
Overwriting a stack value while not executing the function
containing the vulnerable jump table has a high probability
to crash due to the corruption of unrelated stack variables.
To increase the reliability of the attack, we design the
attacker thread to check whether the return address of the
function containing the gadget is present on the stack at each
iteration. This approach prevents crashes due to overwriting
unrelated local variables. As discussed above, an adversary
can further mount an exploit based on Variant 2 gadgets to
prevent negative side effects of losing the race. For example,
Figure 4 the attacker overwrites the spilled object [rbp -

Algorithm 1 Measuring our PoC’s success rate.
1: function EXPERIMENT
2: while 2000 times do
3: repeat . one attempt
4: attack() . run the race to overwrite
5: until 20s have passed
6: end while
7: end function

0x150] to win the data race; a failed attempt misses the
correct time window but does not incur any other side effects
as the spilled object is only used for calculating the indirect
jump address in this function.
Bypassing Code-Reuse Defenses. Exploiting a compiler-
introduced double-fetch to hijack the following indirect
jump bypasses CFI. Specifically, the exploit does not require
customization to bypass CFI as vulnerable CFI implementa-
tions do not protect these code patterns (as they assume that
the indirect jump is protected through the bounds check). In
other terms, WarpAttack works regardless of CFI because
we exploit a misalignment between compiler optimizations
and CFI implementations.
Success rate. We conduct experiments with our PoC on
Firefox to test the success rate of the attack in a real-
world scenario. We investigate the reliability of our attack
by measuring the success rate with different combinations
of attacking threads and dedicated cores. Specifically, we try
1, 3, and 7 attacker threads while running Firefox on 1, 4,
and 8 cores, respectively. We conduct the experiments on an
Intel(R) Core(TM) i7-10700 CPU (8 cores) @ 2.90GHz with
32GB of memory and Fedora 36. Algorithm 1 illustrates
the pseudocode of the experiment, which is executed with
each combination of thread and cores. The experiment is
composed of two nested loops, the outer loop iterates 2, 000
times, while the inner loop executes the malicious data race
for 20 seconds. The inner loop represents an attempt and
can have three outcomes: success (i.e., we hijack the browser
execution), failed without crash, and failed with crash. Then,
we count the success rate as the number of success over
2, 000. Table 1 shows the results of our experiments: we
observe the best success rate of 0.45% with 7 threads and 8
cores. This result is expected since increasing the number of
attacker threads also increases the likelihood of success with
sufficient cores. Conversely, with only one thread/core, the
probability drops, i.e., we did not observe successful attacks
with only one core. We further investigate the interference
of multiple cores and threads in an ideal thread scheduling
(Appendix A.3).

6. Gadget Code Detection

We develop a binary analysis tool to detect vulnerable
gadgets in programs. We design our analysis for offensive
purposes, i.e., without guarantee of soundness. For the ad-
versary perspective, as long there are useful gadgets for
an attack, and the false positive rate is relatively low (i.e.,

TABLE 1. DIFFERENT SUCCESS RATES BY TUNING NUMBER OF CORES
AND NUMBER OF ATTACKER THREADS (IN 2000 RUNS).

#Core #Attacker Threads
1 3 7

1 0 0 0
4 0.05% 0.25% 0.2%
8 0.15% 0.15% 0.45%

Fetch1(addr1) Fetch2(addr2) Jmp[jt_addr, index]BoundCheck(valuei)

default
branch

continue
execution

Figure 6. Simplified schema of vulnerable code pattern.

enough to find useful gadgets without manually reversing the
whole program), then the results are useful for mounting an
attack.

In the rest of the section, we describe the code pattern
that allows our attack (§ 6.1). Then, we introduce our
lightweight approach to detect such vulnerable code quickly
(§6.2). Finally, we explain how our approach can work with
low false negative (§ 6.3).

6.1. Vulnerable Code Pattern

Based on the definition of vulnerable double-fetch
(§ 4.1), We describe the binary pattern as a combination of
necessary vulnerable elements and the constraints. Figure 6
shows a pictorial representation of these patterns that we
use in our analysis.
The vulnerable code needs to contain the following ele-
ments:

• Two memory reads. We define this requirement as
Fetch1(addr1) and Fetch2(addr2). The two op-
erations load a value from memory address addr1

and addr2, respectively. Moreover, we assume the two
operations read the same amount of memory. In case
they read different memory size, the larger chunk can
always be treated as the smaller one.

• Bound checks. Defined as BoundCheck(valuei),
valuei indicates the value being checked.

• Indirect jumps based on jump tables. We define it as
Jmp[jt_addr, index]. The jump table is stored
at jt_addr address, while index is the index of the
table.

Given the above elements, they have to satisfy the following
constraints to be considered vulnerable.

• Control dependency. The elements should ap-
pear in the order described in Figure 6. Here,
BoundCheck(valuei) decides whether the in-
direct jump should be taken, i.e., by executing
Fetch2(addr2) and Jmp[jt_addr, index]. If
the bound check fails, the switch statement transfers
control to the default branch.

• Data dependency between Fetch1 and
BoundCheck. The value of Fetch1(addr1)

should populate valuei. We allow non-direct
assignments, e.g., involving calculations or being used
as arguments for function calls.

• Data dependency between the two fetch opera-
tions. The value extracted by Fetch1(addr1) and
Fetch2(addr2) must be identical. However, we al-
low addr1 and addr2 not to be the same. For in-
stance, the two memory locations are populated from
the same source, or else, the value from addr1 is copied
into addr2. This situation happens in memory spilling
when the first value is spilled into the second one.

• Data dependency between Fetch2 and Jmp[]. The
value of index (for the jump table) should depend on
Fetch2(addr2). This allows an arbitrary memory
write to tamper with the content of addr2 for control-
ling the value of index (as per § 3).

6.2. Our detection method

Upon the code pattern description in §6.1, we propose a
lightweight binary analysis to detect gadget code in x86/64
binaries with negligible false negative rate and low false
positive rate (around 3% in our experiments § 7.1). Ide-
ally, completely checking vulnerable code pattern requires
a heavyweight data-flow analysis that could be infeasible
in practice. As an alternative, we decide to check the
constraints described in § 6.1 as a more practical solution.
Specifically, we propose a set of heuristics for x86/64 archi-
tecture, however, they can be adapted for other architectures
as well.

Our binary analysis tool leverages Radare2 to detect gad-
get code in a given binary program. Our key idea is to first
greedily locate all the indirect jumps and then progressively
match constraints to filter out false positives.

For a snippet of code to be classified as such, we require
it fulfills all the following conditions:
C1 Jump table access: We select all the indirect jumps that

follow this pattern: (1) the target address is calculated
as a sum of a base address and an offset, (2) the base
address is the result of an additional offset operation.
For example, we refer to the last three lines in Figure 3
and Figure 4.

C2 Double fetches: First, we select pair memory accesses
by checking a fixed interval of instructions (e.g., 10).
Then, we check the second access is a read, while the
first access can be either read or write. This check al-
lows us to select double-fetches from the same address
(Variant 1) and different addresses (Variant 2) § 4.1.

C3 Constraints between the first memory access and
the bound check: We check if there are compari-
son instructions between the two memory accesses as
extracted from C2. More precisely, we consider each
x86/64 instruction that can act as an upper bound
check, e.g., cmp, sub, test, and, xor, dec.

C4 Constraints between the second fetch and the indi-
rect jump: The register used in the indirect jump (C1)
should be used at least once between the second fetch

and the computation of jump table address. Moreover,
the use can not be a comparison.

6.3. Imprecision Discussion of our Analysis

Given the conditions in §6.2, we discuss possible sources
of imprecision.

• C1 may generate false negatives if the compiler em-
ploys different patterns for computing jump table ac-
cess. In our evaluation, we verify C1 holds for GCC,
Clang, and MSVC. We therefore consider false nega-
tives of this kind rare.

• C2 may generate two kinds of false negatives. First, the
instruction interval of the analyzer may be too short.
In our evaluation, we observe an interval of 10 instruc-
tions is enough to cover the two memory accesses, the
bound-checked, and the jump table access. Second, if
we target at memory access pairs pointing the same
address, we may miss cases where the second fetch
holds the same value being checked, but the memory
is in a different address and not directly assigned. In
our experiments, we never encountered these cases, so
we consider them rare.

• C3 and C4 may incur false positives since these checks
are only approximation of formal constraints. Specifi-
cally, C3 does not imply data dependency between the
memory access and the bound check; C4 only requires
a necessary but not sufficient data dependency between
the second fetch and the indirect jump, which does not
guarantee the jump correctly uses the fetched value.
Therefore, we consider C3 and C4 as conditions nec-
essary but not sufficient for implying data dependency.

In practice, according to our evaluation (§ 7.1) our tool
may (rarely) incur false negatives (we tune it to reduce
this probability). Most importantly, it introduces a low false
positives rate of 3% thus making our analysis suitable for
offensive purposes. Appendix A.2 gives examples of false
positives.

7. Evaluation

The real-world impact of our attack is mostly influenced
by how many such compiler-introduced double-fetches gad-
gets in the wild. In this section, we look into this question
to evaluate the real impacts of our attack. First, we study the
existence of gadget code in widely used programs on main-
stream platforms. Then we look into the affected compilers
and CFI implementations. Finally, we give a brief evaluation
of affected architectures. In general, we try to answer four
research questions:

• RQ1: Do compiler-introduced double-fetch gadgets ex-
ist in real programs? (§ 7.1)

• RQ2: Which compiler is affected by such situation?
(§ 7.2)

• RQ3: Which CFI implementation is vulnerable to our
attack? (§ 7.3)

• RQ4: What architectures are affected by WarpAttack?
(§ 7.4)

7.1. RQ1: Victim Code in the Wild

To estimate the impact of WarpAttack in real scenar-
ios, we apply our binary analysis tool from § 6 to real-
world programs of mainstream platforms. We select the
test programs from the CFI compatibility metrics of CON-
FIRM [41]. We choose six cross-platform programs from
the metrics and get the latest available pre-compiled version
from the official websites and the package manager of each
platform. Additionally, we select any of these programs
for five OSs: Fedora, Debian, Ubuntu, Windows, and Mac
OS. Note we chose three Linux distributions as they have
different package managers. Sometimes Linux distributions
maintain the same open-source program compiled with dif-
ferent compilers. Since our gadget analysis works for x86/64
architectures, we download the programs accordingly. In
detail, we choose Chrome (103.0.5060), Firefox (103.0.2),
Apache (2.4.54, not available for Mac OS), JVM (OpenJDK)
(18.0.2), 7-zip (22.01, 21.07 for Mac OS), and TexStudio
(4.3.0).

To validate our analysis, we manually double-check the
results obtained. Due to the large amount of gadgets, we
adopted this procedure. To reduce the probability of false
negatives, we try different size for the instruction windows,
from 0 to 20. We observe that, for the Intel architecture,
a size of 10 instructions returns all the interesting indirect
jumps: a larger window does not change the result, while a
narrower window excludes real gadgets. Therefore, we are
confident a window of 10 instruction is a good trade off
between false positives and false negatives. To analyze false
positives, we first cluster the remaining gadgets that share
exactly the same instructions in the same order. Then, we
manually sample from each cluster a subset of gadgets and
manually validated the correctness. All in all, we observe
around 3% of false positives among all the combination
of programs/OSs. Appendix A.2 gives examples of false
positives.

Table 2 shows the result of our analysis. Overall, we
observe the combination of Chrome and Fedora contains
the higher number of gadgets (1024). However, the gadgets
for Chrome drops for the other OSs, ranging between 16
and 24. In general, programs belonging to Fedora contain
more gadgets respect to other systems. Looking at the other
systems, we notice for Mac OS and Ubuntu the programs
have one order of magnitude lesser gadgets, 66 and 103,
respectively. In general, since the programs are delivered
already compiled, we do not have control on the compiler
or the options used, therefore, we cannot pinpoint the source
of a gadget. We observe a remarkable gap among OSs and
programs. In case of complex projects, such as Chrome and
Firefox, we assume they introduce more gadgets (e.g., due
to their JS engine). As we will better discuss in § 7.2, the
compiler that statistically inject more gadgets is GCC, which
is the default compiler for Fedora, while Windows and Mac
OS use MSVC and Clang as default compiler, respectively.
This justifies the presence of more gadgets in Fedora. How-
ever, these projects are built with many pre-build libraries,

TABLE 2. STATISTICS OF DOUBLE-FETCH GADGETS IN THE WILD. WE
EXCLUDED APACHE FOR MAC OS BECAUSE WE FAIL TO FIND THE

CORRECT PRE-COMPILED VERSION FOR INTEL MAC OS.

Program Fedora Debian Ubuntu Windows Mac OS

Chrome 1024 16 23 24 16
Firefox 616 659 31 0 29
Apache 15 17 16 0 -
JVM 0 0 0 0 1
7-zip 24 24 24 0 0
Texstudio 8 9 9 230 20

Total 1687 725 103 254 66

TABLE 3. COMPILERS THAT CAN INTRODUCE EXPLOITABLE
DOUBLE-FETCH PAIRED TO THEIR COMPILATION OPTIONS. THE
SYMBOL “*” INDICATES CASES OBSERVED FROM REAL WORLD

PROGRAMS.

Compiler Option double-fetch Type version

GCC O1,O2,O3,Ofast Var. 1 (fetch-fetch) 12.1
*G++ O1,O2,O3 Var. 2 (fetch-spill-fetch) 12.1
Clang O0 Var. 2 (fetch-spill-fetch) 14.0.∗
*Clang O1,O2,O3 Var. 2 (fetch-spill-fetch) 14.0.∗
*Clang O3 Var. 1 (fetch-fetch) 14.0.∗
*Clang++ O3 Var. 1 (fetch-fetch) 14.0.∗
MSVC Od Var. 1 (fetch-fetch) 19.32.∗

that may be compiled from different sources with different
options. Thus hindering a more accurate analysis.

Takeaway: Considering a false positive rate of 3% (from
our manual analysis), we can roughly estimate from tens to
thousands of gadgets for most of the pair program/OSs. This
confirms that WarpAttack is a real threat present in many
popular operating systems and common applications.

7.2. RQ2: A Study of Compilers

In this section, we study which compiler may introduce
double-fetch vulnerabilities. Specifically, we focus on the
three popular compilers used in the major operating systems:
GCC, Clang and MSVC. These compilers are commonly
used for C/C++ projects and are the base of many compiler-
based CFI implementations.

Ideally, we would analyze the programs listed in Table 2.
However, the programs are “stripped” and most of the debug
information and build logs are unavailable, thus investigating
the root cause of those gadgets is not always possible.
Therefore, we follow two approaches. (1) For each compiler,
we develop a set of case studies to make emerge double-
fetch vulnerabilities, that we compile with their respective
CFI protections enabled when available. (2) When possible,
we interact with the developers.

Table 3 summarizes our finding: we conclude that all
the three compilers introduce some form of double-fetch
vulnerability if the correct optimization level is set. GCC
introduces double-fetches Variant 1 with all the compiler
level actives, but O0. Clang and MSVC, instead, seem to in-
troduce this problem only with O0/Od (MSVC Od disables
optimization, similar to O0 for Clang/GCC). We suspect this

is the reason why Fedora contains more gadgets on average.
Finally, our observations show Clang introduces double-
fetch Variant 2 vulnerabilities. We leave further examples
of double-fetch gadgets in Appendix A.1.

Double-fetch gadgets from real-world programs.
From our interaction with developers, we observe non-
trivial combinations of compiler options and code patterns
that produce double-fetch gadgets. For example, in Fire-
fox, Clang/Clang++ can introduce both Variant 1 (with O3
DNDEBUG=1) and Variant 2 (with O1/2/3). Moreover,
G++ can introduce Variant 2 (with O1/2/3). These cases
are less frequent but difficult to predict.

Takeaway: We demonstrate that modern compilers in-
troduce double-fetch vulnerabilities for both Variant 1 and
2. As long as we do not find an automatic mechanism to
reduce the number of double-fetches, setting the correct
optimization level becomes crucial to reduce the likelihood
of introducing double-fetch gadgets.

7.3. RQ3: Vulnerable CFI implementations

We study which CFIs are affected by WarpAttack. For
this evaluation, we select six CFIs in total: four CFIs
compiler-based, one binary based, and one hardware as-
sisted. Specifically, we choose RAP [42], and VTV [13]
for GCC; LLVM-CFI [12] for Clang; CFG [43] for MSVC;
Lockdown [20] as binary only; and Intel CET [44] as
hardware CFI. When possible, we deploy the CFIs over the
test-case from § 7.2, and manually inspect the code. Oth-
erwise we reach the authors for technical clarifications. We
selected the compiler-based CFIs as representative of default
protections employed into compilers, while the binary and
hardware CFIs show the extension of WarpAttack.

Table 4 shows the result of our experiment. In short,
four (out of six) CFIs show double-fetch gadgets or cannot
be directly used as mitigations. This is caused by the lack
of compiler comprehensions between security-related and
application code, thus allowing insecure optimization that
undermines the security protection. In the following, we
discuss the three CFIs we do not manage to use directly.

Lockdown and RAP are unavailable due to outdated pro-
totypes or commercial products, respectively. Therefore, we
contact the respective developers and clarify the protection
of jump tables. For Lockdown, the authors confirm their
work ignores jump tables since they are considered pro-
tected. Conversely, RAP authors include compilation flags
to remove jump tables from the compilation pipeline. This
setting was introduced as countermeasure against micro-
architecture attacks such as Spectre [45] and Meltdown [46].

We further investigate Intel CET [44] and observe it
technically can protect any indirect jump dispatch, e.g.,
jump tables. However, CET needs software support (e.g.,
compiler or CFI implementation) to select targets to protect
(i.e., inserting ENDBRANCH tags). Recalling § 2.4, jump
tables are currently assumed protected, thus ignored from
protection. Although one could over-extend ENDBRANCH to
each indirect jump, this would increase the valid targets set,

TABLE 4. CFI IMPLEMENTATIONS VULNERABLE TO OUR ATTACK.

CFI Type Compiler Vulnerable CFI

Compiler-based CFI
GCC VTV [13]

Clang LLVM-CFI [12]

MSVC CFG [43]

Binary only CFI – Lockdown [20]

thus increasing the attack surface. Therefore, we consider
Intel CET not a straightforward solution for our attack.

Takeaway: Most CFIs are vulnerable to the WarpAttack
attack. From our research, only RAP disables jump tables
to mitigate some micro-architectural attacks. Besides this
particular instance, our study confirms that popular code-
reuse defenses are vulnerable to our attack.

7.4. RQ4: Vulnerable Architectures

The compiler behavior of generating jump tables for
switch-like semantics and reloading data from memory (in-
cluding spilling register values and reloading it from mem-
ory later) is architecture dependent. The aforementioned
patterns of compiler-introduced double-fetches (as in § 4.1)
target x86 and x86-64. In this section we analyze: do
compilers generate double-fetches vulnerabilities of bound-
checked indirect jump in other architectures? We answer
this question by enumerating other well-known target archi-
tectures.

We validate our hypothesis by prepared C test cases with
switch statements having more than 10 branches. Then,
we cross-compile the test cases with different compilers
and for different architectures. We target x86, arm, RISCV,
and MIPS, both 32 and 64-bit versions. The results are
summarized in Table 5. First, we observe that double-fetch
optimizations do not appear only in x86/64 architectures.
Moreover, we notice compilers perform register spilling
more frequently on arm and RISCV architectures. We sus-
pect this is caused by the number of registers available,
which forces the compiler to resort to register spilling.

As an example, we demonstrate vulnerable gadget code
compiled by Clang O0 on ARMv7. As in Figure 7, the
bound check is performed on line 5 on the value fetched at
line 2. This value is spilled to the stack on line 4. The second
fetch of the value happens on line 8 where the fetched value
is later used as the jump table index to calculate the target
address (line 13). The vulnerable indirect jump is on line 15.

Takeaway: Double-fetch vulnerabilities are not a pre-
rogative of Intel architectures. Indeed, other architectures
suffer from this problem as well. Moreover, double-fetch
seems to be worsened by the number of registers available
(that may cause spilling).

8. Related Work

WarpAttack falls into code-reuse attacks, however, it
introduces significant differences with its predecessors. In

TABLE 5. CONFIRMED VULNERABLE ARCHITECTURES AND INVOLVED
VARIANTS AND COMPILERS.

Variant 1 (fetch-fetch) Variant 2 (fetch-spill-fetch)

X86/-64 GCC O1/O2/O3 Clang O0; MSVC Od
ARM 32/64 - Clang O0; MSVC Od
RISCV 32/64 - Clang O0
MIPS 32/64 GCC O1/O2/O3 -

1 ldr x8, [sp, #16]
2 ldr w8, [x8]
3 subs w8, w8, #1
4 str x8, [sp, #8] ;8-byte Folded Spill
5 subs x8, x8, #17
6 cset w8, hi
7 tbnz w8, #0, .LBB2_20
8 ldr x11, [sp, #8] ;8-byte Folded Reload
9 adrp x10, .LJTI2_0

10 add x10, x10, :lo12:.LJTI2_0
11 .Ltmp7:
12 adr x8, .Ltmp7
13 ldrsw x9, [x10, x11, lsl #2]
14 add x8, x8, x9
15 br x8

Figure 7. A double-fetch (Variant 2: fetch-spill-fetch) of a switch jump
table introduced by Clang O0 on ARMv7.

this section, we compare WarpAttack with previous similar
attacks and discuss their mitigations.
Code-reuse attacks. Since the seminal work of Shacham
et al. on return-oriented programming [6], the commu-
nity developed an array of more advanced attacks [5, 7–
9, 26, 47]. Even though these attacks partially share our
threat model (§ 3), they only focus on the CFI policy and
assume their implementation is correct. Conversely, WarpAt-
tack shows that the compiler may introduce implementation
flaws (TOCTTOU) that allow one to bypass the protection
while undetected by the policy.
Mitigations. One protection against code-reuse attacks is to
enforce the correct execution flow of a process. To achieve
this, many CFI-like protections have been proposed [48–
53]. These mitigations impose stricter policies to enforce
more precise CFI protections, such as for indirect jumps
and virtual tables. However, they mainly focus on the pol-
icy themselves, without considering compilers side effects.
Recent works for kernel protection [54] mentions possible
double-fetch issues, admitting though they cannot prevent
the threat. Following this line, our study shows double-fetch
can bypass these mitigations.
Data-only attacks. With the advance of CFI policies,
adversaries investigated more advanced attacks, called data-
only, that bend the program logic without violating the
execution-flow [30, 55, 56]. In principle, data-only attacks
assume arbitrary read/write vulnerabilities to manipulate
sensible non-control data. These attacks proof it is possible
to carry attacks without breaking the CFI policies. Our
attack, instead, focuses on hijacking the execution flow, thus
aiming at different goals.
Double-fetch. Since double-fetch issues can lead to TOCT-
TOU attacks, the community deeply studied the problem

from different angles [19, 25, 32, 33]. Regardless the dif-
ferent scenarios, all the previous works share different as-
sumptions with our work. Specifically, they consider pure
concurrency issues in complex systems like OS kernels,
while ruling out attackers able to overwrite memory regions
(neither from one nor multiple threads). Nearly all of our
gadget code can not be exploited in their threat model and
all these detections [32, 33, 57] and mitigations [19, 57]
do not consider our gadget patterns and cannot be used
to find our gadgets nor to prevent our attack. The closest
work was discussed by Conti et at. [18], in which they
exploit register spilling for leaking the stack base address.
Conversely, WarpAttack employs a new technique based on
TOCTTOU to bypass any CFI policies.

9. Discussion

In this section, we discuss the implication of our attacks
(§9.1), and introduce possible mitigations (§9.2). Finally, we
illustrate other possible compiler-introduce gadgets (§ 9.3),
and general CFI weakness (§ 9.4);

9.1. Making compilers aware of sensitive code

The correctness of compilers has been extensively
tested [58, 59], verified, and certified [60, 61]. However,
a correct compiler can still produce insecure code, as the
security attributes are often beyond correctness. D’Silva et
al. [62] introduce the concept of correctness-security gap, in
which a formally sound and correctly implemented compiler
optimization can violate security guarantees incorporated
in source code. A common case is when compilers apply
“Dead Store Elimination” optimization to remove the sen-
sitive data scrubbing (meaningless value usually appended
after sensitive data, like a secret key) [63].

Things get to be more complicated when security mech-
anisms are involved. Some security mechanisms usually
assume and require specific security guarantees to be held
during the compilation in both the original source code and
newly-inserted code. For instance, our attack relies on the
fact that compilers are not aware of security attributes in
code (in the perspective of code reuse defense). Therefore,
the optimization may weaken their protection and breaking
the underlying security assumptions.

A fundamental solution of such correctness-security gap
would be making compilers aware of security sensitive code.
For example, compilers may introduce different levels of
code, where the sensitive code, e.g., CFI policy checks,
bound checks of indirect jump, should undergo different
optimizations based on the attacker model. There are some
secure compilation works [64–66] that aim at preserving
general security properties, such as confidentiality of values
or side channel side effects [67]. However, the impact of
compilers on security mechanisms has not been discussed
in this area.

9.2. Mitigation Options

Since current compilers do not prevent double-fetch vul-
nerabilities yet. We discuss mitigations that can be currently
adopted and their cost in terms of performances.
Avoiding Gadget code generation. The most di-
rect way to mitigate our attack is to prevent compilers
from producing gadget code. GCC provides the option
-fno-switch-tables to avoid producing jump tables.
This mechanism also reduces Spectre side channels and is
already used in the Linux kernel [68]. For vulnerable pro-
grams compiled by Clang or MSVC, a simple workaround
is to compile by using a higher optimization level than
O0. However, we argue this solution may be unreliable, as
GCC shows us the compiler updates may introduce such a
double-fetch in later compiler versions. Therefore, we would
suggest introducing a specific compilation check option to
avoid double-fetch vulnerabilities.
Protecting Indirect Jump. Another promising mitigation
is to add dynamic checks for every indirect jump including
those related to a switch jump table. This would provide
protection for potential unknown risks, even though it will
incur performance overhead. Since CFI designs do not take
compiler optimizations into consideration and compilers are
constantly updating, it is possible that compilers may break
the bound check of the switch indirect jumps in unpre-
dictable ways. For example, MSCV eliminates switch bound
checks if the default branch is unreachable.
Monitoring for Attack Behavior. WarpAttack’s attacker
thread exhibits some characteristics (e.g., spawning several
threads, constantly writing a certain memory site) that signal
if the target is under attack. Similarly, crashes (due to the
low success rate) may signal an attack. But crashes are
coarse-grained signals. First, benign bugs also crash the
browser, resulting in false positives. Similarly, adversaries
may adopt strategies to reduce (or even prohibit) crashes,
e.g., checking the victim stack content (return address) to
ensure the modification happens in the correct location,
and using Variant 2 gadgets to prevent failed races from
incorrectly directing control-flow to the default branch.

9.3. Other Compiler-Introduced Gadget

Besides double-fetch issues, we describe other types of
gadgets introduced by a compiler. Specifically, compilers
can eliminate switch bound checks when the default branch
is unreachable. For instance, in the code compiled by MSVC
in Figure 9, the checked value x is stored in rcx at the
beginning. It is decremented and moved to eax at line 9
to clear the high bits and moved back to rcx at line 10.
Then, the value is used without bound checks to calculate
the indirect jump address at line 12 and 13. This gadget code
can bypass a CFI. Because the absence of a bound check,
the time window of this kind of gadgets for attackers is often
longer than double-fetch ones.

We observe common compilers (e.g., GCC, Clang,
MSVC) are vulnerable to this threat. The Windows CFI

1 mov dword [rsp + 0x18], 1
2 ...
3 mov eax, dword [rsp + 0x18] ;the only fetch
4 lea rcx, [0x06e4e5b8]
5 movsxd rax, dword [rcx + rax*4]
6 add rax, rcx
7 jmp rax

Figure 8. One example in Firefox 103.0.2 where the bound check of the
indirect jump is eliminated.

implementation (CFG [15]) integrates some compilation
time checks for preventing the bound check elimination, as
shown in Figure 9. Here, the binary compiled with such
mitigation still holds the bound check at line 18. However,
based on our observation, not all compilers/CFIs employ
similar mitigation (e.g., LLVM-CFI).

In general, the attack method of WarpAttack can be
applied to other indirect jumps whose target address is
calculated based on a controllable memory object and are
not protected by CFI instrumentation checks (or at least by
some fine-grained bound-checks).

To estimate the magnitude of these cases, we implement
a binary analysis tool to find code snippets satisfying the
following constraints:

• they calculate indirect jumps;
• they involved non double-fetched memory objects;
• the jump address relies on a value from a controllable

memory object. For simplicity, we only consider mem-
ory object accessed via rbp and rsp;

• there is no comparison between the memory load and
address computation.

Similar to § 6, our analysis assumes an adversary who
chooses the most suitable gadget for the exploit. We run the
tool on the official x86-64 binary of Firefox 103.0.2 and
get 120 reports. We then manually check and confirm that
these indirect jumps may not be protected by CFI checks.
Therefore, they can also be the target of WarpAttack. In
addition to the double-fetch gadgets, our analysis finds two
other cases: (i) gadgets using indirect jumps whose bound-
checked is eliminated, (ii) indirect jumps without bound
checks in Rust code.

Two of the reports are C++ cases and the remaining ones
are in Rust code. The two C++ cases are bound-checked
indirect jumps from switch statements or consecutive if
statements whose bound checks are eliminated by compiler
optimizations. The code of one case is shown in Figure 8:
the bound check of the indirect jump is eliminated since the
compiler statically infers the value from the store at line 1.
This happens when code with bound-checked indirect jumps
is inlined, and the checked value can be predicted statically.
For the Rust cases, similar to other double-fetch cases, it is
reasonable to assume they are not protected since Rust is
a memory safe language. However, when paring Rust with
legacy code (e.g., C/C++), an attacker can target the Rust
gadgets too.

1 ;switch (x) {
2 ; case 1:
3 ;...
4 ; default:
5 ; __assume(0);
6 ;}
7

8 ; before CFG applying the prevention
9 lea eax, DWORD PTR [rcx-1]

10 movsxd rcx, eax
11 lea rdx, OFFSET FLAT:__ImageBase
12 mov eax, DWORD PTR $LN14@bar[rdx+rcx*4]
13 add rax, rdx
14 jmp rax
15

16 ; after CFG applying the prevention
17 dec ecx
18 cmp ecx, 7
19 ja SHORT $LN12@bar
20 movsxd rax, ecx
21 lea rdx, OFFSET FLAT:__ImageBase
22 mov ecx, DWORD PTR $LN14@bar[rdx+rax*4]
23 add rcx, rdx
24 jmp rcx

Figure 9. An example where MSVC eliminates the bound check of the
switch statement when the default branch is unreachable.

9.4. Other CFI weakness

The security community addressed threats introduced by
compiler optimization. For example, CONFIRM [41] and
Nathan et al. [37] show the implementation of ShadowStack
on x86 may leave room for TOCTTOU attacks of return
value (the time window is one-instruction long). However,
this problem affects only some shadow stack implementation
for x86/64. We argue that it can be prevented by translating
a call into a push jump without the TOCTTOU issue.

10. Disclosure Process

We disclose our finding to the Firefox/Chromium team,
the LLVM and Linux kernel community, Microsoft, and
RAP/Grsecurity. Mozilla acknowledges the problem and
helped us triage the compiler configuration in the pre-
build versions. Through their interaction, we identify new
configurations of Clang/Clang++ and G++ that generate
double-fetch gadgets (§7.2). The Chromium developer team
acknowledges WarpAttack and assigns a medium level of
criticality. At the writing time, we are discussing with the
Chromium team to triage the cause and design mitigations.
The Linux Kernel team confirms kCFI [14] does not protect
jump tables since they are considered out of the attacker
range. Therefore, kCFI is affected by WarpAttack. How-
ever, the Linux kernel disables jump tables as protection
against Spectre [45] and Meltdown [46]. Similar to the
Linux Kernel, Grsecurity also includes compiler options to
remove jump tables in both kernel- and user-space software
as Spectre/Meltdown mitigation, thus intrinsically protecting
RAP against WarpAttack (§ 7.3). Microsoft acknowledged
the problem and we are currently discussing mitigations.
Finally, we are interacting with LLVM to triage the cause
of our gadgets and design mitigations.

11. Conclusion

In this work, we present WarpAttack, a novel double-
fetch attack that undermines any control-flow protection.
Our attack is based on compiler optimizations that break the
CFI assumptions, thus leaving room for TOCTTOU attacks
and finally granting arbitrary code execution to adversaries.

We demonstrate the feasibility of our attack with a
proof-of-concept exploits against Firefox (version 106.0.1).
Moreover, we developed a lightweight static analysis (with
3% of false positives) to locate vulnerable gadgets in popular
programs, showing this threat is widespread across programs
and OSs as well. We further investigate the presence of
double-fetch issues across different architectures and CFIs.
Our findings confirm that WarpAttack is a real threat, that
should be taken into consideration by the community.

Finally, we linked the cause of WarpAttack to the
correctness-security gap highlighted by D’Silva et al. [62]:
compilers do not distinguish between security and appli-
cation code. Therefore, they apply the same optimizations
strategies without reasoning about the security implications.
To mitigate WarpAttack, we suggest annotating security-
related code, so that compilers can treat it accordingly.

In summary, WarpAttack is an emerging threat that
opens new discussions in the security and compiler com-
munities about the security implications of certain code
optimizations.

Acknowledgement

We thank the anonymous reviewers for their feedback.
This work was supported, in part, by grants from SNSF
PCEGP2 186974, DARPA HR001119S0089-AMP-FP-034,
AFRL FA8655-20-1-7048, ERC StG 850868, the Chinese
National Natural Science Foundation (62032010,62172201),
China Scholarship Council and Postgraduate Research &
Practice Innovation Program of Jiangsu Province. Any opin-
ions, findings, conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the sponsors.

References

[1] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok:
Eternal war in memory,” in 2013 IEEE Symposium on
Security and Privacy. IEEE, 2013, pp. 48–62.

[2] T. PaX, “Pax address space layout randomization
(aslr),” http://pax.grsecurity.net/docs/aslr.txt, 2003.

[3] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, Q. Zhang, and H. Hin-
ton, “Stackguard: automatic adaptive detection and
prevention of buffer-overflow attacks.” in USENIX se-
curity symposium, vol. 98. San Antonio, TX, 1998,
pp. 63–78.

[4] Microsoft, “Data execution prevention (dep),” 2006.
[5] R. Wojtczuk, “The advanced return-into-lib (c) ex-

ploits: Pax case study,” Phrack Magazine, Volume
0x0b, Issue 0x3a, Phile# 0x04 of 0x0e, vol. 70, 2001.

[6] H. Shacham, “The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86),” in Proceedings of the 14th ACM conference
on Computer and communications security, 2007, pp.
552–561.

[7] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy, “Return-oriented pro-
gramming without returns,” in Proceedings of the 17th
ACM conference on Computer and communications
security, 2010, pp. 559–572.

[8] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-
oriented programming: a new class of code-reuse at-
tack,” in Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security,
2011, pp. 30–40.

[9] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh,
and P. Ning, “On the expressiveness of return-into-
libc attacks,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2011, pp.
121–141.

[10] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti,
“Control-flow integrity,” in Proceedings of the 12th
ACM conference on Computer and communications
security, 2005, pp. 340–353.

[11] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti,
“Control-flow integrity principles, implementations,
and applications,” ACM Transactions on Information
and System Security (TISSEC), vol. 13, no. 1, pp. 1–
40, 2009.

[12] L. team, “Clang 16.0.0git docu-
mentation: Control flow integrity,”
https://clang.llvm.org/docs/ControlFlowIntegrity.html,
2022.

[13] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,
Ú. Erlingsson, L. Lozano, and G. Pike, “Enforcing
{Forward-Edge}{Control-Flow} integrity in {GCC}
& {LLVM},” in 23rd USENIX security symposium
(USENIX security 14), 2014, pp. 941–955.

[14] A. Docs, “Kernel control flow integrity,”
https://source.android.com/devices/tech/debug/kcfi,
2022.

[15] M. Docs, “Control flow guard for platform secu-
rity,” 2022, https://docs.microsoft.com/en-us/windows/
win32/secbp/control-flow-guard.

[16] S. Mergendahl, N. Burow, and H. Okhravi, “Cross-
language attacks,” in Proceedings 2022 Network
and Distributed System Security Symposium. NDSS,
vol. 22, 2022, pp. 1–17.

[17] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz,
S. Brunthaler, and M. Payer, “Control-flow integrity:
Precision, security, and performance,” ACM Computing
Surveys (CSUR), vol. 50, no. 1, pp. 1–33, 2017.

[18] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen,
M. Negro, C. Liebchen, M. Qunaibit, and A.-R.
Sadeghi, “Losing control: On the effectiveness of
control-flow integrity under stack attacks,” in Proceed-
ings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, 2015, pp. 952–

963.
[19] A. Bhattacharyya, U. Tesic, and M. Payer,

“Midas: Systematic kernel TOCTTOU protec-
tion,” in 31st USENIX Security Symposium
(USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 107–124. [On-
line]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/bhattacharyya

[20] M. Payer, A. Barresi, and T. R. Gross, “Lock-
down: Dynamic control-flow integrity,” arXiv preprint
arXiv:1407.0549, 2014.

[21] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,
Ú. Erlingsson, L. Lozano, and G. Pike, “Enforcing
Forward-Edge Control-Flow integrity in GCC &
LLVM,” in 23rd USENIX Security Symposium
(USENIX Security 14). San Diego, CA: USENIX
Association, Aug. 2014, pp. 941–955. [On-
line]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/tice

[22] B. Zeng, G. Tan, and G. Morrisett, “Combining
control-flow integrity and static analysis for efficient
and validated data sandboxing,” in Proceedings
of the 18th ACM Conference on Computer and
Communications Security, ser. CCS ’11. New York,
NY, USA: Association for Computing Machinery,
2011, p. 29–40. [Online]. Available: https://doi.org/
10.1145/2046707.2046713

[23] B. Niu and G. Tan, “Modular control-flow integrity,” in
Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
2014, pp. 577–587.

[24] F. Wilhelm, “Xen xsa 155: Double fetches in paravir-
tualized devices,” 2020, https://insinuator.net/2015/12/
xen-xsa-155-double-fetches-in-paravirtualized-devices/.

[25] P. Wang, K. Lu, G. Li, and X. Zhou, “A survey
of the double-fetch vulnerabilities,” Concurrency and
Computation: Practice and Experience, vol. 30, no. 6,
p. e4345, 2018.

[26] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R.
Sadeghi, and T. Holz, “Counterfeit object-oriented pro-
gramming: On the difficulty of preventing code reuse
attacks in c++ applications,” in 2015 IEEE Symposium
on Security and Privacy. IEEE, 2015, pp. 745–762.

[27] T. H. Dang, P. Maniatis, and D. Wagner, “The perfor-
mance cost of shadow stacks and stack canaries,” in
Proceedings of the 10th ACM Symposium on Informa-
tion, Computer and Communications Security, 2015,
pp. 555–566.

[28] A. Biondo, M. Conti, and D. Lain, “Back to the
epilogue: Evading control flow guard via unaligned
targets.” in Ndss, 2018.

[29] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Mon-
rose, “Stitching the gadgets: On the ineffectiveness
of {Coarse-Grained}{Control-Flow} integrity protec-
tion,” in 23rd USENIX Security Symposium (USENIX
Security 14), 2014, pp. 401–416.

[30] K. K. Ispoglou, B. AlBassam, T. Jaeger, and
M. Payer, “Block oriented programming: Automating

https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://www.usenix.org/conference/usenixsecurity22/presentation/bhattacharyya
https://www.usenix.org/conference/usenixsecurity22/presentation/bhattacharyya
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/tice
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/tice
https://doi.org/10.1145/2046707.2046713
https://doi.org/10.1145/2046707.2046713
https://insinuator.net/2015/12/xen-xsa-155-double-fetches-in-paravirtualized-devices/
https://insinuator.net/2015/12/xen-xsa-155-double-fetches-in-paravirtualized-devices/

data-only attacks,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18. New
York, NY, USA: Association for Computing
Machinery, 2018, p. 1868–1882. [Online]. Available:
https://doi.org/10.1145/3243734.3243739

[31] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R.
Harris, T. Kim, and W. Lee, “Enforcing unique code
target property for control-flow integrity,” in Proceed-
ings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, 2018, pp. 1470–
1486.

[32] P. Wang, J. Krinke, K. Lu, G. Li, and S. Dodier-Lazaro,
“How Double-Fetch situations turn into Double-Fetch
vulnerabilities: A study of double fetches in the
linux kernel,” in 26th USENIX Security Symposium
(USENIX Security 17). Vancouver, BC: USENIX
Association, Aug. 2017, pp. 1–16. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/wang-pengfei

[33] M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim,
“Precise and scalable detection of double-fetch bugs
in os kernels,” in 2018 IEEE Symposium on Security
and Privacy (SP), 2018, pp. 661–678.

[34] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar,
T. Tang, H. Shrobe, S. Sidiroglou-Douskos, M. Ri-
nard, and H. Okhravi, “Missing the point (er): On the
effectiveness of code pointer integrity,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp.
781–796.

[35] S. Groß, “Exploiting a cross-mmap overflow
in firefox,” 2017, https://saelo.github.io/posts/
firefox-script-loader-overflow.html.

[36] WHATWG, “Html living standard: Web workers,”
2022, https://html.spec.whatwg.org/multipage/workers.
html#workers.

[37] N. Burow, X. Zhang, and M. Payer, “Sok: Shining
light on shadow stacks,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 985–999.

[38] Y. Younan, “Freesentry: protecting against use-after-
free vulnerabilities due to dangling pointers.” in NDSS,
2015.

[39] blazefox, “blazefox - blaze ctf 2018,” https://devcraft.
io/2018/04/27/blazefox-blaze-ctf-2018.html, 2018.

[40] R. Team, “Radare2 github repository,” https://github.
com/radare/radare2, 2017.

[41] X. Xu, M. Ghaffarinia, W. Wang, K. W. Hamlen, and
Z. Lin, “{CONFIRM}: Evaluating compatibility and
relevance of control-flow integrity protections for mod-
ern software,” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 1805–1821.

[42] P. Team, “Rap: Rip rop,” in Hackers 2 Hackers Con-
ference (H2HC), 2015.

[43] M. CGH, “/guard (enable control flow guard),”
https://docs.microsoft.com/en-us/cpp/build/reference/
guard-enable-control-flow-guard?view=msvc-170,
2021.

[44] B. V. Patel, “A technical look at intel’s

control-flow enforcement technology,” In-
tel,[Online]. Available: https://www.intel.com/
content/www/us/en/developer/articles/ technical/
technical-look-control-flow-enforcement-technology.
html, 2020.

[45] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher et al., “Spectre attacks: Exploiting specula-
tive execution,” Communications of the ACM, vol. 63,
no. 7, pp. 93–101, 2020.

[46] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom,
M. Hamburg, and R. Strackx, “Meltdown: Reading
kernel memory from user space,” Commun. ACM,
vol. 63, no. 6, p. 46–56, may 2020. [Online].
Available: https://doi.org/10.1145/3357033

[47] V. Kuznetzov, L. Szekeres, M. Payer, G. Candea,
R. Sekar, and D. Song, Code-Pointer Integrity.
Association for Computing Machinery and Morgan
& Claypool, 2018, p. 81–116. [Online]. Available:
https://doi.org/10.1145/3129743.3129748

[48] M. Zhang and R. Sekar, “Control flow
integrity for COTS binaries,” in 22nd USENIX
Security Symposium (USENIX Security 13).
Washington, D.C.: USENIX Association,
Aug. 2013, pp. 337–352. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity13/
technical-sessions/presentation/Zhang

[49] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained
control-flow integrity through binary hardening,” in
Proceedings of the 12th International Conference
on Detection of Intrusions and Malware, and
Vulnerability Assessment - Volume 9148, ser. DIMVA
2015. Berlin, Heidelberg: Springer-Verlag, 2015, p.
144–164. [Online]. Available: https://doi.org/10.1007/
978-3-319-20550-2 8

[50] K. Lu and H. Hu, “Where Does It Go? Refining
Indirect-Call Targets with Multi-Layer Type Analysis,”
in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS
’19. New York, NY, USA: Association for Computing
Machinery, Nov. 2019, pp. 1867–1881. [Online].
Available: https://doi.org/10.1145/3319535.3354244

[51] R. Gawlik and T. Holz, “Towards automated integrity
protection of c++ virtual function tables in binary
programs,” in Proceedings of the 30th Annual
Computer Security Applications Conference, ser.
ACSAC ’14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 396–405. [Online].
Available: https://doi.org/10.1145/2664243.2664249

[52] A. Prakash, X. Hu, and H. Yin, “vfguard: Strict pro-
tection for virtual function calls in cots c++ binaries.”
in NDSS, 2015.

[53] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song,
“Vtint: Protecting virtual function tables’ integrity.” in
NDSS, 2015.

[54] S. Yoo, J. Park, S. Kim, Y. Kim, and T. Kim,
“In-Kernel Control-Flow integrity on commodity

https://doi.org/10.1145/3243734.3243739
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-pengfei
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-pengfei
https://saelo.github.io/posts/firefox-script-loader-overflow.html
https://saelo.github.io/posts/firefox-script-loader-overflow.html
https://html.spec.whatwg.org/multipage/workers.html#workers
https://html.spec.whatwg.org/multipage/workers.html#workers
https://devcraft.io/2018/04/27/blazefox-blaze-ctf-2018.html
https://devcraft.io/2018/04/27/blazefox-blaze-ctf-2018.html
https://github.com/radare/radare2
https://github.com/radare/radare2
https://docs.microsoft.com/en-us/cpp/build/reference/guard-enable-control-flow-guard?view=msvc-170
https://docs.microsoft.com/en-us/cpp/build/reference/guard-enable-control-flow-guard?view=msvc-170
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://doi.org/10.1145/3357033
https://doi.org/10.1145/3129743.3129748
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/Zhang
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/Zhang
https://doi.org/10.1007/978-3-319-20550-2_8
https://doi.org/10.1007/978-3-319-20550-2_8
https://doi.org/10.1145/3319535.3354244
https://doi.org/10.1145/2664243.2664249

OSes using ARM pointer authentication,” in 31st
USENIX Security Symposium (USENIX Security 22).
Boston, MA: USENIX Association, Aug. 2022, pp.
89–106. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity22/presentation/yoo

[55] N. Carlini, A. Barresi, M. Payer, D. Wagner,
and T. R. Gross, “Control-Flow bending: On the
effectiveness of Control-Flow integrity,” in 24th
USENIX Security Symposium (USENIX Security
15). Washington, D.C.: USENIX Association,
Aug. 2015, pp. 161–176. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/carlini

[56] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena,
and Z. Liang, “Data-oriented programming: On the
expressiveness of non-control data attacks,” in 2016
IEEE Symposium on Security and Privacy (SP). IEEE,
2016, pp. 969–986.

[57] M. Schwarz, D. Gruss, M. Lipp, C. Maurice, T. Schus-
ter, A. Fogh, and S. Mangard, “Automated detection,
exploitation, and elimination of double-fetch bugs us-
ing modern cpu features,” in Proceedings of the 2018
on Asia Conference on Computer and Communications
Security, 2018, pp. 587–600.

[58] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and
understanding bugs in c compilers,” in Proceedings of
the 32nd ACM SIGPLAN conference on Programming
language design and implementation, 2011, pp. 283–
294.

[59] V. Le, M. Afshari, and Z. Su, “Compiler validation via
equivalence modulo inputs,” ACM SIGPLAN Notices,
vol. 49, no. 6, pp. 216–226, 2014.

[60] M. A. Dave, “Compiler verification: a bibliography,”
ACM SIGSOFT Software Engineering Notes, vol. 28,
no. 6, pp. 2–2, 2003.

[61] J. McCarthy and J. Painter, “Correctness of a compiler
for arithmetic expressions,” Mathematical Aspects of
Computer Science, vol. 1, 1967.

[62] V. D’Silva, M. Payer, and D. Song, “The correctness-
security gap in compiler optimization,” in 2015 IEEE
Security and Privacy Workshops. IEEE, 2015, pp.
73–87.

[63] Z. Yang, B. Johannesmeyer, A. T. Olesen, S. Lerner,
and K. Levchenko, “Dead store elimination (still) con-
sidered harmful,” in 26th USENIX Security Symposium
(USENIX Security 17), 2017, pp. 1025–1040.

[64] P. Agten, R. Strackx, B. Jacobs, and F. Piessens,
“Secure compilation to modern processors,” in 2012
IEEE 25th Computer Security Foundations Symposium.
IEEE, 2012, pp. 171–185.

[65] M. Patrignani and D. Garg, “Secure compilation and
hyperproperty preservation,” in 2017 IEEE 30th Com-
puter Security Foundations Symposium (CSF). IEEE,
2017, pp. 392–404.

[66] S. T. Vu, K. Heydemann, A. de Grandmaison, and
A. Cohen, “Secure delivery of program properties
through optimizing compilation,” in Proceedings
of the 29th International Conference on Compiler

1 cmp DWORD PTR tv66[rsp], 17
2 ja $LN22@do_op
3 movsxd rax, DWORD PTR tv66[rsp]
4 lea rcx, OFFSET FLAT:__ImageBase
5 mov eax, DWORD PTR $LN24@do_op[rcx+rax*4]
6 add rax, rcx
7 jmp rax

Figure 10. Example of double-fetch Version 1 for MSVC Od. The first and
the third line are the two fetches, respectively.

1 mov eax,DWORD PTR [rdi+0x30]
2 add eax,0xffffffff
3 cmp eax,0x11
4 ja 40117e <do_op+0x3e>
5 add rdi,0x30
6 jmp QWORD PTR [rax*8+0x402010]

Figure 11. Example of correct jump table implementation for Clang O2.

Construction, ser. CC 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 14–26.
[Online]. Available: https://doi.org/10.1145/3377555.
3377897

[67] M. Patrignani, A. Ahmed, and D. Clarke, “Formal
approaches to secure compilation: A survey of fully
abstract compilation and related work,” ACM Comput-
ing Surveys (CSUR), vol. 51, no. 6, pp. 1–36, 2019.

[68] E. Göktas, K. Razavi, G. Portokalidis, H. Bos, and
C. Giuffrida, “Speculative probing: Hacking blind in
the spectre era,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communica-
tions Security, 2020, pp. 1871–1885.

Appendix A.

A.1. Examples of double-fetch

We list some examples of double-fetch vulnerabili-
ties that we observed. Specifically, Figure 3 appears with
GCC/O2, while Figure 4 is from Clang/O0. Finally, Fig-
ure 10 is an example of MSVC/Od where the first fetch is
at line 1, and the second fetch at line 3. Additionally, we
show some example where double-fetches do not appear:
Figure 11, Figure 12, and Figure 13 are snippets from
Clang/O2, GCC/O0, and MSVC/O2, respectively, in which
there is only one fetch once at line 1. In all these cases,
WarpAttack cannot work.

A.2. Gadget Detection in False Positive

We illustrate two representative examples of false pos-
itives observed with our Gadget Code Detection analysis
(§ 6). In Figure 15, [rbp - 0x38] is double-fetched but
the value is unrelated with jmp rsi. The second case,
instead, is a disassemble errors of Radare2. As shown
in Figure 16, the instruction mov rcx, qword [r12
+ 0xd8] is confused with add byte [rax], al. In
particular, this error seems to appear at the first or last
instruction when disassembling narrow instruction windows.

https://www.usenix.org/conference/usenixsecurity22/presentation/yoo
https://www.usenix.org/conference/usenixsecurity22/presentation/yoo
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://doi.org/10.1145/3377555.3377897
https://doi.org/10.1145/3377555.3377897

1 mov rax,QWORD PTR [rbp-0x8]
2 mov eax,DWORD PTR [rax]
3 cmp eax,0x12
4 ja 401320
5 mov eax,eax
6 mov rax,QWORD PTR [rax*8+0x402010]

Figure 12. Example of correct jump table implementation for GCC O0

1 mov eax, DWORD PTR sharedArr+44
2 dec eax
3 cmp eax, 17
4 ja $LN24@main
5 lea rdx, OFFSET FLAT:__ImageBase
6 cdqe
7 mov ecx, DWORD PTR $LN62@main[rdx+rax*4]
8 add rcx, rdx
9 jmp rcx

Figure 13. Example of correct jump table implementation for MSVC O2

A.3. Multi-thread experiments

We crafted a toy example of our attack on custom victim
code to test scheduling trade-offs if the race window is a
single instruction. The success rate of the attack is 100% and
the time delay is negligible, i.e., even a single instruction
race can be won quickly. On average, it takes 0.04 seconds
to win the race for the first time and successfully perform
the attack; the victim thread executes on average 86,095
iterations, the attacker thread 14,689 iterations. Figure 17
shows our toy attack. We use the function corrupted()
to simulate the attacker behavior, the function victim()
to simulate a victim thread with vulnerable gadget, and the
function evil() is the target of the control-flow hijack.
The time window for attacker in the victim code is between
line 3 and line 5. As shown in main(), we assume the
attacker can get the ideal thread scheduling: the victim
thread constantly loops (line 32), and the attacker controls
its thread to repeat with a different loop speed at the same
time. Table 6 shows different performances at varying of
cores and attacker threads. The result shows that an high
number of attack threads increases the attacking time. This
is reasonable since the clock is a finite resources, thus
increasing the number of running threads delays attack.

1 cmp byte [rsp + 0x10], 3
2 ja 0x2f9e1ef
3 mov eax, dword [rsp + 0x10]
4 lea rdx, [0x06e8fbd0]
5 movsxd rax, dword [rdx + rax*4]
6 add rax, rdx
7 jmp rax

Figure 14. Example of a Variant 1 gadget introduced by Clang O3 in Firefox
103.0.2.

1 cmp qword [rbp - 0x38], 0 ; the first fetch
2 je 0x5ed5928
3 mov rdx, qword [rbp - 0x38] ; the second fetch
4 mov edx, dword [rdx + 8]
5 dec esi
6 lea rdi, [0x01b34c98]
7 movsxd rsi, dword [rdi + rsi*4]
8 add rsi, rdi
9 jmp rsi

Figure 15. [rbp - 0x38] is double-fetched but unrelated with jmp
rsi. This sample comes from ./opt/google/chrome/chrome of
chrome-stable-103.0.5060.134.

TABLE 6. TIME TO REACH FIRST SUCCESS (TOY EXAMPLE) BY TUNING
NUMBER OF CORES AND NUMBER OF ATTACKER THREADS IN 2000

RUNS.

Cores # Att. Avg. Victim Avg. Attacker Avg. Time
Threads Iterations Iterations [ms]

2 1 1190 166 2
2 2 1024 3708 3
2 3 2258 21099 6
2 4 763 17134 13
2 7 1283 11293 8
2 8 697 3239 3
2 16 93726 363345 49

4 1 25302 3191 10
4 2 20227 15112 23
4 3 2885 9825 9
4 4 2781 10772 12
4 7 1743 10212 15
4 8 1590 10446 16
4 16 2293 27201 23

8 1 54052 9056 19
8 2 24428 22159 39
8 3 12980 31160 57
8 4 5871 19228 58
8 7 10288 63720 291
8 8 9191 70545 307
8 16 10709 186458 695

1 ; radare2 output
2 add byte [rax], al
3 xor eax, eax
4 ; correct decompilation
5 mov rcx, qword [r12 + 0xd8]
6 add r12, 0xd8
7 xor eax, eax

Figure 16. Radare2 erroneously disassemble the first instruction as add
byte [rax], al, which does not correspond with the real bytecode.

1 // <victim>:
2 // ...
3 // cmp QWORD PTR [rax+0x30],0x6; op->v
4 // ja bc0 <victim+0x80>
5 // mov rdx,QWORD PTR [rax+0x30]; op->v
6 // lea rcx,[rip+0x233]
7 // movsxd rdx,DWORD PTR [rcx+rdx*4]
8 // add rdx,rcx
9 // jmp rdx

10 // ...
11

12 void* corrupted(void *controlled) {
13 ...
14 // we assume the object is controlled
15 * (int*)controlled = FAKE_JT_OFFSET;
16 for (;;) {
17 *(volatile typeof(op->v) *)&(op->v) = 2;
18 *(volatile typeof(op->v) *)&(op->v)
19 = FAKE_CASE;
20 }
21 ...
22 }
23

24 void evil() { printf("Welcome to evil\n"); }
25

26 int main(int argc, char *argv[]) {
27 ...
28 // we assume the object is controlled
29 int* controlled =
30 (int *)malloc(sizeof(int));
31 // start corrupted threads
32 for (i = 0; i < ATTACKER_NUM; i++) {
33 rc = pthread_create(&threads[i], NULL,
34 corrupted, (void *)controlled);
35 }
36 // start the victim thread
37 for (;;) { victim();}
38 ...
39 }

Figure 17. A toy example that simulates an exploit, mostly about thread
scheduling.

	Introduction
	Background
	Code reuse attacks and mitigations
	CFI bypassing methods
	Double-fetch
	Bound-Checked Jump Table

	Threat Model
	Compiler-Introduced Double-Fetch
	Vulnerable Double-Fetch

	Attack Methodology
	High-level Methodology
	Proof-of-Concept Exploit

	Gadget Code Detection
	Vulnerable Code Pattern
	Our detection method
	Imprecision Discussion of our Analysis

	Evaluation
	RQ1: Victim Code in the Wild
	RQ2: A Study of Compilers
	RQ3: Vulnerable CFI implementations
	RQ4: Vulnerable Architectures

	Related Work
	Discussion
	Making compilers aware of sensitive code
	Mitigation Options
	Other Compiler-Introduced Gadget
	Other CFI weakness

	Disclosure Process
	Conclusion
	Appendix A
	Examples of double-fetch
	Gadget Detection in False Positive
	Multi-thread experiments

