
WarpAttack: Bypassing CFI through
Compiler-Introduced Double-Fetches

Jianhao Xu*†, Luca Di Bartolomeo†, Flavio Toffalini†,
Bing Mao* and Mathias Payer†

jianhao xu@smail.nju.edu.cn,
{luca.dibartolomeo, flavio.toffalini}@epfl.ch,

maobing@nju.edu.cn, mathias.payer@nebelwelt.net
* †

Compiler-Introduced Double Fetch

A Linux kernel case (2012):

2

● Compiler

● Correctness-Security Gap

Compiler & Correctness-Security Gap

3

// Attempt to scrub the sensitive data saved on
stack
memset(secret, 0, sizeof(secret));
return;

Correctness Security
Dead Store Sensitive Data Scrubbing

● WarpAttack key insight

Compiler-Introduced Security Issues

4

Compiler
Correctness

Security

Compiler-Introduced
Double-Fetches

Concurrency bugs
Or
Benign data race

A weakness of control
flow guards

WarpAttack exploits a misalignment between
compiler implementations and CFI assumptions

Control Flow Integrity (CFI)

5

CFI guard control flow

● Inserts run-time checks

● Practical and (reasonably) fine-grained

Vulnerable code Correct successors

CFI

CFI is getting more and more important

CFI: no need to protect

Bound-Checked Indirect Jumps

6

switch(a) {
 case 0:
 case 1:
 …
 default:
 …
}

mov r1, [A]
cmp r1, imm
…
mov r1, [r3+r1*4]
add r1, r3
jmp r1

Index

Jump
Table

CFI

Bound-Checked Indirect Jumps

Compilers are not aware of security boundaries

7

mov r1, [A]
cmp r1, imm
…
mov r2, [A]
mov r2, [r3+r2*4]
add r2, r3
jmp r2

mov r1, [A]
cmp r1, imm
…
mov r1, [r3+r1*4]
add r1, r3
jmp r1

Index

CFI

Jump

WarpAttack: Threat model

Adversarial Capabilities

● Arbitrary read-write

● Thread control

● One triggerable gadget sample

Defensive Assumptions

● Non-Executable Memory

● Randomization

● Control Flow Protection

8

The only requirement
beyond CFI’s Threat model.

WarpAttack

9

Challenges and Solutions

Gadget Code Detection:

10

Challenges Solutions

Compiler-
Introduced?

Data
Dependency

Proof-of-Concept Exploit:

Challenges Solutions

Short
time window

Crashes
when wrong

Challenges and Solutions

11

0.45% success rate
in 20 seconds

On Firefox 106.0.1

How WarpAttack affects real world

Vulnerable code in the wild

● All C/C++ programs potentially affected

● 1,600+ victim gadgets in 6 programs

Acknowledgements from

Affected Compilers

● GCC and clang

12

Other than X86/64

• ARM 32/64*

• RISCV 32/64

• MIPS 32/64

Only X86/64 has two variants,

Others have just stack spilling variant

MOSEC2019
Brandon Azad

WarpAttack affects may programs, compilers and architectures

WarpAttack Conclusion

● CFI assumption

● Attack method

● Real world Impact

● Proof-of-Concept

Thanks!

● Backup slides

14

Double Fetch

15

Mitigations

Avoiding Gadget code generation

● GCC ‘-fno-switch-tables’
● Clang ‘O1’

Protecting Indirect Jump

● CFI checks for switch jump tables

Monitoring for Attack Behavior

● Characteristics like spawning several threads, constantly writing a certain memory site
● Crashes

16

