@~ .
o® hexhive

WarpAttack: Bypassing CFl through
Compiler-Introduced Double-Fetches

Jianhao Xu'T, Luca Di BartolomeoT, Flavio ToffaliniT,
Bing Mao™ and Mathias Payer®

jianhao xu@smail.nju.edu.cn,

{luca.dibartolomeo, flavio.toffalini}@epfl.ch, E P : T
[

maobing@nju.edu.cn, mathias.payer@nebelwelt.net

Compiler-Introduced Double Fetch

A Linux kernel case (2012):

1 /* commit: 8135cf8b092723dbfcc6llfeb6fdcb3a36c9951c5 */
2 switch

3
4
5
6
7
8
9

10

11 }

(o e
case XI—

7T AN casal naanda.

)0y

bre
case XI

/£
defaul+

0] 0

12
13
14
15
16
17

/* the corresponding assembly code */

cmp DWORD PTR [r13+0x27],0x5
mov DWORD PTR [rbp-0x4c],eax

ja 0x3358 <xen_pcibk_do_op+952>

mov eax,DWORD PTR (r13+0x%]
jmp QWORD PTR (rax*8poff_ 77D0]

Compiler & Correctness-Security Gap

[—

e Correctness-Security Gap

o Compiler

// Attempt to scrub the sensitive data saved on
stack

memset(secret, 0, (secret));

Correctness
Dead Store

Security

Sensitive Data Scrubbing

Compiler-Introduced Security Issues

o WarpAttack key insight

Compiler
Correctness

Security

Compiler-Introduced
Double-Fetches

Concurrency bugs
Or
Benign data race

A weakness of control
flow guards

WarpAttack exploits a misalignment between
compiler implementations and CFl assumptions

Control Flow Integrity (CFl)

CFl guard control flow

e Inserts run-time checks
o Practical and (reasonably) fine-grained

Vulnerable code Correct successors

v | CFI

CFl is getting more and more important

Bound-Checked Indirect Jumps

CFI: no need to protect

switch (mov rl, [A]

case OiifffLrl' 1mm

case 1: |

5 moY:££Z[r3+%Ei€b
default : 2dd r3

jmp rl |

} \/ \\ _______ v

Beund-Cheeked Indirect Jumps

Compilers are not aware of security boundaries

mov
cmp

mov
add

Jjmp

rl,
rl,

rl,
rl,

rl

[A]

S
[r3+rl1*4]
r3

-

mov rl, [A]
cmp rl, imm

mov r2, [A]
mov r2, [r3+r2*4]
add r2, r3

g EENI EENL EEI EII EII EE N G . . .y,

G I I - . - -

WarpAttack: Threat model

Adversarial Capabilities

Defensive Assumptions

Arbitrary read-write
Thread control

One triggerable gadget sample

The only requirement
beyond CFl's Threat model.

Non-Executable Memory
Randomization

Control Flow Protection

WarpAttack

mov rl, [A]
cmp rl, imm
; may mov [A'], rl

] ja Oxdef

Memory

2

r2, [A]/[A']
r2, [r3+ r2*4]
r2; r3

r2

mov
mov
add

jmp

>

;0xdef: default branch

; 0xdeadbeef: malicious

target

I

© 0 o

A: Checked Object

<

B: Controlled Object

Jump Table

iAttacker

Rewrite A: ensure
not default branch

Rewrite A/A":
let the jump fetch
address from B

Rewrite B:
address to the
malicious target

Challenges and Solutions

Gadget Code Detection:

Challenges

Solutions

Compiler-
Introduced?

Data
Dependency

4
7% £Q

fh

10

Challenges and Solutions

Proof-of-Concept Exploit:

Challenges Solutions

Short _)"(_ @#
time window 0.45% success rate

in 20 seconds

Crashes ﬁ On Firefox 106.0.1
when wrong e

How WarpAttack affects real world

Vulnerable code in the wild

e All C/C++ programs potentially affected
e 1,600+ victim gadgets in 6 programs

Acknowledgements from Other than X86/64
* ARM 32/64%*

\““ i ‘Q =J A * RISCV 32/64 MosEeS
S . mips 32/64 randon Az
Affected Compilers Only X86/64 has two variants,

Others have just stack spilling variant

e GCCandclang

WarpAttack affects may programs, compilers and architectures

12

WarpAttack Conclusion

e CFl assumption

e Attack method

e Real world Impact T
Q

e Proof-of-Concept

Memory iAﬁacker

k (| A: Checked Object 1 Rewrite A: ensure
)) not default branch

mov rl, [A]

cmp rl, imm

; may mov [A'], rl
s ja Oxdef
5 v
: mov r2, [A]/[A']
5 m [r3+ r2*4]
: r

Rewrite A/A":
let the jump fetch
address from B

—

o
5
Q
=4

Rewrite B:

address to the

~——

cccccc

malicious target

. Backup slides

Double Fetch

> Error()

Victim thread Memory state Attacker thread
Check([A]) ([A] = 12
l [A] = Oxdeadbeef [A] := Oxdeadbeef
var := [A] C [A] = Oxdeadbeef
Use(var)

15

Mitigations

Avoiding Gadget code generation

e GCC ‘-fno-switch-tables’
e C(Clang ‘OT

Protecting Indirect Jump

e CFI checks for switch jump tables

Monitoring for Attack Behavior

e Characteristics like spawning several threads, constantly writing a certain memory site
e Crashes

16

