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Abstract—Modern programs are monolithic, combining code of
varied provenance without isolation, all the while running on
network-connected devices. A vulnerability in any component
may compromise code and data of all other components. Com-
partmentalization separates programs into fault domains with
limited policy-defined permissions, following the Principle of
Least Privilege, preventing arbitrary interactions between com-
ponents. Unfortunately, existing compartmentalization mecha-
nisms target weak attacker models, incur high overheads, or
overfit to specific use cases, precluding their general adoption.
The need of the hour is a secure, performant, and flexible
mechanism on which developers can reliably implement an
arsenal of compartmentalized software.

We present SecureCells, a novel architecture for intra-
address space compartmentalization. SecureCells enforces per-
Virtual Memory Area (VMA) permissions for secure and scal-
able access control, and introduces new userspace instructions
for secure and fast compartment switching with hardware-
enforced call gates and zero-copy permission transfers. Secure-
Cells enables novel software mechanisms for call stack main-
tenance and register context isolation. In microbenchmarks,
SecureCells switches compartments in only 8 cycles on a 5-stage
in-order processor, reducing cost by an order of magnitude
compared to state-of-the-art. Consequently, SecureCells helps
secure high-performance software such as an in-memory key-
value store with negligible overhead of less than 3%.

1. Introduction

Modern software systems are complex but monolithic,
comprising multiple interacting subsystems, incorporating
third-party code like libraries, plugins, or interpreted code,
while interacting over untrusted interfaces including net-
works, shared memory, file systems, or user input. The
lack of isolation between the components of a monolithic
program allows vulnerabilities to have far-reaching con-
sequences. An attacker who exploits one component can
corrupt other parts — for example, a buggy Linux driver
can compromise core kernel data structures. The traditional
process abstraction for running monolithic software violates
the Principle of Least Privilege [1] which requires compo-
nents to only have access to the data necessary for their op-
eration. Instead, all code running within a process’ address
space has equal permissions to all data and code regions
allowing attackers to subvert pre-defined interfaces between

components. For example, calls between components can
jump to an arbitrary address bypassing checks on function
call arguments.

Intra-address space compartmentalization allows devel-
opers to isolate components of a program within com-
partments, only granting each compartment permissions
to access their own data. When compromised, a buggy
component cannot access another component’s data. Con-
versely, a component is guaranteed integrity of its private
data against other corrupted compartments. Compartmen-
talization is a key defense mechanism that leverages the
inherent modularity of code to fortify the cloud [2], [3],
[4] and desktop [5] sandboxed environments, programs with
third-party libraries [6]and underpins the design of security-
focused microkernel operating systems [7], [8], [9], [10].
Compartmentalization constrains the negative effects of the
myriad possible faults in software, including memory safety
violations and logic errors, to compartment boundaries. For
example, the Log4Shell exploit (CVE-2021-44228 [11])
which allowed attackers to exfiltrate secrets and inject ar-
bitrary code in memory-safe programs can be mitigated
by isolating the vulnerable Log4j framework in a separate
compartment.

The compartmentalization mechanism enforcing the
rules of access and communication between the program’s
components must be secure, performant and flexible. To
be secure, the mechanism must enforce policy-dependent
restrictions on memory accesses and inter-compartment
calls in the face of powerful attackers. Particularly, the
mechanism must prevent compromised compartments from
escalating their memory access rights or from bypassing
inter-compartment call gates. Developers for performance-
and security-critical software such as operating systems
constantly trade off the benefits of protection mechanisms
against their overheads. The mechanism must implement
low overhead checks and operations to support fine-grained
compartmentalization for such programs. Faster compart-
ment switching, for example, enables developers to refactor
programs into smaller compartments with more frequent
compartment switches, improving security while maintain-
ing the same performance. Finally, a flexible mechanism
which is able to support the wide variety of desired com-
partmentalization policies will bolster developer adoption.

Existing compartmentalization mechanisms lack one or
more desirable features, often trading security for perfor-
mance, or flexibility for backward compatibility or im-



plementation simplicity. Traditional, process-based isola-
tion [12], [13], [14] only permits costly, microsecond-scale
compartment switches. On the other end of the spectrum,
protection-key [15] based mechanisms [16], [17], [18] are
performant, with nanosecond-scale switches, but fail to deter
attackers with code-injection capabilities. Mechanisms co-
locating permissions with page-based virtual memory [17],
[18], [19], [20], [21], [22] improve compatibility with ex-
isting page-tables but inherit the limited reach of modern
Translation Lookaside Buffers (TLBs), incurring overheads
for programs with large working sets. Finally, other mecha-
nisms [21], [23] target simpler policies, such as protecting a
single trusted compartment from an untrusted compartment.

SecureCells achieves the trifecta of secure, flexible,
and high-performance compartmentalization by embedding
compartmentalization into the architectural virtual memory
abstraction. SecureCells proposes i) TCB-maintained VMA-
scale access control, and ii) unprivileged (i.e., userspace) in-
structions implementing securely-bounded compartmental-
ization primitives, with iii) software implementing call gates,
call stacks, and context isolation. Related efforts towards
languages, compilers and libraries for compartmentalization
can extend these benefits to developers by using SecureCells
as the underlying isolation mechanism.

For the first pillar, access control, SecureCells introduces
the first VMA-granular permissions table consolidating per-
missions for all compartments into a single data structure de-
signed for efficient permission lookups. In contrast, previous
mechanisms use per-compartment permission tables with
either duplicate VMA bounds information [14], duplicate
per-page permissions within a VMA [17], [18], or both [20],
[13]. Deduplicating VMA bounds accelerates compartment
switching, eliminating the need to re-load bounds for the tar-
get compartment. VMA-scale permission tracking requires
smaller VMA-based permission lookaside buffers while also
overcoming TLB-reach limits.

For the second pillar, SecureCells accelerates com-
mon compartmentalization operations with novel, low-cost
unprivileged instructions. Particularly, SecureCells is the
first mechanism to allow generic, unprivileged permission
transfer from userspace. SecureCells maintains the integrity
of permissions by bounding the semantics of untrusted
userspace operations to known-safe parameters — the hard-
ware checks the compartment switch instruction to enforce
call gates, and permission transfer instructions to prevent
privilege escalation.

SecureCells’ final pillar leverages the flexibility of soft-
ware for operations where possible without compromising
security or performance (context isolation, call gates and
call stack maintenance). This paper shows the first soft-
ware mechanism for restoring register context following a
compartment switch, necessary for isolating compartment
contexts, without trusting any general-purpose registers.

In this paper, we:

• define SecureCells’ key security and performance ob-
jectives and survey how related mechanisms meet these
goals,

• propose SecureCells, a novel, secure, flexible, and per-
formant mechanism which introduces compartments
into the architectural virtual memory abstraction,

• apply SecureCells to typical application scenarios,
• present a hardware implementation of SecureCells

based on the 5-stage in-order RISC-V RocketChip, and
• characterize SecureCells’ performance for compart-

mentalizing micro- and macro-benchmarks.

2. Objectives For Architectural Isolation

Compartmentalization mechanisms are characterized by
a specific set of objectives, which we introduce in this
section. We demonstrate how SecureCells’ objectives bene-
fit compartmentalization using two representative programs
described below and discuss how alternate goals lead to the
differing designs of related mechanisms.

The characteristics of a compartmentalization mecha-
nism determine its applicability. Primarily, the mechanism
must be secure (O1) and enforce the restrictions on data
access and communication despite arbitrarily compromised
compartments. Second, the mechanism must be performant
(O2), with low overhead for enforcing its checks and restric-
tions. A performant mechanism allows high-performance
software to be compartmentalized without violating perfor-
mance targets. Finally, a mechanism must be flexible (O3)
in order to support the varying needs of software across
security and performance criticality, and their corresponding
isolation policies. A flexible mechanism does not make
additional assumptions such as a hierarchical trust struc-
ture among compartments, and allows data to be shared in
an arbitrary fashion. We concretize these objectives, based
on insights from existing and candidate compartmentalized
programs and related work, in the following subsections. We
justify each objectives’ importance using the two character-
istic programs described below.

Use case: Browser. The first program, a browser (Fig-
ure 1), consists of a just-in-time (JIT) compilation engine
(Engine), a sandboxed web application (WebApp) compiled
and executed by the Engine, and a cryptographic library
(CryptoLib) storing a secret key for encryption. The com-
partmentalization policy aims to isolate the Engine’s data
and CryptoLib’s secret from the possibly malicious We-
bApp. Borrowing the threat model for browsers, we assume
that the WebApp can exploit bugs in the Engine’s compiler
to generate and execute arbitrary code as the WebApp
compartment, ultimately aiming to leak the browser’s data
or the cryptographic secret. The developer aims to prevent
unauthorized inter-compartment data accesses by enforcing
the per-compartment permissions shown in the figure. To
maintain similar performance to the monolithic version,
the developer desires minimal overhead from operations
added due to compartmentalization: context switching and
compartment switching.

Use case: Network Function Virtualization. The sec-
ond program is a virtual network function pipeline (Fig-
ure 2) consisting of three stages progressively performing
processing steps on a stream of packets. In particular, this
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Figure 1. Browser compartmentalization with three compartments.
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Figure 2. Permission transfers for a packet between SecureCells compart-
ments. The figure shows the compartment executing on a core, the relevant
SecureCells instructions.

pipeline has three compartmentalized stages, implementing
the network card driver (Driver) which generates packets, a
network address translation (NAT) stage which translates IP
addresses in the header based on a translation table, and a
firewall stage that implements checks on the packet headers
based on a rule table. In this example, we omit further stages
for simplicity. Middleboxes in datacenters and the inter-
net [24] commonly contain virtual network functions sharing
a buffer pool in uncompartmentalized dataflow pipelines.
Translation and rule tables in the NAT and Firewall com-
partments must be isolated in private regions, protecting
them from potential bugs in the Driver compartment that
processes input from untrusted traffic from external sources.
The programmer requires isolation of network stages for
high reliability of the middlebox and low cost for passing
packets between stages for line-rate packet processing, en-
abled by zero-copy packet flow through permission transfer.

2.1. Threat Model

Our threat model assumes an attacker who wants to
compromise a compartmentalized program with multiple

communicating compartments. We assume that the attacker
has compromised one or more compartments, and gained the
ability to both generate arbitrary code and execute it, but is
restricted to the compromised compartments. The attacker
wishes to compromise confidentiality, integrity, or gain code
execution in other compartments. For example, the attacker
might try to:

• gain permissions and directly access (load/store) an-
other compartment’s private memory,

• inject unsolicited code/data regions in another compart-
ment’s memory,

• execute unintended code in another compartment,
• create new compartments, or
• achieve any combination of the above.
The policy used for compartmentalization is assumed to

be sound, and the software implementations of the modules
comprising compartments are assumed to be free of bugs
that can be exploited via only their exposed communica-
tion interfaces. SecureCells’ trusted computing base (TCB)
consists of the hardware implementation and the supervisor.
Exploitable bugs in the policy or TCB can lead to a compro-
mise irrespective of the compartmentalization mechanism.
While speculative side-channel attacks are outside the scope
of our threat model, we discuss SecureCells’ speculative
resiliency in Appendix D.

2.2. Security Objectives

A secure mechanism must enforce restrictions on a
compartmentalized program, as described below.

Obj. O1a. Mechanisms must implement access control,
validating every memory access against the policy. For the
browser in Figure 1, the table holds policy-defined permis-
sions for each compartment and memory region. Mecha-
nisms must, for example, prevent all accesses by the com-
promised WebApp from reading the Engine or CryptoLib’s
private regions as per the policy. Mechanisms must also
prevent corruption of policy-defined permissions stored in
memory or registers. Intel MPK-based protection [16], for
example, loads permissions from a user-controlled register
when executing a wrpkru instruction, allowing a compart-
ment to corrupt its own permissions.

Obj. O1b. Inter-compartment communication consisting
of cross-compartment calls demand validity checks. Relevant
validity checks include checking that i) the entry point is
valid, ii) the calling compartment is allowed to call the
target compartment, iii) the return respects the call stack, and
iv) the passed arguments are valid. Compartment switches
from the WebApp to the Engine must use valid entry points
which are followed by argument-validating code. Failure
to enforce this constraint enables control-flow attacks such
as return-oriented programming (ROP). Vanilla Intel MPK-
based protection also lacks such entry-point checks to ac-
company wrpkru instructions.

Obj. O1c. Context isolation accompanying a cross-
compartment call is essential for protecting mutually dis-
trusting compartments. After a cross-compartment call, the



callee compartment (for example, the Engine) must be able
to fetch its context without trusting the registers which
are controlled by the caller (correspondingly, the WebApp),
representing an attack vector. The WebApp, for example,
could try to switch to the Engine with a malicious stack
pointer register, attempting to corrupt the Engine by reading
from the wrong stack. CODOM [25], for example, assumes a
migrating thread model and is vulnerable to attacks through
an invalid register state.

Obj. O1d. Mechanisms that allow untrusted compart-
ments to modify or transfer their permissions must prevent
privilege escalation through TCB-imposed limitations on
these operations. Specifically, compartments should only be
allowed to surrender access permissions or transfer existing
permissions to other compartments. A stage in the network
function pipeline, for example, should not be allowed to
grant write permissions for a packet to the next stage if
it has read-only permissions. Transferring permissions be-
tween compartments must also be mutual, requiring explicit
actions from both compartments. One-directional permission
transfers studied by Lipton et. al. [26] allow compartments
to either steal other compartments’ permissions (violating
confidentiality) or inject illegal data or code into other
compartments (violating integrity). Linux, which allows
processes to specify their own permissions when mmaping
shared regions, violates this objective without syscall mech-
anisms like SECCOMP.

Obj. O1e. Temporary exclusive access to otherwise
shared data regions enables compartments to use data re-
gions safely, preventing exploitation of double-fetches. With
exclusive access to a packet, the Firewall stage of the net-
work function pipeline can safely validate and use addresses
in the packet header in-place (without copying), with the
assurance that another corrupt stage cannot concurrently
modify the packet. XPC [20] recognizes this objective,
allowing exclusive access to a single region tracked by the
Relay Segment register.

Obj. O1f. Auditability, the ability to easily determine the
global access permissions, facilitates auditing compliance
to a compartmentalization policy by checking which com-
partments have access to which memory region. A browser
might regularly audit its permissions to ensure that the
WebApp has not escalated its privileges. An audit for a
mechanism with a centralized permissions store, such as
page tables, must only check this store simplifying audits.
In contrast, an audit for CHERI [27] requires an expensive,
full-memory scan since the set of memory regions accessible
to a compartment is the transitive closure of capabilities held
in its registers, along with capabilities held in any memory
region accessible through these registers.

2.3. Performance Objectives

Low-overhead checks and operations allow
performance-critical programs to be compartmentalized.

Obj. O2a. Single-cycle access verification in the com-
mon case is essential for core throughput. While most
mechanisms meet this objective in the best (not common)

case, page-table based isolation mechanisms suffer from the
limited scalability of Translation Lookaside Buffers (TLBs)
used to cache permissions. Programs with large datasets can
incur high TLB miss rates, with correspondingly high verifi-
cation latency in the common case due to page-table walks.
UNIX process-based protection particularly suffers from this
limitation since modern Address Space ID (ASID)-tagged
TLBs will effectively contain duplicate entries for a shared
page with separate permission for each compartment, effec-
tively dividing an already capacity-limited structure among
compartments [28]. This objective implicitly requires the
mechanism to support a sufficiently large number of com-
partments and data regions. A mechanism with small limits,
like Intel MPK which is restricted to 16 colors for data
regions, will incur overheads from software workarounds
required to virtualize the corresponding resource [16].

Obj. O2b. Cross-compartment calls are essential and
frequent for communication between fine-grained compart-
ments necessitating fast compartment switches. Fine-grained
library isolation [6] requires compartment switches accom-
panying every function call to an untrusted library. A pro-
gram isolating short-running functions, such as AES en-
cryption using hardware AES-NI extensions, can incur a
compartment switch every tens or hundreds of cycles [29].
Specialized hardware instructions accessible from userspace
are essential for cheap compartment switches in tens of
cycles. Even the fastest supervisor-mediated compartment
switch still costs hundreds of cycles [27].

Obj. O2c. Fast, zero-copy permission transfer enables
programs to efficiently move data between compartments.
Data copying for passing large buffers during compart-
ment calls can overwhelm high-performance programs, such
as our example network function pipeline. Such applica-
tions typically pass packets by reference between unisolated
stages profiting from zero-copy. Cheap permission trans-
fers, within ten to hundred cycles, enable such applications
to be compartmentalized with performance comparable to
the monolithic versions. UNIX process-based permission
transfers instead involve microsecond-scale system calls,
precluding their use for practical compartmentalization.

2.4. Flexibility

A mechanism demands flexibility to be suitable to com-
partmentalization across a variety of application domains.

Obj. O3a. For flexibility, a mechanism must support
arbitrary sharing of data regions, requiring independent per-
compartment per-region permissions. A private region, for
example, should be accessible by only a single compartment.
Another shared region might allow read access to one com-
partment, write access to another, and execute permissions
to a third. Mechanisms that target hierarchical security, for
example, limit flexibility — the trusted compartment im-
plicitly has permission to access an untrusted compartment’s
data — and exclude wide applicability. In contrast, even if
the WebApp in the browser trusts the Engine, the Engine
is denied execute permissions to the WebApp’s code. A



mechanism must support, but not be exclusive to, specific
trust models such as nested compartments.

Obj. O3b. To scale performance overheads with secu-
rity objectives, we introduce a desirable property, security-
proportionality. A security-proportional mechanism allows
policies to trade-off overheads for security when unneces-
sary. Despite not trusting the WebApp, transitions from the
WebApp to CryptoLib can elide context switching required
for register isolation under a specific condition. Verification
approaches [30], [31] can be used to prove that a small func-
tion in CryptoLib does not leak the key under the assumption
that entry points are enforced, and that the function’s code
overwrites registers used to store the key before returning
to the WebApp. By using the cheaper migrating thread
model [32], a security-proportional mechanism can reduce
overheads where acceptable. Process-based isolation, for ex-
ample, is not security-proportional since every compartment
switch incurs the same non-negotiable overheads (including
context switching, page-table switching, or scheduling).

2.5. Alternate Visions for Compartmentalization

SecureCells envisions a future where the mechanism
supports widespread application compartmentalization ef-
forts, with consequently differing goals and designs com-
pared to related mechanisms. First, some mechanisms only
support custom-tailored use cases such as differentiating
between single trusted-untrusted compartments [22], [21],
[33], or a binary classification of data as (in)sensitive [23].
CODOMs [25] link code addresses to compartments, re-
stricting code sharing that is abundant in modern program-
ming. Specialization allows simpler hardware mechanisms,
but do not support a broad spectrum of applications. Sec-
ond, SecureCells does not aim to compartmentalize existing
software with zero-modifications. While automated isola-
tion techniques provide a crucial first step towards com-
partmentalized programs [34], [35], [36], security-critical
software requires refactoring to fully realize the benefits of
proper compartmentalization. Finally, related works target
compatibility with legacy hardware or existing or upcoming
software/hardware mechanisms and abstractions for isola-
tion. Numerous mechanisms try to compartmentalize using
process-based isolation implemented by the OS [13], [20],
[12], retrofitting compartmentalization onto an abstraction
originally designed for multiprogramming on unicore pro-
cessors. Others leverage Intel MPK [22], [17], [21] or simi-
lar protection-key based mechanisms [18], synergizing with
traditional page table-based virtual memory. Targeting im-
mediate adoption, Hodor [22] and LOTRx86 [19] (ab)used
existing processor features intended for other purposes to
isolate compartments. HAKC [37] leverages state-of-the-art
ARM extensions, PAC and MTE, to compartmentalize the
Linux kernel, but requires a two-level clustering of closely-
connected compartments to overcome MTE’s compartment
scaling limitations and still incurs a significant performance
hit. With the sole exception of Mondrian [14], propos-
als assume current page-based virtual memory. Meanwhile,
trends in applications and memory architectures have led

TABLE 1. COMPARISON OF COMPARTMENTALIZATION MECHANISMS
BASED ON COMPLIANCE WITH THE OBJECTIVES DESCRIBED IN

SECTION 2. LIMITED COMPLIANCE IS MARKED WITH “∼”.

O1 O2 O3
a b c d e f a b c a b

UNIX X X X N/A X X
Mondrian X X X N/A X X X
lwC X X X N/A X X
CODOM X X N/A X X X
XPC X X X X X X X ∼ X
MPK ∼ X X X X
ERIM ∼ ∼ ∼ X X X X
Donky ∼ X N/A X X X X
CHERI X X X X X
SecureCells X X X X X X X X X X X

to a resurgence in range-based translations and protections
among academic proposals [38], [39], [40], [41], [42] and
commercial processors including AMD’s Zen lineup [43].
Table 1 summarizes the objectives satisfied by related mech-
anisms (justification in Appendix B). We discuss related
mechanisms further in Section 5.

Complementary requirements. To satisfy application
requirements, programs compartmentalized with Secure-
Cells’ mechanisms require complementary properties from
other parts of the system including secure compartmentaliza-
tion policies, a secure and performant supervisor interface,
and formal verification of application-level properties aided
by programming conventions. For example, supervisors
might include a syscall for microsecond-scale compartment
creation [13]. Safe calling conventions can provide formal
guarantees against inadvertent information leakage from the
stack [44]. These investigations are outside the scope of this
paper.

SecureCells overview. SecureCells is a compartmental-
ization mechanism designed to satisfy the above objectives
across a wide array of programs, providing flexibility and
performance without compromising on security. SecureCells
stores permissions in a centralized permissions table ac-
cessible only by the supervisor and hardware. A novel,
range-based memory management unit (MMU) and looka-
side buffer design (Section 3.1) allows single-cycle access
control on the fast path satisfying objectives O1a, O1f, O2a,
and O3a. SecureCells introduces fast, userspace instructions
for common compartmentalization operations (see Table 2):
switching compartments, transferring permissions and vali-
dating exclusive access for data regions (Section 3.2). These
instructions satisfy requirements O1b, O1e, O2b, O2c.
SecureCells delegates context isolation, call-stack mainte-
nance, and argument validation to software. Section 3.3
outlines how software can securely and efficiently imple-
ment context isolation and call-stack maintenance. Software
implementing these functions satisfy security (O1b, O1c)
and flexibility (O3a, O3b) objectives.
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3. SecureCells

SecureCells proposes hardware-software co-design to
satisfy the manifold objectives for efficient and secure
compartmentalization. The key insight that compartmen-
talization operations from untrusted userspace are secure
with TCB-maintained permission checks allows SecureCells
to implement compartment switch and permission trans-
fer through trusted hardware-checked userspace instructions
which are hundred to thousand times faster compared to tra-
ditional supervisor calls. Pragmatically, SecureCells retains
software for operations such as context switching which,
while common, would not benefit significantly from hard-
ware support. Software implementations of such operations
achieve higher flexibility and resilience to implementation
errors at negligible or low additional performance cost
compared to a hardware implementation. For example, both
hardware and software context switching can saturate the L1
data cache bandwidth, achieving similar performance. The
second insight is that VMA-based permission tracking elim-
inates permission duplication inherent in page-table entries
for pages within a VMA. SecureCells leverages this insight,
eliminating overheads for permission storage (compared to
equivalent page tables) and allowing hundred-times smaller
core-side lookaside buffers.

SecureCells protects compartments, application-defined
mutually untrusting parts of a program, by controlling their
access to memory regions. Each compartment is allocated a
Security Division (SD) with individual permissions to each
VMA-granularity data region (cell). The Browser (Figure 1),
for example, has three compartments (Engine, WebApp and
CryptoLib) allocated SD1-SD3, and four cells. SecureCells
augments each core with a read-only register (SDID) track-
ing the currently executing compartment. Along with a table
for storing permissions (PTable) and a modified MMU for
enforcing the permissions, SecureCells implements single-
cycle access control. The WebApp SD has executable per-
missions to one code cell and read-write permission to one

data cell. Userspace instructions (see Table 2) enable secure
compartment switching and permission surrender/transfer.
Another per-core read-only register (RID) tracks the caller
after a compartment switch, allowing the callee to securely
identify its caller. During permissions transfer, a granted
permissions table (GTable) tracks outstanding permissions.
Further, the design implements context isolation and secure
call stacks in software leveraging the above hardware prim-
itives. Figure 3 summarizes SecureCells’s architecture.

3.1. Access control

The Permissions Table (PTable) stores per-cell, per-SD
permissions for the compartmentalized program. For each
cell, the permissions for each SD are independent and
define the degree of sharing for that cell. Compartment-
private data stores allow only one SD non-null permissions
in this table. Shared cells can be readable, writable, or
executable by more than one SD. For a JIT compiler, the
cell holding generated data will be writable by the compiler
SD, while being executable by the sandboxed code’s SD.
The PTable is stored in privileged supervisor memory, re-
stricting accesses (including stores) from userspace. Figure 1
shows the permissions for the three browser compartments,
assigned to separate SDs, to the four data regions, simi-
larly assigned to cells. SecureCells’ current PTable design
supports a large number of SDs and cells (229 and 232

respectively), vastly exceeding application requirements. A
finely-compartmentalized modern browser, for example, will
only require a few hundred compartments, isolating each
loaded shared library (around 100 on the author’s Firefox
installation) and per-tab rendering compartments [45].

SecureCells replaces the core’s MMU with a PTable
walker and range-based lookaside buffers for permissions
and translations. The MMU checks access permissions based
on the accessed address and the executing SD identified
by the core’s SDID register. The lookaside buffers track
a small number of frequently accessed cells, along with
SDID-tagged permissions. In the common case, access
control verifies permissions from entries in this buffer. When
accesses miss in this buffer, the PTable walker reads the
required permission from the PTable. The walker first per-
forms a (fast) binary search in a sorted list of permissions
to find the correct cell containing the accessed address,
then reads the correct permission from the PTable for that
cell. The location of the permission in the PTable is found
through very simple arithmetic.

SecureCells’ PTable layout and MMU design has three
key advantages: fast PTable walks, scalability to large data
working sets, and low silicon cost. The PTable layout aids
fast permission lookups by sorting the cell descriptors, al-
lowing a binary search for the cell descriptor containing an
address, and the contiguous layout of the permissions for
a particular SD, which improves spatial locality for PTable
walks. Range-based lookaside buffers also enable scalability
for programs with large datasets, since permissions should
be verified against TLB entries in the common case. With
growing dataset sizes, traditional processors require larger



TABLE 2. OVERVIEW OF SECURECELLS’ USERSPACE INSTRUCTIONS.

Instruction Purpose

SDSwitch Switch to another SD
SCProt Change current SD’s permission to cell
SCInval Mark a cell invalid
SCReval Revalidate an invalid cell
SCGrant Grant cell permissions to another SD
SCRecv Accept granted cell permissions
SCTfer Grant and drop cell permissions
SCExcl Check for exclusive access to a cell

TLBs in order to track additional page translations and
permissions. Importantly, all permissions for pages within a
VMA are the same, leading to duplication in TLB entries’
permissions. However, the growth of program datasets has
exceeded the TLB reach of modern processors, leading to
attempts at range-based translations (explicitly managed by
the supervisor [39], or implicitly through coalescing [40]).
In contrast, as dataset sizes grow, the cell count remains
constant and the size of cells increases. Previous work
in range-based translation caching [39], [41] have also
demonstrated that processors require hundred-times smaller
range-based lookaside buffers than in traditional systems,
drastically reducing silicon cost. Research proposals [41],
[46] have also tackled external fragmentation from range-
based translations by introducing a system-wide page table
after the last-level cache.

3.2. Userspace Instructions

SecureCells introduces 8 new serializing userspace in-
structions for accelerating common compartmentalization
operations (Table 2). These instructions, formally defined
in Appendix A, implement speculation-free compartment
switching with checked entry points, permission surrender
and transfer for zero-copy dataflow.

The SDSwitch instruction targets secure, low-overhead
compartment switching within userspace. SDSwitch resem-
bles function call instructions, with direct and indirect vari-
ants, additionally switching the core’s SDID register and
saving the caller’s SDID to RID. Since the SDID register
is not writable from userspace, inter-compartment calls must
use SDSwitch. The cost of executing an SDSwitch is es-
sentially the cost of pipeline serialization, plus the negligible
cost of updating core registers, making it extremely cheap.
For an in-order 5-stage pipeline, an SDSwitch instruction
completes in around 8 cycles. For an out-of-order processor,
pipeline serialization is an essential cost incurred by all
related mechanisms to prevent Spectre-like [47] specula-
tive execution attacks, typically requiring 50-100 cycles.
For example, serialization dominates ERIM’s MPK-based
99-cycle switch latency. Compared to supervisor-controlled
compartment switching, SDSwitch eliminates the cost of
serialization on supervisor entry, context switches on entry
and exit, syscall dispatch, scheduling, and accounting costs.

SecureCells requires SDSwitch instructions for both for-
ward and backward edges on cross-compartment calls. We

show how software can implement cheap, secure call stacks
in Section 3.3. Programs are also allowed more flexibility,
and can implement both remote procedure call (RPC)-like
call-and-return (as in Figure 1) and circular function call
graphs with one-way switches (as in Figure 2).

SDSwitch instructions impose an additional restriction
over function calls in order to enforce call gates — the
instruction at the target address must be an executable
SDEntry instruction for the target SD. This requirement
limits the valid entry points for a compartment to the exe-
cutable SDEntry instructions in its code, and is conceptually
similar to Intel’s CET [48]. A compartment can mark valid
entry points with SDEntry instructions, and implement call
gates directly afterwards. Note that while our attacker can
inject arbitrary code into a compromised SD, it cannot write
code into any other SD, protecting uncompromised SDs
from attack via code injection containing unintended entry
points. The only remaining way for an attacker to propagate
between compartments is by using valid interfaces. Proper
input validation, which is always crucial for compartmental-
ized programs, protects against this attack vector. In contrast,
Intel MPK-based methods allow an attacker to inject and
execute a wrpkru instruction into a compromised compart-
ment to elevate its privileges to access all memory. Further,
the core executing SDSwitch updates the RID register
with the caller’s SDID, allowing the callee to identify and
validate the caller.

The SCProt instruction allows a SD to update its per-
missions to a cell, with the restriction that the new per-
missions are a strict subset of existing permissions. Es-
sentially, SCProt allows a SD to surrender permissions
when no longer needed. This instruction supports a com-
mon paradigm in secure software where a program drops
permissions as soon as possible.

An SCGrant-SCRecv instruction pair, executed by sep-
arate compartments, allows permissions for a cell to be
transmitted between them. When the granting SD executes
SCGrant, the targeted SDID and permissions are stored
in the GTable. A SD is only allowed to grant permissions
it already has. Only the targeted SD can later accept these
permissions by executing an SCRecv, specifying the SD it
expects to receive permissions from. Mutual involvement
in permission transfers prevents SDs from “stealing” from
or “injecting” into other SDs’ permissions, ensuring confi-
dentiality and integrity respectively. Note how this prevents
malicious code injection in particular, including where an
attacker might try to inject new entry points (SDEntry
instructions). Recognizing a common software pattern where
a SD hands over its permissions to the next stage and drops
its own permissions, SecureCells introduces the SCTfer
instruction. Unlike SCGrant, a SD executing SCTfer also
drops its own permissions to the cell involved. The seman-
tics of SCTfer are identical to consecutive SCGrant and
SCProt instructions, but SCTfer deduplicates permission
checks. All data transfer instructions (SCProt, SCGrant,
SCTfer, SCRecv) also flush the relevant entry from the
MMU’s lookaside buffer. The network function is dependent
on these instructions to progressively transfer permissions to



SecureCells Program State

1: A set of M SDs (S), incl. SDsup for the supervisor
2: A set of N cells (C) each of which is valid or invalid
3: Per-core register SID

4: Per-core register RID
5: PTable PT : S × C 7→ P({ r, w, x })
6: GTable GT : S × C 7→ S × P({ r, w, x })

Instruction 1 SDSwitch(addr, SDtgt)
Switch to SDtgt at instruction pointer addr

1: ci ← cell(addr)
2: assert valid(ci)
3: assert instruction at addr is SDEntry
4: assert x ∈ PT (SDtgt, ci)
5: instruction pointer ← addr
6: RID ← SID
7: SID ← SDtgt

Instruction 2 SCProt(addr, perm)
Restrict rights to addr to perm

1: ci ← cell(addr)
2: assert valid(ci)
3: pi,cur ← PT (SDcur, ci)
4: assert perm ⊆ pi,cur
5: PT (SDcur, ci)← perm

Instruction 3 SCGrant(addr, SDtgt, perm)
Grant SDtgt perm rights to addr

1: ci ← cell(addr)
2: assert valid(ci) ∧ perm 6= φ
3: pi,cur ← PT (SDcur, ci)
4: assert perm ⊆ pi,cur
5: GT (SDcur, ci)← (SDtgt, ptgt)

Instruction 4 SCRecv(addr, SDsrc, perm)
Accept perm rights to addr from SDsrc

1: ci ← cell(addr)
2: assert valid(ci) ∧ perm 6= φ
3: (SDtgt, gptgt)← GT (SDsrc, ci)
4: pi,cur ← PT (SDcur, ci)
5: assert SDcur = SDtgt ∧ perm ⊆ gptgt
6: if perm = gptgt then
7: GT (SDsrc, ci)← (SDinv, φ)
8: else
9: GT (SDsrc, ci)← (SDtgt, gptgt − perm)

10: end if
11: PT (SDcur, ci)← perm ∪ pi,cur

Instruction 5 SCTfer (addr, SDtgt, perm)
Transfer all perm rights for addr to SDtgt

1: SCGrant(addr, SDtgt, perm)
2: SCProtect (addr, φ)

Instruction 6 SCReval(addr, perm)
Re-validate address addr with perm rights

1: ci ← cell(addr)
2: assert invalid(ci) ∧ perm 6= φ
3: Validate ci
4: PT (SDcur, ci)← perm

Instruction 7 SCInval(addr)
Invalidate addr cell

1: ci ← cell(addr)
2: assert valid(ci)
3: for all SDj ∈ S − {SDsup, SDcur } do
4: pi,j ← PT (SDj , ci)
5: (SDtgt, gptgt)← GT (SDj , ci)
6: assert pi,j = φ ∧ gptgt = φ ∧ SDtgt = SDinv

7: end for
8: PT (SDsrc, ci)← φ
9: GT (SDcur, ci)← (SDinv, φ)

10: Invalidate ci

Instruction 8 SCExcl(addr, perm)
Verify exclusive perm rights to addr

1: ci ← cell(addr)
2: assert valid(ci) ∧ perm 6= φ
3: pi,cur ← PT (SDcur, ci)
4: assert perm ⊆ pi,cur
5: (SDtgt, gptgt)← GT (SDcur, ci)
6: if perm ∩ gptgt 6= φ then
7: return False
8: end if
9: excl← True

10: for all SDj ∈ S − {SDsup, SDcur } do
11: pi,j ← PT (SDj , ci)
12: (SDtgt, gptgt)← GT (SDj , ci)
13: if perm ∩ pi,j 6= φ ∨ perm ∩ gptgt 6= φ then
14: excl← False
15: end if
16: end for
17: return excl

Figure 4. SecureCells’ state and userspace instructions.



a packet between stages, as illustrated in Figure 2. However,
a SD can only have a single outstanding grant for a partic-
ular cell. If a SD grants a second set of permissions to a
cell before the first set of permissions to the same cell is
accepted, the first grant will be overwritten in the GTable.

The SCInval-SCReval instruction pair allows dataflow
pipelines to optimize the end and beginning of dataflow
pipelines such as the aforementioned network function
pipeline. The pipeline stages progressively drop permissions
to the cell holding a packet, and finally wish to drop all per-
missions after the final stage. However, dataflow pipelines
reuse the cells to hold packets, implying that the Driver
SD must find a way to regain write permission to the cell to
write a new packet’s contents to it. While this use case seems
to require an illegal privilege escalation prima facie, the
fact that the end of the pipeline “discarded” the cell holding
the packet implies that its contents are trash, and allowing
another SD escalated permissions to the cell is secure. To
support such usage, SecureCells introduces the concept of
validity for a cell. The SCInval allows a compartment
to explicitly state that a cell holds trash and is available
for reuse. On executing this instruction, this cell becomes
unavailable for memory accesses and cannot be used by
any instruction apart from SCReval. The SCReval allows
any compartment to re-validate and use an invalid cell with
arbitrary permissions. SecureCells imposes a key restriction
in order to secure cell reuses. A SD can only invalidate a
cell when it has exclusive access to it, requiring all other
sharers to explicitly drop their permissions to this cell. This
restriction ensures that a malicious SD cannot indirectly
elevate its privilege to a shared cell by using an SCInval-
SCReval sequence.

Exclusive access to a data region is critical to security
and performance, and SecureCells introduces the SCExcl
instruction for this purpose. Apart from enabling invalidation
of a cell, exclusive access is also important for safety in
concurrent programming. Concurrent access to data regions
enables double fetch vulnerabilities (such as time-of-check-
to-time-of-use or TOCTTOU). The SCExcl instruction al-
lows a SD to check whether it has exclusive access to a
cell. With exclusive access, a SD can skip making private
copies of data for double fetches, improving performance.
Conversely, when the policy dictates that a SD should have
exclusive access to a cell, that SD can verify compliance
with the policy using SCExcl.

3.3. Software Mechanisms

SecureCells delegates certain operations to software:
argument validation for call gates, maintaining call stacks,
and context switching for register context isolation. Of these,
argument validation is arbitrarily variable based on the com-
partmentalization policy and best left for software checks in
hardware-enforced call gates. SDs can determine their caller
by reading the RID register, and find arguments in register
or memory, and implement software checks as necessary.
Software maintained call stacks for inter-compartment calls
allow flexibility of calling models, simplifies hardware and

entry0:
  SDEntry
  jump to return addr. 

foo:
  ... 
  setup args 
  trampoline(SD1,bar) 

  return address 

trampoline:
  save return address 
  SDSwitch

             
entry1:
  SDEntry 

bar:
  ...
  process 
  ... 
  SDSwitch  
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Figure 5. Cross-compartment procedure call in SecureCells.

remains secure. The software can securely restore with the
same performance as hardware, making a hardware imple-
mentation unnecessary. In-software operations also improve
SecureCells’ security-proportionality as these operations can
be skipped for lower overheads when safe to do so.

Both forward and return edges on RPC-like cross-
compartment calls use SDSwitch instructions, as illustrated
in Figure 5 where function foo makes a cross-compartment
call to bar. Arguments are passed in registers. In this
example, the caller uses a trampoline to hide its return
address before switching to SD1 (Step 1) and uses this
address on the return path (Step 4). SD0 is able to hide
its calling address from SD1, just leaking the address of
the generic trampoline. Further, following the return switch
to its entry point, SD0 can read RID to verify that the
return is indeed from the called SD, not any other. On the
other side, the callee (SD1) can store its caller and switch
back to the caller’s entry point on the backward edge. If
SD1 contains nested calls to other compartments, it merely
needs to remember its caller somewhere in its memory. The
dispatch (Step 2) secures the forward edge to bar with
call gates. While this example is secure, the flexibility of
software allows other calling patterns.

Context isolation requires the caller to save non-
argument/return registers to a state store before a SDSwitch
and restore the same state on the return edge. The second
step (context restore) is challenging since it requires the SD
to find its state store without trusting any register state, since
the register state prior to the SDSwitch persists. We propose
an array of per-SD private cells as state stores, indexed by
SDID. The base of this array is easily constructed with
instruction pointer-relative instructions following an entry
point. Simple arithmetic involving the readable SDID reg-
ister allows a SD to locate its state store, and consequently
restore the register state. The latency of in-software context
saving to memory is limited by the core’s bandwidth to the
L1 cache, the same as for any potential hardware implemen-
tation. Therefore, delegating this operation to software has
no performance impact. Context switching also switches the
stack pointer between per-compartment private stacks.



3.4. Implementation

Our implementation of SecureCells augments and mod-
ifies the RocketChip [49] core and firmware. An overview
of the implementation is shown in Figure 3, with addi-
tions to the existing processor highlighted in grey. RISC-V
provides the ideal, open platform for implementing fully-
functional prototypes of experimental architectures. Secure-
Cells permits a range of implementations for single and
multi-core processors containing in-order and/or out-of-
order cores depending on the application’s requirements:
from firmware implementations on low-power embedded
processors through hardware or microcode implementations
on mobile, desktop, and server processors. We discuss the
trade-offs in detail in Appendix E. To match the Rock-
etChip’s simple, in-order pipeline, we implement access
control and compartment switching in hardware within the
pipeline and emulate the remaining instructions in firmware.

SecureCells provides an alternate virtual memory mode,
replacing SV-39 and SV-48. We replace the core’s MMU
with a range-based TLB and a PTable walker (replacing the
traditional page-table walker). We design the layout of the
two-dimensional tables (PTable and GTable) in memory to
accelerate cell lookups and maximize spatial locality within
the cache hierarchy when accessing permissions. We add
SDID and RID to the core’s Control-Status Registers
(CSRs), and implement SDSwitch in the core pipeline. The
remaining instructions are implemented through hardware-
assisted firmware by modifying OpenSBI [50].

The unified PTable-GTable in memory starts with a
sorted list of cell descriptions, followed by the permissions
held in the PTable, and then the mappings for the GTable.
Each cell is described by the base and bound virtual ad-
dresses, the corresponding physical address base, and a sin-
gle bit denoting validity. The sorted list of cell descriptions
allows the PTable walker to perform a binary search when
looking for the cell which contains a particular address,
greatly accelerating lookups. The row-major layout of the
PTable groups permissions for the same SD in contiguous
cache lines, resulting in intra-cache line spatial locality for
permission lookups, and synergizing well with next-line
prefetchers. As a result, most MMU permission lookups are
likely to be served by the L1 cache. The unified PTable-
GTable together occupies ∼ 160kB to track permissions to
1024 cells with 64 SDs, equal to the memory used by leaf
page-table entries to map 80MB of data.

The range-based lookaside buffer holds a few cell de-
scriptions and the corresponding permissions tagged by
SDID. The implementation of these structures is inspired
by recent forays into range-based translation caches [41],
[39], [38], primarily aimed at tackling the limited reach
of modern page-based translation lookaside buffers (TLBs).
Midgard [41] has shown that such lookaside buffers can
sufficiently cover the working set of large applications with
a few (∼ 16) entries.

SecureCells’ userspace instructions are implemented
through hardware-software co-design. The SDSwitch in-
struction is implemented purely in hardware, and the remain-

TABLE 3. HW CONFIGURATION OF THE SECURECELLS PROTOTYPE.

Component Configuration
Baseline SecureCells

Core 1 × Rocket, 6-stage, in-order
L1 - D/I TLB 32-entry, fully-assoc. 16(D)/8(I)-entry, fully-assoc.
L2 TLB 1024-entry, 4-way assoc. 32-entry, fully-assoc.
L1 D/I-cache 32KB, 8-way associative
L2 cache 16MB, 16-way associative
Main memory DDR3, 800MHz, 1GB

TABLE 4. FPGA RESOURCE UTILIZATION FOR SECURECELLS’ MMU

Traditional SecureCells
LUTs FFs SRAM LUTs FFs SRAM

L1 ITLB 1915 1886 0 1529 869 0
L1 DTLB 2613 2048 0 1272 1903 0
L2 TLB + PTW 5000 3428 18KiB 3826 4596 0

ing permission-modifying instructions are emulated through
firmware. Additional hardware helpers, designed to aid op-
erations trivially achieved in hardware but costly in soft-
ware, simplify and accelerate the emulation. One notable
operation is the lookup of the cell’s index in the PTable,
which is common for all added instructions. While a binary
search in software is expensive, the MMU already holds
this information. We add an instruction, only accessible in
RISC-V’s machine mode and similar to the AT instruction
in ARMv8-A ISA [51], to directly query the MMU. We
envision that higher performance processors with microcode
sequencers can implement these instructions in microcode,
and leave the investigation of the requirements of such an
implementation to future work.

4. Evaluation

In this section, we evaluate key metrics for Secure-
Cells’ security and performance. First, we show how Se-
cureCells provides security for the Browser described in
Section 2. Second, we measure the latency of the Secure-
Cells’ userspace instructions in microbenchmarks, particu-
larly comparing compartment switching latency to related
work. We finally measure SecureCells’ performance for two
representative workloads highlighting the effect of range-
based access control and using userspace instructions for
compartment switching and permissions transfer.

Testbench. We ran the security evaluation on a QEMU
implementation of SecureCells, which faithfully models its
functional behavior, and the performance experiments on our
hardware implementation of SecureCells, which uses cycle-
accurate Register-Transfer Level (RTL) simulation to accu-
rately measure its timing behavior. The core configuration,
described in Table 3, resembles ARM’s Cortex-A75. Our
baseline is an identical core using a traditional page-based
MMU and TLBs instead of SecureCells. Table 4 shows
the FPGA resource utilization for both the baseline and
SecureCells MMUs. SecureCells’ PTable walker contains
simpler logic than the baseline, as evidenced by the fewer



LUTs required in the design. Additionally, the much smaller
range TLB eliminates the 18KiB block SRAM required to
store 1, 024 entries in the baseline L2 TLB. We run our
benchmarks on a seL4 kernel ported to use SecureCells’
memory protections. To evaluate realistic workloads on
the seL4 kernel, we faithfully ported core functionality of
benchmarks, carefully limiting system calls.

4.1. Security Evaluation

To evaluate SecureCells’ security claims, we test that a
properly compartmentalized SecureCells program prevents
common attack vectors for monolithic software. We also
include an in-depth analysis of SecureCells’ instruction se-
mantics and checks in Appendix A.

Access Control. We evaluate SecureCells’ access con-
trol on a mock Browser, modeling the example described in
Section 2. The Browser contains a simple compiler Engine
that generates code for sandboxed WebApp applications.
The WebApp can allocate arrays, and read/write elements in
the array through get/set instructions. We emulate a buggy
Engine that generates vulnerable WebApp code lacking
bounds checks on array accesses, allowing the WebApp
arbitrary reads and writes. With the monolithic Browser,
an attacker WebApp could leak/modify the Engine’s data
as well as that of a second sandboxed WebApp. When
compartmentalized with SecureCells with the permissions
shown in Figure 1, illegal accesses by the attacker WebApp
outside its data cell instead raise load/store access faults.
SecureCells’ access control also prevents arbitrary code
injection by the WebApp by preventing the WebApp from
writing to either its or the Engine’s code regions.

Context Isolation and Call Gates. When uncompart-
mentalized, the WebApp can modify the Engine’s stack
enabling control- and data-flow attacks like ROP [52]. Using
SecureCells for separation, inter-compartment calls between
the Engine and the WebApp are protected through call gates
implementing context isolation (Section 3.3) including stack
switching. SecureCells successfully prevents the WebApp
from accessing the Engine’s stack.

4.2. Performance Microbenchmarks

First, we create microbenchmarks to measure the latency
of each userspace instruction introduced by SecureCells, of
which SDSwitch is directly implemented in hardware, and
the other instructions are emulated in firmware.

In Table 5, we compare SecureCells’ compartment
switching cost with that of related mechanisms, particu-
larly for a round-trip cross-compartment call. SecureCells’
userspace SDSwitch enables 8-cycle compartment switches,
with optional software context saving costs, which is more
than 5× faster than XPC’s switch. SDSwitch’s latency
consists of pipeline serialization (5 cycles), an instruction
permission check (2 cycles) and a single cycle for the
targeted SDEntry instruction. Of course, both XPC and
SecureCells would incur higher pipeline serialization costs
on an out-of-order core, putting SecureCells on par with, or

TABLE 5. COMPARTMENT SWITCHING COST OF
VARIOUS COMPARTMENTALIZATION MECHANISMS.

Round-trip Cycles CPU
Switch Context

Saving
Total OoO1 Model

lwC 2× 6000 12000 X SkyLake
seL4 2× 514 1027 RocketChip
CHERI 2542 1293 425 CHERI
ERIM 2× 99 Opt5 198 X Xeon
XPC 824 Opt5 82 RocketChip
SecureCells 2× 8 Opt5 16 RocketChip
1 Out-of-order CPUs incur higher pipeline serialization costs
2 In-kernel time
3 Userspace time (caller, libcheri)
4 XPC call + return + TLB miss
5 Optional, software-implemented context switch

TABLE 6. CYCLES FOR EMULATING SECURECELLS INSTRUCTIONS.

Instruction Trap
entry

Dispatch Emulation Total
Cycles

SCProt 32 33 144
SCInval 35 68 182
SCReval 39 44 162
SCRecv 79 54 69 202
SCGrant 52 63 194
SCTfer 61 62 202
SCExcl 57 67 203

better than, the MPK-based ERIM. Note that ERIM requires
stringent code integrity and control-flow integrity guarantees
while SecureCells does not impose any code requirements
for its compartmentalization guarantees.

All instructions other than SDSwitch and SDEntry are
emulated by the firmware, and therefore incur the costs
of context saving, firmware entry and exit handlers, and
dispatch to the correct emulation function. Table 6 shows
the latency of each instruction, breaking down the cycles
spent on each of the above overheads. A microcode im-
plementation of SecureCells would allow the core to use
internal registers for storage, eliminating the context switch,
and directly lookup the microcode ROM to find the em-
ulation microcode, eliminating dispatch. Consequently, a
microcode-based implementation would reduce SecureCells’
cost to that of the core emulation code only.

4.3. Compartment Switching and Access Control

To evaluate SecureCells’ practical performance, we cre-
ate a simplified benchmark representative of a popular server
workload, memcached, accurately modelling the workload’s
memory access patterns across varying dataset sizes. Our
benchmark implements the core hashtable-based storage
and the common query path loaded by an in-process load
generator function and omits system call-dependent features
(networking, dynamic resizing), and the global LRU list.
The benchmark isolates the data store from the vulnerable
external interface — attackers might send malformed re-
quests to trick the interface into directly accessing the data
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Figure 6. Comparison of cycles-per-request, cycles-per-instruction (CPI),
and TLB miss rate while executing compartmentalized memcached
benchmark on SecureCells, compared to the uncompartmentalized version
on RocketChip (lower is better).

store — by assigning them to separate SDs. The interface
deserializes incoming requests, queries the data store by
switching compartments using SDSwitch, and serializes the
outgoing response. For simplicity, this benchmark utilizes
the migrating thread model.

Compartmentalizing the server allows us to measure the
overheads of frequent compartment switches, while varying
the program’s dataset size allows us to compare SecureCells’
scalability. We scale the dataset size by sweeping the number
of fixed-size (64B) entries stored in the data store, all of
which are accessed randomly by the load generator. We
compare the compartmentalized server running on Secure-
Cells’ implementation to an uncompartmentalized server
running on an unmodified RocketChip core by measuring
the average count of instructions retired and cycles used to
process each request. To compare against another emerging
compartmentalization architecture, we also conservatively
model CHERI’s performance on this benchmark, adding
the costs of supervisor-mediated compartment switches with
hardware support, as reported in the paper [27]. We model
each compartment switch as 191 instructions requiring 254
cycles, excluding the costs of context switching and ignoring
other microarchitectural overheads. In Figure 6, we plot
the average per-request cycle count and the cycles-per-
instruction (CPI) for the server.

SecureCells implements fast compartment switching,
and the cost of switching to and from the data store com-
partment for each request (16 cycles) is minuscule (< 3%)
compared to the request processing time (minimum 532
cycles). Consequently, SecureCells’ performance closely
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Figure 7. Packet processing cycles-per-byte comparison.

tracks that of the baseline even for small dataset sizes. In
contrast, CHERI’s compartment switching overwhelms the
request processing time, only approaching the baseline’s
performance for large dataset sizes. While CHERI’s per-
formance for compartmentalization compares favorably to
that of traditional OS-based isolation techniques, it offers
unacceptable overheads for finer, function-granularity com-
partmentalization (up to 95.5%).

The CPI graph highlights the baseline system’s limited
TLB reach. As the dataset exceeds the TLB reach of 4MB,
the baseline starts to encounter TLB misses on accesses
to the data store. Consequently, the baseline CPI starts to
degrade compared to SecureCells, and only worsens as the
dataset increases past the CPU’s last-level cache capacity.
In contrast, SecureCells’ range-based lookaside buffer com-
fortably scales to large datasets, allowing the memcached
server to serve requests 9.3% faster for a 32MB dataset.

4.4. Compartmentalized pipeline

To illustrate SecureCells’ zero-copy permission transfer
performance, we implement the virtual network function
pipeline presented in Figure 2. The Driver stage generates a
“packet” by writing a UDP/IP packet of varying length into
a packet buffer, whereas the Firewall and NAT read and
modify the IP and UDP headers respectively, but ignore the
packet’s payload.

Representing the ideal performance target, we include
the “uncompartmentalized” configuration that passes the
packet by reference, incurring no overheads for data transfer.
The second configuration, “compartmentalized-copy”, com-
partmentalizes pipeline stages and uses shared buffers to
transfer packets by copy. The third, zero-copy “SecureCells
ZC” configuration isolates stages, and uses userspace in-
structions to transfer access permissions to packets, each of
which occupies a different cell. Finally, the “SecureCells
ZC-µcode” configuration models the possible performance
of a microcode implementation of SecureCells’ dataflow in-
structions by mitigating trapping overheads to the firmware



and dispatch. This model is conservative, ignoring possible
optimizations from parallelizing checks in microcode.

In Figure 7, we plot the average number of cycles
required by the benchmark to process a byte of a packet
as the packet size grows. Fixed costs, such as a function
call, compartment switch or permission transfer, have di-
minishing impacts as the packet size grows. The costs for
generating and copying the packet, however, grows linearly
with packet size, and add a constant vertical offset in the
graph. The “compartmentalized-copy” configuration incurs
additional costs over the uncompartmentalized baseline due
to compartment switches (4.4% for small packets) and
packet copy (51.1%). The “SecureCells ZC” configuration
trades-off linearly-growing packet copying costs with fixed-
cost permission transfers and (in)validations. While the
∼ 250-cycle average latency of SecureCells’ permission-
modifying instructions causes a massive 199% overhead for
the smallest packets, this fixed cost quickly gets amortized
for larger packets. Indeed, this configuration overtakes the
“compartmentalized-copy” configuration for 600B packets
and above, and approaches the performance of the un-
compartmentalized configuration (2.0% overhead) for 16kB
packets. Finally, the “SecureCells ZC-µcode” configuration
highlights SecureCells’ performance potential, with (aver-
age) 69-cycle operations for transferring permissions which
lowers the break-even threshold to 200B packets.

5. Related Work

A variety of compartmentalization techniques exist, both
in software and leveraging hardware, targeting differing
goals and with consequently different designs.

Attacks often target specific, sensitive data for leakage or
corruption (e.g., keys or flags). Consequently, various pro-
posals such as IMIX [23], ERIM [17], and MemSentry [21]
introduced mechanisms to specifically protect such data
from untrusted or unsafe code. However, these mechanisms
fail to apply to more generic scenarios, with more than two
compartments, per-compartment sensitive or private data,
and non-hierarchical trust models. COde-centric memory
DOMains [25] proposed an architecture where the instruc-
tion pointer identifies the running compartment, in a bid to
isolate untrusted libraries. However, this proposal is unable
to support the extensive code sharing in modern programs,
including shared libraries like libc.

Compatibility with existing systems brings immediate
security benefits. By mapping the same physical pages
across separate per-compartment page tables with differ-
ent permissions, the existing virtual memory implementa-
tion can mimic intra-address space compartmentalization.
Typically, such mechanisms require costly supervisor in-
tervention to switch compartments limiting the temporal
granularity of compartmentalization. SMV [28] introduced
an API for creating intra-address space memory views, but
relied on the supervisor for compartment transitions. Light-
Weight Contexts (lwC) [13] proposed a new OS abstrac-
tion enabling a fast-path in the supervisor for compartment

switching, essentially eliminating overheads from unneces-
sary tasks such as scheduling. lwC successfully reduces the
cost of a compartment switch from 4 to 2µs, but remains an
order of magnitude away from nanosecond-scale switching.
Hodor [22] uses the VMFUNC instruction, introduced for
virtual machines, to instead switch page tables in a few
hundred cycles, eliminating supervisor overheads but con-
sequently inherits the additional costs of two-dimensional
page table walks. LOTRx86 [19] repurposed unused x86
rings to introduce a privileged userspace for storing sensitive
data. XPC [20] prioritized software compatibility, choosing
to accelerate the remote-procedure call (RPC) interface used
for process-based compartmentalization with new userspace
instructions. To achieve this goal, XPC cores track a com-
plicated system of metadata across the cores and memory,
storing a list of compartments, entry points, valid caller-
callee pairs, and a caller stack. XPC is secure, performant,
and can allow exclusive access to a single data memory
range at almost zero cost. However, XPC requires additional
caches for dedicated storage of its metadata, does not allow
permissions to be transferred, and requires hardware to
implement features cheaply implementable in software (e.g.,
call stacks), and cannot support non-RPC like compartment
switches. With page table-based virtual memory, such pro-
posals all inevitably suffer from the scalability limitations
of modern TLBs [40], [39], [38].

Existing architectures have introduced features for intra-
address space isolation, e.g., Intel’s MPK and ARM’s MTE
extensions, with fast compartment switching (< 100 cycles)
in the common case. These extensions enforce additional
permissions, but are insecure under stronger threat models
due to designs which prioritize compatibility with existing
processors. MPK, for example, is defeated by arbitrary code
injection. ERIM [17] requires complicated code scanning to
prevent code injection, and Donky [18] requires hardware
modifications to introduce an additional trusted privilege
level within userspace. Since neither ERIM nor Donky vali-
dates code accesses, an attacker targeting cross-compartment
code injection need not make the malicious code executable
for the target before tricking the target into executing this
code. Memory keys also architecturally limit the number of
memory regions for which permissions can be efficiently
tracked, leaving no room for future microarchitectural ad-
vances to improve code performance. These systems also
inherit the TLB-reach issues of modern TLBs.

Range-based permission tracking tackling the TLB-
reach issue appeared in Mondrian Memory Protection
(MMP) [14]. MMP proposed a virtual memory architec-
ture tracking segment-based permissions for compartments
within an address space, simulating zero-copy for network-
ing through redundant mappings for packet buffers with
different, static permissions. MMP only implements access
permission checks in hardware, delegating other operations,
including compartment switches, to the supervisor, preclud-
ing high-performance applications. MMP also uses different
permissions tables for each compartment, reading duplicated
range boundaries on each switch.

CHERI refers to hardware-enforced memory capabili-



ties [53], and an eponymous compartmentalization mecha-
nism reusing the same capabilities [27]. The original pro-
posal for memory capabilities offers a practical mechanism
to mitigate spatial safety bugs, restricting the ability of
pointers to access memory beyond bounds. We recognize
that CHERI’s capabilities can prevent memory corruption
within a compartment, motivating integration with Secure-
Cells to together improve security. CHERI compartmental-
ization encapsulates capabilities to a compartment’s code
and data, relying on costly supervisor-mediated compart-
ment switches. CHERI lacks auditability since capabilities
are spread throughout memory, and a bug resulting in a ca-
pability being leaked cannot be cheaply detected and fixed.
CHERI’s switching costs are not security-proportional, lack-
ing the ability to skip context switching costs when ac-
ceptable. Finally, CHERI’s permissions are built on tradi-
tional page-based translations, and inherit TLB limitations.
Nonetheless, CHERI allows more granular per-object capa-
bilities as compared to SecureCells’ per-VMA permissions.

Along with mechanisms, policy research is equally im-
portant. Researchers have attempted to formalize a com-
partment program’s guarantees [54], determine the scope
of access following permission transfers under the take-
grant model [26], automatically infer isolation policies from
programs [34], [35], [36], provide hints to programmers on
isolation boundaries based on automated analysis [55], and
reason about what guarantees remain when one or more
compartments are compromised [56].

6. Discussion

Legacy program/OS support. SecureCells is compat-
ible with existing pre-emptive operating systems which
already separate architecture-specific memory management
code. SecureCells also supports page-based memory man-
agement (demand paging, swapping) when integrated with
upcoming intermediate-address space memory architec-
tures [46], [41]. Since SecureCells preserves the VMA-
based view of virtual memory, an OS can present a legacy
userspace environment for existing monolithic applications
by allocating a single compartment in the PTable. Legacy
applications will also benefit from SecureCells’ improved
TLB-reach with range-based address translations.

Adopting SecureCells. SecureCells faces the daunting
task of changes across the software and hardware stack.
Nonetheless, library and compiler support for software de-
velopment can greatly aid developer adoption. We developed
a prototype library (scthreads) to support compartments
with isolated contexts, and envision that most software
can be ported through compilation with a SecureCells-
compatible C/C++ library. We compartmentalized the ex-
ample Browser (∼1kLoC), initially developed and tested
on an x86 machine, in approximately two additional days.
Software such as browsers desiring the full benefits of
compartmentalization will still require rewriting (to refactor
monolithic code into compartments). SecureCells’ userspace
instructions map to common compartmentalized applica-
tions’ operations, evidenced by strong parallels between

SecureCells’ instructions and APIs in related mechanisms
or language-level operations in compartmentalization frame-
works (Table 7). This mapping will simplify porting existing
compartmentalized applications, such as Nginx-lwC [13], to
run on SecureCells by replacing existing operations with the
SecureCells equivalent (e.g., substitute SDSwitch in place
of lwSwitch). Existing software compartmentalization li-
braries and compilers [28] can also use SecureCells as a
backing mechanism. For example, consider a SecureCells
backend for the LitterBox sandbox, used by the compart-
mentalizing compiler Enclosures [6] to isolate untrusted
Go libraries, improving performance and security over the
existing Intel VT-x and MPK backends respectively. Enclo-
sure switching (Prolog and Epilog) map to SDSwitch
instructions whereas data movement (transfer) maps to a
SCTfer-SCRecv pair.

TABLE 7. MAPPING SECURECELLS INSTRUCTIONS TO RELATED
MECHANISMS, LIBRARIES AND LANGUAGE FEATURES.

Instruction Analogous API

SDSwitch dcall 3, CCall/CReturn 4,
Prolog/Epilog 5, lwSwitch 6

SCProt mprotect1, mpk_mprotect 2,
dk_mprotect 3, CAndPerm 4

SCInval munmap1, mpk_free 2, dk_munmap 3

SCReval mmap1, mpk_mmap 2, dk_mmap 3

SCGrant
SCRecv
SCTfer

mmap(MAP_PRIVATE)1,
dk_domain_assign_key 3, Transfer 5,
lwOverlay 6

1 Linux processes
2 libmpk [16]
3 Donky [18]

4 CHERI [27], [53]
5 Enclosures [6]
6 lwC [13]

System call semantics with SecureCells. Recent
work [57] has demonstrated that the Linux system call
interface can be used to compromise userspace compart-
mentalization. Modifications of the syscall interface, such as
those proposed in Jenny [58], are orthogonal to the compart-
mentalization mechanism and can be applied to SecureCells.
We leave a systematic evaluation of kernel performance and
system call semantics with SecureCells to future work.

Advantages for microkernels and system calls. Fast
compartmentalization is the key objective for practical mi-
crokernel operating systems. By running the OS kernel
and drivers in SDs, SecureCells improves over a modern
microkernel’s switching time by two orders of magnitude.
Similarly, userspace programs can benefit from significantly
faster system calls if the kernel is assigned a compartment
within each program’s address space. Essentially, the costly
system call entrances can be replaced by cheaper SDSwitch
instructions into the kernel.

Speculative-execution attacks (SEA). SecureCells does
not mitigate existing SEA, but takes care not to introduce
vulnerabilities (see Appendix D). Nonetheless, SecureCells’
access control limits the leakage scope of Spectre attacks to
a compartment’s accessible cells, weakening SEA.



7. Conclusion

Compartmentalization requires labor-intensive code re-
structuring, deterring developers from adopting piecemeal
solutions which provide partial protection or which cripple
performance. This paper introduces SecureCells, a secure,
flexible and performance-focused compartmentalization ar-
chitecture to underpin future software compartmentalization
efforts. Further work is required, for scaling our FPGA
prototype to an out-of-order, multicore processor, investi-
gating implementations of higher-level abstractions on Se-
cureCells’ mechanisms, developing software conventions to
develop correctly compartmentalized programs for Secure-
Cells, and to improve OS support for the architecture.

Nevertheless, SecureCells enables practical, effective,
and efficient compartmentalization by tackling the core
architectural requirements for a mechanism. SecureCells
strictly enforces access controls and protects permissions
from corruption, while supporting secure 8-cycle compart-
ment switching. SecureCells constrains inter-compartment
control flow to respect call gates, protecting these interfaces
from fault propagation. SecureCells is also an enabler for
data processing pipelines with userspace zero-copy data
transfers. SecureCells remains flexible, eschewing policy-
specific specializations. We have published the Secure-
Cells prototype, benchmarks and supporting infrastructure
at https://www.hexhive.epfl.ch/securecells.
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instructions in Figure 4 and discuss their corresponding
security checks below.

SDSwitch. This instruction checks that the jump target
is valid, and holds an SDEntry instruction executable by the
target SD. With the precondition that the caller SD does not
have writable permission to any cell executable by the target
SD, SDSwitch guarantees compartment entry at previously
defined entry points (helping implement call gates).

SCProt. This instruction checks that the target cell is
accessible by the SD, and the new permissions are a subset
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assured to have no more permissions than before.
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SCGrant, SCRecv and SCTfer. SCGrant checks that
the granting SD has permissions to the cell, and that the
granted permissions are a subset of its existing permissions.
SCRecv, in turn, checks that the SD is receiving permissions
for a valid cell, that the permissions were previously granted
by the specific SD that the receiving SD expects, and that
the received permissions are a subset of the permissions
granted. SCTfer includes the checks of both SCGrant and
SCProt. The granting and receiving SDs must cooperate in
order to transfer permissions, and together finish with the
same or fewer permissions than they began with.

A correct compartment is defined to not grant or re-
ceive any permissions or invalidate cells that it is not
required to grant as per a correct compartmentalization
policy. Considering a set of compromised attacker SDs and
their permissions to cells and assuming that uncompromised
compartments are correct, SecureCells guarantees that the
attackers can neither gain any new permissions through
any sequence of permission transfer instructions nor ele-
vate the permissions of any uncompromised compartment.
Using SCGrant and SCRecv instructions, the compromised
compartments can transfer permissions between themselves
but those grants cannot include permissions which none
of the attackers had initially. The only way for the at-
tackers to gain permissions is from an uncompromised SD
either granting permissions to a cell or from invalidating a
private cell which one of the attackers can validate with
SCReval. The only way for the attackers to inject per-
missions is to have an uncompromised SD receive them.
By definition, uncompromised compartments will do neither
of the above. Once again, we stress on the importance
of a correct compartmentalization policy. No mechanism,
including SecureCells, can protect against an insecure policy
where compartments transfer permissions from/to untrusted
compartments without proper validation.

SCInval. This instruction allows a SD to invalidate
a cell to which it has exclusive access, and to which no
outstanding permission grants exist. The first condition can
be true for a private region, or for one which other SDs have
willingly dropped permissions. Consequently, no other SD
will unwittingly lose permissions to the invalidated cell as
a consequence of SCInval. The second condition provides
the assurance that no compartment can regain permissions
to the cell without executing SCReval.

SCReval. This instruction checks that the address cor-
responds to an existing cell and that it is currently invalid.
Due to the initial invalidity of the cell, no SDs could have
access to the cell to be revalidated.

SCExcl. This instruction does not modify any permis-
sions, only allowing a SD to check if it has exclusive access
to a cell to which it already has access to.

Appendix B.
Justification for Table 1

Obj. O1a. MPK, ERIM and Donky do not check per-
missions for instruction fetches, simplifying code injection.

Under our threat model, an attacker can inject wrpkru
instructions to corrupt permissions.

Obj. O1b. Through code injection, call gates in MPK
and ERIM can be bypassed.

Obj. O1c. CODOM requires migrating threads without
context isolation. MPK, ERIM and Donky rely on call gates
if context isolation is desired. However, MPK and ERIM
cannot enforce call gates under our threat model. Donky
gives no mechanism for a compartment to restore its state
without trusting general-purpose registers. Further, Donky
cannot adopt a SecureCells-like software approach because
a compartment has no way to identify itself.

Obj. O1d. CHERI allows one compartment to unilater-
ally send a capability to another compartment, unchecked
by the TCB and unacknowledged by the receiver.

Obj. O1e. No mechanism except XPC considers the
challenge of exclusive access.

Obj. O1f. A compartment in MPK and ERIM cannot
check the value of the pkru register for another com-
partment, hindering audits. Cross-core pkru reads are not
possible. CHERI requires an expensive full memory scan
for capabilities to perform an audit.

Obj. O2a. Page-table based translation and permission
checking encounter TLB-reach limits leading to multi-cycle
common case access verification for many widely-used
programs including memcached. The mechanisms relying
on such page tables for either translation or permission
checking fail this requirement.

Obj. O2b. Supervisor-mediated cross-compartment calls
in UNIX-like OSs, Mondrian, lwC and CHERI require 100s
or 1000s of cycles to complete.

Obj. O2c. Supervisor-mediated permission transfers are
slow (UNIX, MMP, lwC). MMP proposes the use of redun-
dant mappings with different permissions to implement a
form of zero-copy transfer which is not generic. CODOM
does not really support permission transfers. XPC restricts
permission transfer to a single relay segment.

Obj. O3a. CODOM identifies the executing compart-
ment by the instruction pointer, limiting the flexibility to
share code/data regions between compartments.

Obj. O3b. UNIX, MMP, lwC, XPC and CHERI cannot
eliminate context switching when a permissive policy allows
migrating threading between compartments.

Appendix C.
Existing mechanisms with SecureCells

Many existing performance or security mechanisms can
be integrated with SecureCells, either unmodified or with
modifications described in this section.

Physical Memory Protections. SecureCells enforces
permissions on the virtual address space, and is there-
fore trivially compatible with physical memory protection
schemes including RISC-V’s Physical Memory Protection
(PMP) mechanism, processor reserved memory for In-
tel’s SGX and vendor-specific protections like Qualcomm’s
XPU [59]. These mechanisms will apply to the physical



address output by SecureCells’ MMU after PTable access
control checks.

Pointer authentication and capabilities. ARM’s
pointer authentication code (PAC) feature and CHERI’s
capabilities improve memory safety by protecting pointers
from illegal modifications (overwriting when stored in mem-
ory and out-of-bound increment respectively). Both mecha-
nisms are orthogonal to, and can integrate with SecureCells,
which checks accessess against PTable permissions when the
pointers protected by these mechanisms are finally derefer-
enced, providing another layer of protection against attacks
like PACMAN [60].

Hardware and Software Control Flow Integrity.
Hardware (e.g., Intel CET) and software (e.g., LLVM-
CFI) control-flow protections can integrate with Secure-
Cells, improving intra-compartment control-flow protection
to complement SecureCells’ inter-compartment call gates
(SDEntry). CET can continue to check indirect call targets
for endbr instructions. LLVM’s and other fine-grained CFI
pointer checks are implemented in software, orthogonal to
hardware control flow checks.

Page-based mechanisms. By itself, SecureCells re-
stricts popular mechanisms (e.g., guard pages, swapping)
operating on pages and page tables since translations and
protections are tracked at cell granularity. However, Se-
cureCells can be integrated with upcoming intermediate
address-space systems like Midgard re-enabling program-
mers to implement these crucial features. Midgard couples
SecureCells-like range-based translation at the core with a
second level of page-granularity translations at the backside
of the last-level cache. Guard pages and swapping can both
be implemented by unmapping the requisite pages in the
backside translation.

Appendix D.
Speculative Side-Channel Attacks

We consider the threat of speculative side-channel at-
tacks like Spectre [47] in SecureCells’ design, despite omit-
ting such attacks from our attacker model. SecureCells
introduces additional mechanisms for changing an execut-
ing thread’s permissions, through userspace compartment
switching and permission transfers. Fault-based attacks like
Meltdown [61] must be prevented in implementations by
preventing faulting loads from accessing memory or for-
warding their data to subsequent instructions [62].

SecureCells specifies that userspace instructions are se-
rializing, precluding speculative permission changes. An
attacker cannot, for example, speculatively switch to a
victim SD using an SDSwitch following a long-latency
branch and read the victim’s private data using the victim’s
permissions. SecureCells’ permission transfer instructions
are atomic, preventing visibility or exploitation of any in-
termediate permission state. An attacker SD cannot, for
example, drop permissions for a cell using SCProt while
transferring the same permissions using SCTfer in parallel.
Our firmware (and future microcode) implementation use

load-linked store-conditional atomic operations commonly
available across architectures to ensure atomicity. Secure-
Cells allows the pipeline to speculate as usual within a
compartment’s execution, and speculative accesses are also
subject to access control by the MMU and cannot illegally
access any cell. Access control, therefore, also limits the
leakage potential of existing Spectre gadgets. Whereas a
Spectre gadget on a traditional processor can address and
access any user memory in the process’ address space,
the same Spectre gadget can only access memory within
the compartment’s cells. SecureCells also limits the code
(speculatively) executable within a compartment, further
restricting the availability of Spectre gadgets.

Appendix E.
SecureCells Implementation Trade-Offs

SecureCells permits a range of implementations scaling
from simple microcontrollers with firmware emulation for
added userspace instructions to server grade processors with
microcode or hardware implementations. In this section, we
describe the trade-offs and justify our implementation in
Section 3.4.

Firmware. On the simplest side of the spectrum, instruc-
tions can be emulated by firmware using trap-and-emulate.
Firmware is programmable code which runs in a privileged
execution mode and uses native ISA instructions. Secure-
Cells’ instructions will trap into firmware, and be dispatched
to the emulation code. Firmware implementations are cheap,
requiring no additional hardware, but slower than alternate
implementations. For the simple RISC-V RocketChip mi-
crocontroller, we choose firmware emulation for permission
transfer instructions. Note that the firmware can also forward
traps to be emulated by either the supervisor or even a
privileged userspace library. However, the additional secu-
rity risk of emulation by less trusted software risk and the
overhead of forwarding traps makes such implementations
less attractive.

Hardware. Alternatively, instructions can be imple-
mented in hardware with finite-state machine circuits. While
this design option implies better performance, designing
complex hardware comes with silicon and power costs and
substantial complexity. Hardware bug fixes incur the signif-
icant cost of the tape-out process. Server and desktop pro-
cessors generally include beefy cores with large silicon area,
where hardware implementations may match the processor’s
targeted performance. We implement the crucial SDSwitch
instruction in hardware to reap the performance advantage,
and because of the simplicity of its design.

Microcode. A third option, microcode, is programmable
code provided by the processor manufacturer, built from low
level operations including ones not available through the
ISA interface. When a instruction implemented in microcode
is encountered, a microcode sequencer fetches microcode
from an on-chip RAM and executes them in the pipeline.
Microcode eliminates the cost of trapping and dispatch
encountered in firmware emulation (77% of the latency of



emulating SCProt), and can also leverage hardware-specific
optimizations. Microcode is popular for implementing com-
plicated instructions with high performance like SGX’s
EENTER/EEXIT instructions. Microcode also has the advan-
tage of being programmable, and have been leveraged to
fix processor errata and bugs. While the simple RocketChip
lacks a microcode sequencer, we envision microcode to
be ideal for implementing SecureCells’ permission transfer
instructions for high-performance processors.
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