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Abstract—Commodity operating system kernels remain mono-
lithic for practical and historical reasons. All kernel code shares a
single address space, executes with elevated processor privileges,
and has largely unhindered access to all data, including data
irrelevant to the completion of a specific task. Applying the
principle of least privilege, which limits available resources
only to those needed to perform a particular task, to com-
partmentalize the kernel would realize major security gains,
similar to microkernels yet without the major redesign effort.
Here, we introduce a compartmentalization design, called a
Hardware-Assisted Kernel Compartmentalization (HAKC), that
approximates least privilege separation, while minimizing both
developer effort and performance overhead. HAKC divides code
and data into separate partitions, and specifies an access policy
for each partition. Data is owned by a single partition, and a
partition’s access-control policy is enforced at runtime, preventing
unauthorized data access. When a partition needs to transfer
control flow to outside itself, data ownership is transferred to
the target, and transferred back upon return. The HAKC design
allows for isolating code and data from the rest of the kernel,
without utilizing any additional Trusted Computing Base while
compartmentalized code is executing. Instead, HAKC relies on
hardware for enforcement.

Loadable kernel modules (LKMs), which dynamically load
kernel code and data providing specialized functionality, are the
single largest part of the Linux source base. Unfortunately, their
collective size and complexity makes LKMs the cause of the
majority of CVEs issued for the Linux kernel. The combination
of a large attack surface in kernel modules, and the monolithic
design of the Linux kernel, make LKMs ideal candidates for
compartmentalization. To demonstrate the effectiveness of our
approach, we implement HAKC in Linux v5.10 using extensions
to the Arm v8.5-A ISA, and compartmentalize the ipv6.ko
LKM, which consists of over 55k LOC. The average overhead
measured in Apachebench tests was just 1.6%–24%. Addition-
ally, we compartmentalize the nf_tables.ko packet filtering
LKM, and measure the combined impact of using both LKMs. We
find a reasonable linear growth in overhead when both compart-
mentalized LKMs are used. Finally, we measure no significant
difference in performance when using the compartmentalized
ipv6.ko LKM over the unmodified LKM during real-world
web browsing experiments on the Alexa Top 50 websites.
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I. INTRODUCTION

Modern kernels have expanded their functionality well
beyond the “three easy pieces” of concurrency, virtualization,
and persistence [5]. Users expect additional features, such
as protocol implementations, advanced filesystems, and driver
support for an ever growing number of devices. However, as
the kernel has grown, its monolithic design, which provides
only a single address space for all kernel functionalities,
persists. With the increased size and complexity of the kernel,
the number of CVEs issued for Linux per year has grown by
over 270% from 2005 to 2020.

Loadable kernel modules (LKMs), which are the mecha-
nisms through which additional functionality gets added, pro-
vide a natural compartmentalization boundary for the kernel.
As kernel module code can always be compiled into the main
kernel image, at the source level, there is no clear difference
between core kernel code and LKM code. However, when
compiled as individualized units, LKMs are not part of the core
kernel image that gets loaded by the bootloader. Instead, the
kernel dynamically loads an LKM when the kernel needs the
particular functionality offered by the LKM. Thus, at runtime,
there is a clear and logical separation between LKMs and
the rest of the kernel, but the monolithic design of the kernel
effectively erases that separation [69].

Bugs in LKMs become just as severe as other kernel bugs,
as all code and data exist in the same address space, with no
isolation and executing with elevated privilege. Unfortunately,
the sheer size and complexity of LKM code create an attack
surface much larger than the core kernel. Of the 567 high
severity CVEs we analyzed (see § II-B), 301 were found in the
drivers/ and sound/ directories (or contained the word
“driver” in the CVE description for cases of proprietary code,
such as the Nvidia GPU driver). We argue that most of the
code in those directories are intended for LKMs, and thus
that most high severity CVEs come from LKMs, despite our
underapproximation of CVE sources.

As an example of a high severity Linux CVE, consider
CVE-2016-4997 [65] listed in Listing 1. The code is part of
the IPv4 packet filtering subsystem, and is executed during
error cleanup. The exploit involves the attacker supplying a
small positive integer value via a system call, which, due to
the LKM only performing an upper bound test and not a lower
bound test, can lead to a corruption of a structure submember
used as an offset value in a pointer computation. The pointer,
computed using the offset submember corrupted by the user, is
then written to the me pointer in line 7, which decrements an
underlying integer, allowing an arbitrary kernel integer (e.g.,
the current process UID) to be decremented.

This exploit is an example of a data-only attack that allows
for accessing data beyond what the developer intended, which
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1 static void compat_release_entry(struct
compat_ipt_entry *e) {

struct xt_entry_target *t;
3 struct xt_entry_match *ematch;

5 /* Cleanup all matches */
xt_ematch_foreach(ematch, e)

7 module_put(ematch->u.kernel.match->me);
t = compat_ipt_get_target(e);

9 module_put(t->u.kernel.target->me);
}

Listing 1: Packet filter code that allows root access. A user-
controlled pointer value can be passed to module_put in line
7 without violating memory safety or control-flow integrity,
and an underlying integer is decremented.

the monolithic design of the Linux kernel happily allows. A
properly executed exploitation of this CVE does not violate
memory safety, as all memory accesses are in validly allocated
and live memory regions, and no practical memory safety
mechanisms [1] prevent submember corruption, of which this
exploit takes advantage. Control-flow integrity [27] is not
violated either, because execution flows along a valid path
at all times. Consequently, while existing mitigations such
as memory safety and control-flow integrity have a place
in securing the kernel, compartmentalization is necessary for
truly secure kernels. Compartmentalizing the packet filtering
functionality so that accessible memory is restricted to only
that which the developer intends prevents such data-only
exploits, even in the presence of buggy code. In that way,
compartmentalization provides similar security guarantees to
microkernels, but without the significant engineering changes
that microkernels impose.

Current state-of-the-art commodity kernel protections (as
opposed to embedded kernel defenses [13], [95]) gener-
ally fall into one of three categories: virtualization-based,
microkernel-based, or compiler-based. Virtualization-based
protections [73], [79], [86], [87] employ a hypervisor to
monitor execution or provide stronger isolation between ex-
ecution domains. Microkernel-based protections [32], [37]
completely redesign the operating system to minimize the
Trusted Computing Base (TCB) to typically include only
the virtual memory management and IPC, and isolate other
traditional kernel services as user-space processes. Compiler-
based protections [1], [16], [27] introduce security checks or
randomization [68] by the compiler that attempts to thwart
code-reuse or data-only attacks. Virtualization and microkernel
defenses provide the strongest protections, but are the least
performant, and still rely on additional software TCB. Com-
piler protections, with the exception of KASAN [1], are more
performant, but only protect a subset of the attack surface, as
with kCFI [27], or are often circumvented [10].

In this paper, we present Hardware-Assisted Kernel Com-
partmentalization (HAKC), a mechanism for compartmental-
izing kernel code and data. HAKC relies on hardware features
for enforcement, which avoids growing the TCB, yet provides
strong data and control-flow protection. HAKC splits code
and data into partitions that contain a developer-specified mix
of both, and collects the partitions into a larger grouping for
efficient policy enforcement. A data-access policy is specified
for each partition within the larger group, and a control policy

is defined for the larger group if control flow needs to exit
its constituent partition set. HAKC provides fine-grained data-
access and control-transition policies to prevent arbitrary data
access and code execution. The data-access policy ensures that
all data belongs to exactly one partition, and the accessed data
conforms to the data-access policy defined for each partition.
The control-transition policy checks that indirect control flow
targets also conform to the partition set access policy. When
control flow exits the partition set, data ownership is trans-
ferred to the target, and then restored upon return. In this way,
HAKC optimizes and enforces safe local data access; code
and data access within a partition is secure and quick, relative
to those outside. However, data and code defined outside the
partition is accessible, but only if explicitly needed. While we
designed HAKC around compartmentalizing LKMs, it is not
limited to only that use case; HAKC can be applied to core
kernel code, as well as user-space code.

We implement Hardware-Assisted Kernel Compartmental-
ization for the ipv6.ko and nf_tables.ko LKMs in
Linux 5.10 using hardware features present in the ARMv8.5-
A ISA. We measure the performance overhead of compart-
mentalizing ipv6.ko using microbenchmarks, and find that
HAKC imposes an average 1.6%–24% overhead. Additionally,
we measure the overhead of using two compartmentalized
LKMs together, and find that the overhead grows linearly.
Finally, when simulating typical browsing behavior using the
Alexa Top websites, we find no significant difference using
our compartmentalized LKM over an unmodified LKM. To
summarize, this paper provides the following contributions:

• A compartmentalization policy API for defining fine-
grained compartmentalization policies.

• A practical, hardware-based compartmentalization en-
forcement mechanism.

• An implementation of a compartmentalization policy
on the ipv6.ko and nf_tables.ko LKMs1.

• An extensive evaluation on the overhead imposed
by our compartmentalization policy and enforcement,
demonstrating its practicality.

II. BACKGROUND AND MOTIVATION

Here, we present some background about Pointer Authen-
tication (PAC) and Memory Tagging Extension (MTE), the
hardware security primitives we used to build our prototype
HAKC implementation. Both PAC and MTE are present in
the ARMv8.5-A ISA. We additionally provide an analysis of
high severity CVEs that motivate the need for HAKC.

A. Hardware Primitives

Pointer Authentication: Introduced in ARMv8.3, Pointer
Authentication is used to cryptographically sign pointers, and
store the signature in the “unused” upper bits of a 64-bit pointer
(see Figure 1).

PAC implements two instruction classes, one for signing
and one for authenticating a signed pointer, and allows for
using five different keys, two for data and code pointers each

1Available at https://github.com/mit-ll/HAKC

2

https://github.com/mit-ll/HAKC


PAC PAC Address
va_size

55

63
lower/upper bit

Context

Address

pacda

Fig. 1: Pointer signing using PAC. The upper/lower bit indi-
cates if higher bits are used in the PAC signature.
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Fig. 2: Address space coloring using MTE.

and one user-specified key. For example, in Figure 1, the
pacda instruction specifies using the a key for signing data
pointers. Signing involves specifying a pointer to be signed,
the key to use for signing, and a 64-bit signing context.
PAC was initially designed to mitigate code reuse and pointer
substitution attacks [3], because the signed pointer no longer
references validly mapped memory, and an invalidly modified
pointer will fail future authentication. The attacker, therefore,
will have to guess a valid signature for a replacement pointer,
which is hard because the signature uses the cryptographically
secure QARMA block cipher [6]. However, separate address
space domains can be established by varying the signing
context, because it can be any 64-bit value. For instance, the
stack pointer can be used as the context to ensure stack-based
buffer overflows do not overwrite valid return addresses with
attacker controlled values. Liljestrand et al., implemented a
type safety mechanism by using an object ID as the PAC
context [50], and Farkhani et al., implemented a temporal
memory safety mechanism using allocated object metadata as
the context [23]. Other uses for PAC have been proposed [20],
[48], and HAKC uses PAC (combined with MTE) to enforce
compartments’ access policies.

To obtain a valid pointer, the signed pointer must be
authenticated using the same key and context. If either the
pointer (sans signature) or the context are different from the
values used during signing, the authentication results in yet
another invalid pointer. If the pointer, key, and context are
the same values used during signing, the signature is stripped
from the pointer, and the original (presumably valid) pointer
value is restored. HAKC relies on this behavior to compute a
context that was expected to sign a particular pointer, using
a combination of information known at compile time and
gathered during runtime.

Memory Tagging Extension: Memory tagging extension
(MTE), introduced in ARMv8.5-A [4], allows for assigning
a “color” or tag to a memory region, which can be used
to segregate the address space into distinct regions. MTE
introduces two instruction classes, one to assign a color to

34.04%
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12.52%

13.05%

Memory Safety
Compartmentalization
Either
Remaining

Fig. 3: A breakdown of mitigations for Linux kernel high
severity CVEs. “Either” indicates that if memory safety or
compartmentalization were present, the bug would not be
exploitable. “Remaining” indicates that memory safety or
compartmentalization would not mitigate the CVE.

a memory region (shown in Figure 2), and one to retrieve
the current color of a memory address. Given infinite tags,
one could very simply create highly compartmentalized code
— each compartment could be individually colored. However,
MTE imposes some constraints on how it can be used: only
16 colors are available for use, the memory address must
be aligned to 16 bytes, and the region to be colored can
be no smaller than 16 bytes. The limited number of colors
available makes simplistic compartmentalization inadequate,
because the compartments are too broad in scope. The attack
surface of only 16 compartments in the Linux kernel is large
enough that bugs are unlikely to be mitigated. However, as
this paper will show, the combination of PAC with MTE
allows for the creation of significantly more compartments
than the available colors. Colors are reused, but compartments
are protected using PAC contexts computed from hard-coded
values known at compile time and from the address tags
retrieved during runtime in order to prevent reused colors from
enabling spurious access.

B. Kernel Vulnerability Analysis

As inspiration for HAKC, we analyzed high severity
(CVSS 3.0 rating 7.0 or higher) CVEs issued for the Linux
kernel from Jan. 2015 through May 2021, and determined if
the CVE could be mitigated with memory safety or compart-
mentalization. A CVE is considered mitigable if the pres-
ence of memory safety and/or compartmentalization would
prevent the bug, and unmitigable if neither mechanism would
prevent the bug. The basis for classification was determined
by searching for keywords in the description that map to
the two defense mechanisms (i.e., arbitrary code execution
maps to compartmentalization, while use-after-free maps to
memory safety), or manual analysis of patches in cases where
the description was unclear. Figure 3 presents a summary
of our findings. Out of the 567 CVEs in our dataset, 229
could be mitigated through compartmentalization, and 193
could be mitigated using memory safety. Only 71 could be
mitigated by either defense mechanism, implying the continued
importance of memory safety alongside compartmentalization,
and only minimal overlap in protection when both are enabled.
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There are 73 CVEs that are unmitigable with compartmen-
talization and memory safety, of which 57 involve incorrect
or missing domain-specific logic, such as discarding returned
error values or a cold path missing a data validity check.
The remaining unhandled CVEs involve race conditions (9),
integer over/under-flows (8), and a configuration that enables
unsupported functionality (1).

III. THREAT MODEL AND ASSUMPTIONS

In line with other kernel security mechanisms, we assume
that an attacker does not have root access, and thus cannot
modify kernel modules. However, they can take arbitrary
actions in attempt to compromise a victim kernel module,
including making arbitrary system calls or having peripherals
send arbitrary data [82]. We also assume that the LKM
itself is not malicious, but contains exploitable bugs. Kernel
functionality outside of the victim LKM is part of the trusted
source base, and we assume that data originating from the
kernel is valid. Trusting data passed into the LKM could lead
to a confused deputy attack, but preventing such an attack
would require full code and data flow analysis in the kernel.
Such an analysis is currently impractical, and thus we require
the kernel to be a trusted agent (similar to the trusted core
of a microkernel). Additionally, we include the core SoC in
the trusted computing base, including its tagging and pointer
authentication implementations, but IO devices are outside of
our trusted components and can be malicious. Three exceptions
to our hardware assumption, however, are direct memory
access (DMA) actions, hardware glitching attacks [81], and
side channel attacks, such as Spectre [38], Meltdown [51], or
Rowhammer [35].

We do not assume any further virtualization or security
layer that provides a level of trust, such as a hypervisor or
verified microkernel. Instead, HAKC moves policy enforce-
ment to the hardware, and removes the difficult problem of
verifying trusted software [57]. HAKC is designed to run on
bare metal, but is capable of running in a virtual machine
provided an existing implementation of hardware features.

Listing 2 and Listing 3 is an example of two partial LKM
implementations that conform to our threat model, but provide
an arbitrary read and write. Listing 3 is dependent on Listing 2,
and the programmer’s intent is to only read from the defined
arrays. However, due to a missing check on idx, if the user
calls ioctl with MSG_PUT or MSG_GET, and an index
outside the range of [0, SIZE], then any address can be written
or read (barring page permissions). The monolithic design
of the kernel will simply allow these accesses, but HAKC
prevents them by compartmentalizing the two LKMs.

IV. HAKC COMPARTMENTALIZATION API AND
ENFORCEMENT

HAKC is built around two core contributions, which, when
combined, are instrumental to its ability to establish isolation
within the kernel without further virtualization: the Compart-
mentalization Policy API and a hardware-based Compartment
Enforcement Mechanism. The Compartmentalization Policy
API exposes primitives that allow the developer to establish
a fine-grained compartmentalization policy on code and data,
while the Compartment Enforcement Mechanism efficiently

100 static unsigned long *m1_counts;
typedef struct msg {

102 long idx;
unsigned long val;

104 } msg_t;

106 unsigned long m1_get(msg_t* m) {
return m1_counts[m->idx];

108 }
EXPORT_SYMBOL(m1_get);

110

int m1_init(void) {
112 m1_counts = kmalloc(SIZE*sizeof(unsigned long));

}

Listing 2: LKM 1 (Arbitrary Read)

200 static unsigned long counts[SIZE];
extern unsigned long m1_get(msg_t*);

202

static int m2_ioctl(struct inode *inode,
204 struct file *file,

unsigned int ioctl_num,
206 unsigned long ioctl_param) {

msg_t *tmp;
208

switch(ioctl_num) {
210 case MSG_PUT:

tmp = (msg_t*)ioctl_param;
212 counts[tmp->idx] = tmp->val;

break;
214 case MSG_GET:

tmp = (msg_t*)ioctl_param;
216 tmp->val = m1_get(tmp);

break;
218 default:

return FAILURE;
220 }

return SUCCESS;
222 }

Listing 3: LKM 2 (Arbitrary Write)

enforces the specific compartmentalization policy at runtime.
We detail each here.

A. Compartmentalization Policy API

The HAKC Compartmentalization Policy API allows de-
velopers to assign code and global variables to compartments.
Stack and heap variables are assigned to the same compartment
as the code that allocates them. The compartmentalization
policy also specifies allowed control flow between compart-
ments. When control flow transitions between compartments,
any required data is also automatically transferred.

0 13 4

Fig. 4: An example compartmentalization involving four Com-
partments, each of which contains four Cliques. Edges between
Compartments are allowable transitions. Bold Cliques are
valid Compartment entry points, and dotted Cliques are valid
Compartment exit points.
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(a) Pre-Compartment Transition
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(b) Post-Compartment Transition

Fig. 5: An example Compartment transferring data ownership
to an external Compartment. During this Compartment transi-
tion, orange data is recolored purple, and the data ownership
is moved to the target Clique in the external Compartment.
Upon return, the data is colored orange, and data ownership
is restored.

The HAKC compartmentalization policy API allows users
to configure the following in HAKC’s novel two-level com-
partmentalization scheme:

1) Cliques, a partitioning of code and data into one
or more groups, with each function and data object
belonging to exactly one partition.

2) Compartment, a second level grouping of at least one
Clique, with each Clique belonging to exactly one
Compartment.

3) Clique Access Policy, the set of Cliques within a
Compartment that a particular Clique can access,
including itself.

4) Compartment Transition Policy, the set of Cliques
that can legally transition control to outside the Com-
partment, and the set of allowable external Cliques
that are valid control-flow targets.

Figure 5 shows two example Compartments. The red
Clique in Compartment 0 can access the red, purple, blue, and
orange Cliques, while in Compartment 4, red can only access
itself. Figure 4 illustrates an example of several Compartments,
and the allowable transitions; Compartment 0 can transfer
control flow to Compartments 1 and 4, but Compartment 3
can only transfer to Compartment 4.

The two-level compartmentalization policy API introduced
by HAKC provides three key benefits: 1) the ability to create
a large number of compartments with a limited number of
colors — overcoming the classic limitation of few tag bits; 2)
efficient access to data defined in a Compartment, i.e., local
data optimization; and 3) the flexibility for the developer to
make fine-grained security/performance trade-offs. The first
benefit frees the developer from practical limitations present
in any commodity tagged hardware when designing compart-
mentalization policies. The number of desired compartments
will exceed the number that any hardware-only system can
supply (e.g., 2tag bits), inspiring our new two-level scheme
that allows tag bit reuse across Compartments. As we will
show later, grouping Cliques into a Compartment allows for
creating several orders of magnitude more compartments than
available tags would otherwise allow.

The second benefit allows for easier policy creation, and
more efficient policy validation checks. While a Clique is

executing, any data that is accessed by a pointer must satisfy
two conditions: 1) the data must belong to the Compartment
in which the Clique resides; and 2) the data must belong to a
Clique the current Clique is allowed to access under the Clique
access policy. These conditions are checked at runtime prior
to the first dereference of a pointer in a function, but are not
checked again unless the pointer is modified. Satisfying these
two conditions ensures that arbitrary data access is prevented,
and that data ownership is enforced. These conditions also
enable faster checks as only the Clique access policy needs to
be checked, and that policy only concerns 2tag bits Cliques,
allowing a highly optimized implementation compared to the
Compartment access policy.

To illustrate the third benefit — fine-grained security/per-
formance trade-offs — we first describe how Clique and
Compartment access policies work. The developer establishes
a Compartment by partitioning code and data into one or more
Cliques, determining which Cliques each particular Clique
should legally access, and which Compartments are valid
control-flow targets. The specific compartmentalization policy
can be determined manually, or automatically through static
or dynamic analysis, and can be different for different Com-
partments. All data and code in a Compartment must belong
to exactly one Clique, and directed edges between Cliques
indicates valid access. The directed edges represent a forward-
edge Clique-based control-transfer policy, and does not need to
be symmetric. For instance, the developer might want a green
Clique to call a function in a red Clique, but forbid the red
Clique from calling a green Clique.

When control flow must exit a Compartment, through either
a direct or indirect function call, then the ownership of data
that exits must be transferred to the target destination, and then
restored upon return. The transfer ensures that data checks in
Cliques can proceed as intended, which maintains valid data
ownership. In the case of indirect function calls, the target is
checked to ensure that it conforms to the valid transition policy
that the Compartment defines, and that the target is a valid
entry to the target Compartment. If the target of an indirect
call is within the same Compartment, the access policy for
the current Clique must be followed, but no data ownership
is transferred. The control-flow checks ensure a valid control
path is followed, and arbitrary code execution is prevented.

By adjusting how code and data are partitioned into Cliques
and Compartments, the developer can make fine-grained trade-
offs between security and performance. As the number of
Compartments increases, i.e., the more compartmentalized the
kernel becomes, the harder an attack becomes, because the
attacker has to find a valid control-flow path that obeys both
the Clique access policy and Compartment control-transfer
policy. However, the increased Compartment count necessarily
leads to more data ownership transfers, which can incur large
performance overhead. HAKC allows developers to specify
fine-grained boundaries to suit their particular performance and
security needs.

B. Compartmentalization Enforcement Mechanism

While Clique code is executing, HAKC does not rely on
any additional TCB, but instead uses hardware for access
policy enforcement. Prior compartmentalization mechanisms
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rely on additional layers of abstraction, e.g., kernel code for
user-space compartments [31], [78], [93], or hypervisors for
kernel code [55], [56], [60], [73]. Breaking this “turtles all the
way down” paradigm for compartmentalization by rooting trust
in hardware avoids adding layers of abstraction and growing
the TCB. HAKC is the first to solve this challenge for realistic,
commodity hardware.

In order to provide compartmentalization, HAKC needs
to be able to partition the virtual address space separately
from traditional paging, and the ability to associate a pointer
with metadata of bit-size larger than the available address
space partitions, referred to as the pointer’s conjoined metadata
(CM). By virtual address space partitioning, we mean a method
of designating a virtual memory address range as distinct from
the rest of the address space. Tagged architectures, which
typically provide a small number of bits to associate with
(or color) a virtual memory address range, are an existing
partitioning method. All pointers, either statically created at
load time or allocated dynamically, are associated with a
specific CM encoding which Clique owns the underlying data.
The association must be hard to compute given the pointer and
CM. HAKC enforces partition access policies by, for every
pointer accessed during runtime, computing a candidate CM
using the address space partition information (which equates
to Clique membership), and Compartment information. Before
the pointer is accessed, the candidate CM is compared with
the pointer’s actual CM. If the runtime information causes the
candidate CM to differ from the actual CM, then the pointer
dereference cannot happen.

As long as the hardware provides address space partitioning
and pointer CM association primitives, then HAKC guarantees
that the defined compartmentalization policy is followed. If
some bug inside the compartment modifies a pointer such that
it points to data that violates the access policies defined for
either the Clique or Compartment, the candidate CM will differ
from the pointer’s CM. Accordingly, if some bug outside the
Compartment modifies a pointer that is currently being used by
the Clique to violate access, the candidate CM will again differ
from the correct CM. In both cases, data access is prevented,
and compartmentalized code is prevented from accessing data
not explicitly granted to it. While we implemented HAKC us-
ing ARMv8.5-a, HAKC is not tied to any specific architecture.
Any mechanism that provides the necessary partitioning and
association primitives may implement HAKC.

C. Example Case Study

Here we describe how HAKC can compartmentalize the
two LKMs listed in Listing 2 and Listing 3. In this example, all
code and data in Listing 2 will be in the same Black Clique in
Compartment 1 (referred to as (1, Black)), while the code and
data in Listing 3 will be in the Gold Clique in Compartment
2 ((2, Gold)).

When m2_ioctl executes, it first validates that tmp is
accessible by checking its (2, Gold) CM with the candidate
CM computed with runtime data. m2_ioctl will also check
if the (2, Gold) CM for counts + tmp->idx matches
the computed candidate CM, and, if m1_get is called, will
recolor tmp to black, and associate its value with (1, Black).
When m1_init executes, it associates m1_counts with

(1, Black). Finally, when m1_get executes, it checks m and
m1_counts + m->idx with (1, Black).

If an attacker directs control flow to m2_ioctl, then
ioctl_param must be properly associated with (2, Gold),
which is computationally hard to perform. Similar conditions
must be satisfied for m1_get. Additionally, if a bug outside
of (1, Black) changes the value of m1_get to point outside
the Compartment, then the pointer will not be associated with
(1, Black), and HAKC prevents its dereference.

V. COMPARTMENT POLICY AND ENFORCEMENT
MECHANISM IMPLEMENTATION

Here, we detail how HAKC enforces the data and control-
flow policies that provide isolation to compartmentalized code.
The HAKC Compartment Enforcement Mechanism uses a
combination of tagged architecture and cryptographic hashes
to provide access enforcement. Namely, the Compartment
Enforcement Mechanism uses Arm’s MTE to provide tagging
support, and PAC to provide cryptographic hashing. See § II
for details. PAC is used to ensure that pointers have not
been tampered with inadvertently, and that they conform to
the various access-control policies defined for Cliques and
Compartments, while MTE provides the runtime Clique mem-
bership. By combining information known at compile time,
such as a Compartment identifier and access-control policies,
with MTE colors gathered dynamically, HAKC can provide
significantly more compartmentalization granularity than the
16 compartments natively provided. HAKC recycles colors
in different Compartments, but the compile time information
effectively creates “hues” of the available colors to allow for
a large number of compartments.

Cliques: A Clique belongs to exactly one Compart-
ment, and combines code and global, stack, and dynamically
allocated data into a logical group, all of which is assigned
a color, Cc. Cc needs to be unique to the Compartment the
Clique belongs to, but it does not need to be globally unique. In
fact, one of the primary contributions of this paper is a design
that allows for the safe multiplex use of colors in different
compartments. A good example of the type of information
that a Clique contains is what is defined in a typical C source
file: exported and static functions and global variables, stack
allocated objects, and dynamically allocated memory. We do
not, however, force all functions or data in a source file to
belong to the same Clique, and the developer is free to partition
as they see fit.

Using their specific Cc, Cliques also define two tokens,
Tokacl and Toks, used in authenticating a pointer and signing
pointers respectively. Tokacl is used to generate the context
used for PAC authentication, and encodes both the Clique’s
Compartment identifier, IDn, and allowable Clique code and
data accesses. Toks encodes IDn and Cc, and provides the
PAC context when signing pointers. We will detail how these
tokens are used to enforce compartments in § V-A.

Compartments: A Compartment consists of at least one
Clique but no more Cliques than the number of available tags,
Ntag , and is assigned a globally unique identifier, IDn. All
data accessed by any Clique must belong to the Compartment,
and the identifier is used to ensure that is the case during
pointer authentication.
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TABLE I: Clique and Compartment properties.

Clique Compartment
Access Token (Tokacl) Entry Token (Tokent)
Signing Token (Toks) Valid Compartment Targets (T∗

n )
Color (Cc) Unique Identifier (IDn)

Additionally, a Compartment defines an entry token,
Tokent, which encodes the Cliques that can be targets of
indirect jumps, along with IDn. Tokent is known to all other
Compartments that could potentially execute code in a Clique.
Similarly, a Compartment must know all valid potential Com-
partments to which it could transfer control flow. Therefore, a
Compartment maintains a mapping of valid Compartment IDn

and the respective Tokent in T ∗n . Before an indirect call is ex-
ecuted, the target function is checked that it belongs to a valid
Compartment, and is a valid entry Clique using each entry
token in T ∗n . Figure 4 is an example of several Compartments,
along with their allowable Compartment transitions. In this
instance, control flow is able to transfer from Compartment
0 to either Compartment 1 or 4, but not Compartment 3.
Additionally, if control flow is going from Compartment 0 to
Compartment 4, the target Clique must be orange or red, and
cannot be green or purple. Cliques in different Compartments
have different access-control policies, yet share colors.

Data Access Policy: All data accessed by a Clique
through a pointer must belong to the currently executing
Compartment, and be validly accessible according to the
current Clique access-control policy. PAC is used to validate
both conditions hold. Pointers are signed using Toks, and
when authenticated later, Toks is calculated using Tokacl,
and the pointer target MTE color. If the pointer is erroneously
manipulated, or points to data that is either the incorrect color
or does not belong to the Compartment, then the computation
of the PAC authentication context will differ from Toks and
will thus fail authentication.

Compartment Transitions: When a Compartment needs
to transfer control to another Compartment, two actions need
to occur: 1) the target must be validated against T ∗n ; and 2)
data ownership must be transferred to the target destination. In
the event of a direct function call to outside the Compartment,
only step 2 needs to occur.

Function pointers are signed by their Clique using their
Toks, and, similar to how data pointers are authenticated,
that same token is computed using the target MTE color and
the Tokent from T ∗n . Each Tokent in T ∗n is used to compute
a possible PAC authentication context. If the authentication
of the signed function pointer succeeds with the computed
context, then control flow is allowed to the target Clique in the
different Compartment. If authentication fails, then a different
Tokent is tried until all valid transitions are exhausted, at
which point control flow to the target is prevented.

If the Compartment transition is allowed, all pointer argu-
ments (and any submember pointers) are recolored the target
Clique color, and the pointers are resigned using the target
Clique Toks. The act of recoloring and resigning pointers
transfers ownership of data from the current Clique to the
target Clique, and pointer validity happens within the new
Compartment as previously described. When the indirect call

TABLE II: Computed PAC context used for access enforce-
ment for a pointer p used by Clique M .

Operation PAC Context
Transfer to M Toks,M

Data Access Check Tokacl,M ∧ V (Cp )
Valid Transfer to Compartment G Tokent,G ∧ V (Cp )

returns, data ownership is restored to their previous state prior
to the indirect call.

We note that only transferred pointers are resigned (and
retagged). No effort was made to automatically invalidate
any aliases of transferred pointers. This means that lingering
aliased pointers in the origin Clique could allow access to
data owned by another Clique of the same color, because the
original signature would be valid. Pointer struct members and
pointers to objects allocated on the current stack frame are
resigned and protected, but HAKC does not solve the general
aliasing problem. We rely on the programmer to invalidate
aliased pointers when necessary.

A. Access Enforcement

For both signing and authentication, PAC takes as input a
pointer and a user-specified 64-bit context. For a signed pointer
to pass authentication, the exact context used to sign the
pointer must be provided. In order for HAKC to ensure that the
signing context can be correctly provided when authenticating,
all tokens (e.g., Tokacl or Tokent) have the same general form:

Toki,n = IDn ⊕ (V (Ci) ∨ · · ·) (1)

where V (Ci) is a bitvector of size Ntag with the bit corre-
sponding to color Ci set to 1 and all other bits set to 0. In other
words, HAKC tokens consist of the particular Compartment
identifier concatenated with one or more vectorized color
values bitwise OR’d together. The composition of colors with
Compartment identifiers is what allows for the reuse of colors
in different Compartments, and the creation of far more com-
partments than Ntag , while still providing strong compartmen-
talization guarantees. The number of compartments potentially
available is 264−Ntag · Ntag , which for MTE (Ntag = 16)
equates to 4 · 1015 compartments. Dynamically allocated data
is immediately transferred to the Clique which created it, and
stack-allocated data passed to compartmentalized functions
must be transferred to the current Clique if not proven safe (see
§ V-D). All other data must have been previously signed, either
by the kernel when control first flows into the Compartment,
or by other Cliques during a cross Compartment transfer.

Signing tokens, which always belong to a specific Clique,
utilize only one vectorized color: their own. Access tokens
(i.e., Tokacl or Tokent) are comprised of the relevant allow-
able colors. For example, in Figure 5, the purple Tokacl in
Compartment 0 consists only of the vectorized blue and purple
values OR’d together, while the Compartment 0 red Tokacl has
all four color values set to 1. Similarly, in Figure 4, Tokent for
Compartment 4 will be composed of the vectorized purple and
red, as those are the valid entry Cliques to that Compartment
(indicated with bold outlines).
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TABLE III: Summary of needed developer effort and auto-
mated instrumentation provided by the LLVM pass.

Operation Developer LLVM
Compartmentalization policy definition X

Data ownership transfers from kernel to Compartment X
Dynamic memory allocation transfers X
Data access validity check insertions X

Valid Compartment transition check insertions X
Data ownership transfers to external Compartment X

Data ownership transfers from external Compartment X
Signature stripping in unprotected code X

Ensure all dynamic allocations are transferred X
Signing of global variable addresses X

To confirm that a Clique can access data at a signed
pointer, a candidate signing token is formed by computing the
color vector of the underlying pointer data, and concatenating
IDn. The candidate signing token is then bitwise AND’d
with Tokacl to provide the PAC authentication context. If
the Clique is allowed access to the pointer color, and the
pointer was signed by the current Compartment, then the
bitwise operation results in the exact context used to sign the
pointer, and PAC authentication succeeds. If data belongs to a
different Compartment, but is colored an accessible color, PAC
authentication fails, because the upper bits of the computed
PAC context are different from the signing context. Likewise,
if data belongs to the Compartment, but colored an inaccessible
color, PAC authentication also fails, because the lower bits of
the computed PAC context differ from the signing context.
Only valid control and data flows are allowable inside the
Clique, and that is enforced through requiring valid signatures
before dereference. Table II presents a summary of compart-
mentalization operations, and the PAC context computations.

B. Developer Effort

Manual development is limited to specifying a compart-
mentalization policy, transferring dynamically allocated data to
a Clique, and specifying which kernel data needs to be trans-
ferred to a Clique entry function before its invocation. While
the annotations are lightweight (the largest single annotation
we made is 74 lines to transfer data into a Clique), we have it
as future work to automate these efforts.

The pointer validity checks and Compartment transitions
are added via an LLVM [45] pass, which runs on annotated
sources and skipped otherwise. Compiling the Linux kernel
using LLVM is supported, and no custom modifications to
the LLVM source were needed. To establish a Clique, the
LLVM pass places all similarly colored code and data into
specially defined ELF sections, which the kernel module loader
looks for when loading. When the compartmentalized LKM is
first loaded, the kernel colors the code and data appropriately
before any initialization code is executed. Once initialization
code begins executing, the kernel performs its typical page-
level permission enforcement in addition to the compart-
mentalization enforcement provided by HAKC. However, the
page enforcement prevents changing the colors of code and
read-only data, and for safety HAKC does not enable write
permissions when changing colors. Therefore, the developer
must be aware of these limitations when developing the access-
control policy for Cliques.

As mentioned earlier, HAKC computes a PAC signing

context using some compile-time information, specifically in
which Clique and Compartment particular data and code be-
longs. Currently, the developer must annotate code and global
data in the source to establish the Clique and Compartment
membership. The annotations make the compartment member-
ship permanent, since, for example, Compartment identifiers
become encoded in instructions moving immediate values into
registers. However, this is purely a performance optimization
to avoid additional memory lookups, and HAKC can be
extended to dynamically change compartmentalization policies
at runtime.

In the simplest case where all functions and data defined
in a source file belong to the same Compartment and Clique,
the annotations are very lightweight; only a single addition
of a macro defining the Compartment and Clique at needs
to be added. In a planned future iteration, the LLVM pass
will perform this operation for the user. If further partitions
are required, the developer simply annotates the partitioned
code or data, while the rest remains in the original partition.
HAKC makes no attempt to optimize the developer-established
partitions, The performance of the final system could be highly
dependent upon the chosen partitioning, since Compartment
transitions can be expensive due to the recoloring and pointer
resigning process involved (see § IV). We leave it for future
work to determine effective partitioning strategies, but HAKC
supports any partitioning as long as the Cliques count in a
Compartment does not exceed Ntag .

Finally, kernel module code is executed using function
pointers registered to the kernel by the module during initial-
ization. These function pointers represent the functionality the
LKM implements. For example, a filesystem LKM implements
a filesystem-specific read function, and registers that function
with the kernel, which the kernel then invokes when reading
the filesystem is required. Since all functions in a Clique
expect all dereferenced pointers to be properly signed and
colored, before executing compartmentalized code, the kernel
must transfer the data to the target Clique. The developer must
write a function to transfer input data, and provide that function
to the kernel instead of the original function. Table III provides
a summary of all developer efforts and LLVM pass actions.

C. Policy Creation

The modules that we compartmentalized in our proof-of-
concept implementation imposed a very simple compartmen-
talization policy. Namely no more than two Cliques belong to
a Compartment, and control flow outside a Compartment was
limited only to the kernel. While such a policy is easy to define,
and provides some protection, users will likely desire a more
complex and automatically generated compartmentalization
scheme. As mentioned in § V-B, a more compartmentalized
kernel makes attacks harder, but could affect performance due
to more Compartment transitions that need to occur. Unfortu-
nately, developing a performance optimal compartmentaliza-
tion policy is a similar to the Partition Problem, which is NP-
Complete [19]. Therefore, we do not expect a general solution
to optimal compartmentalization to be found. However, like
solutions to the Partition Problem, we expect heuristics and
dynamic analysis can provide good enough, if suboptimal,
solutions for real world applications. Little work has been done
on bare-metal commodity kernel compartmentalization, and we
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leave it for future work to develop strategies for automatic
policy generation.

D. Optimizations

HAKC utilizes two major optimizations to achieve its
low overhead, an interprocedural analysis that seeks to prove
pointers have been validated by all caller functions, and an
intraprocedural analysis for efficient data check placements.
We detail each optimization here.

Interprocedural Optimization: Many functions in the
Linux kernel are valid only for a single compilation unit,
i.e., functions defined using the static keyword. Because
no other code outside of its source file can rely on these
static functions, for any such function F , we can determine
the set of pointers dereferenced in F that all caller functions
authenticate prior to calling F . Those pointers then do not
need to be authenticated, and caller functions can provide the
authenticated pointer values instead of the signed versions.
To ensure that our analysis can determine the full set of
dereferenced pointers, we schedule our LLVM pass late in
the compilation process after function inlining. The analysis
HAKC performs here is similar to live variable analysis, with
every function maintaining a set of pointers, Pstart,F , that are
known to be authenticated at F ’s entry, as well as the set of
pointers F authenticates, Pauth,F . Pstart is initially the empty
set for all functions, and let PF = Pstart,F ∪ Pauth,F . At
every call site to F , we check if each pointer argument, p, is
in the caller function’s P , and if the pointer argument is in all
P , then Pstart,F = Pstart,F ∪ p. This analysis repeats until a
steady state is achieved, and no Pstart changes. For the LKMs
we compartmentalized, this analysis reduced the number of
data check insertions by 2%. The number of global and stack
variables that needed to be signed, because their addresses are
passed to other compartmentalization functions, is reduced by
8%. These reductions translate to 12% fewer data authenti-
cation checks, and 19% fewer transfers when performing the
100KB overhead experiment detailed in § VI-B.

Intraprocedural Analysis: A naı̈ve approach to authen-
ticating pointers would involve finding the set of dereferenced
pointers, and placing the authentication of each such pointer in
the first basic block of the function. However, some pointers
are only dereferenced when specific conditions are satisfied,
and thus authentication of those pointers needs to happen only
when they will actually be dereferenced. Therefore, we place
each pointer authentication only at the immediate dominator
basic block of all said pointer uses. We also ensure that if a
pointer use is within the same basic block as the authentication,
then the authentication happens before the dereference. We
only create one authentication per dereferenced pointer in a
function, which can lead to some unnecessary overhead. If a
pointer gets dereferenced in two basic blocks whose immediate
dominator is different from either, then the authentication can
happen without the pointer dereference taking place. This can
occur, for example, when pointers are only dereferenced in
error handling with a goto statement for final cleanup.

VI. EVALUATION

When evaluating HAKC, we wanted to answer the follow-
ing research questions:

1 ldg xT, xN
ldr x16, [xN]

3 mov x17, #0xF0
lsl x17, x17, #49

5 and xT, x17, x17

1 stg xT, xN, imm
ldr x16, =TAG_MEM

3 mov x17, xT
lsr x17, x17, #49

5 str xT, [x16]

Fig. 6: MTE Instruction Analogs

1) What is the overhead imposed by HAKC?
2) What is the overhead of using multiple Compartments

in a single system?
3) Will users notice any difference in performance under

real-world work loads?

Here we describe our experimental setup, as well as address
our research questions through microbenchmark and simulated
user browsing experiments. We performed all evaluations on
a Raspberry Pi 4 8GB, and our kernel version was based off
the Debian 5.10.24 source.

A. Instruction Analogs

As of June 2021, no hardware implementing MTE is avail-
able, and the most readily available hardware implementing
PAC are Apple devices containing the A12 processor, and are
unfortunately heavily locked down. Therefore, in line with the
evaluation methodology of Liljestrand et al. [50], we ensure
correct functionality using emulation, and measure overhead
using instruction analogs in lieu of PAC and MTE instructions.
An instruction analog is a series of instructions that consumes
the same CPU cycles and the same memory footprint as
the PAC/MTE instructions, but does not perform an actual
check. Thus it can be used for accurate performance evaluation
without a PAC/MTE-enabled processor. The PAC analogs are
adapted from the PARTS system detailed in [50], and we detail
the MTE analogs here.

Version 5.10 of the Linux kernel uses the load and store
instructions for single or multiple tags, namely ldg, stg,
ldgm, and stgm respectively. For the single tag instructions,
the kernel only uses the post-index encoding. To simulate the
ldg instruction, which writes the tag to bits 49–53 of an input
register, we perform a load of the target address, and finally
place a valid tag value in the appropriate register bits. To store a
tag, we retrieve the tag from bits 49–53 of the pointer address,
and write to a global variable. Multiple tag operations simply
repeat these single tag operations. We took care to ensure that
memory accesses occur at every MTE instruction to simulate
a worse case memory tag access, but an actual implementation
of MTE could include tag caching or other performance
enhancements. Thus, we claim that our performance overhead
is an estimation of worst case performance. The instruction
substitutions are listed in Figure 6.

B. Single Compartment Performance Overhead

To measure the compartmentalization overhead, we com-
partmentalized the ipv6.ko LKM into a single Compartment
with two Cliques. Both Cliques were given access to each
other’s code and data. We used ApacheBench to retrieve a
100KB, 1MB, and 10MB file 1000 times from an unmodified
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Fig. 7: ipv6.ko overhead normalized to unmodified kernel
when transferring various sized payloads.

Apache server running on the Raspberry Pi. We repeated each
experiment 10 times, and recorded the reported requests/sec
and transfer rate in MB/s. We measured all performance
overhead relative to the unmodified kernel, and both kernels
sharing the same user-space.

The overhead measurements for ipv6.ko are listed in
Figure 7, normalized to the performance of the unmodified
kernel. Overall, the performance of our ipv6.ko compart-
mentalized LKM is good compared to the baseline, with only
a 20% reduction in both requests per second and transfer rate
in the worst case.

When the transfer size is small, the establishment of the
TCP connection imposes significant overhead relative to the
actual transferring process. Once the TCP connection has
been established, however, relatively few data checks need to
be performed to transfer the payload. This explains the low
2%–4% overhead for the 10MB payload measurement; larger
payloads spend less time establishing the TCP connection
relative to the total transfer time. Figure 8a shows this behavior
in the HAKC operations per kilobyte Apache sends. HAKC
operations include the number of Compartment transitions, the
number of data pointer authentications, and the number of
code pointer authentications. While the number of operations
per second either increase or remain constant, the number of
operations per KB of transmitted data monotonically decreases
with payload size.

C. Multiple Compartment System Overhead

nf_tables.ko implements a packet filtering mechanism
within the Linux kernel. We compartmentalized this LKM by
placing all code and data in a single Clique using a different
color and Compartment from those used in the ipv6.ko
LKM. The ipv6.ko and nf_tables.ko LKMs were not
allowed to transition to each other directly. Since there is only
a single Clique, no further compartmentalization policy needed
to be specified.

To measure the overhead of using both LKMs on the same
system, we defined a packet filter rule that drops packets with
a source address from a specific IPv6 address. We then ran
our microbenchmark detailed in § VI-B using the unmodified
kernel, the compartmentalized kernel with only the ipv6.ko
LKM compartmentalized, and the compartmentalized kernel

TABLE IV: The measured time differences between the
compartmentalized kernel of the lowest and highest standard
deviations of unmodified kernel load times. Negative delta
numbers indicate slower compartmentalized load time.

Website Delta (s) Stdev (s)
linkedin.com -0.47 0.065

hdfcbank.com -0.12 0.085
google.cn -0.068 0.086
bing.com -0.087 0.13

investing.com 38 62
okezone.com -11 20

cnn.com -9.8 15
yahoo.com -4.9 15

with both HAKC LKMs enabled. The results, normalized
to the unmodified kernel (U) and ipv6.ko-only (S) kernel
overheads, are listed in Figure 9.

The general trend regarding payload size and overhead
shown in Figure 7 is again present for the overhead against
the unmodified kernel. However, the performance relative
to the single Compartment system degrades with payload
size. The performance degradation comes from the additional
Compartment transitions the kernel makes to perform both
packet filtering and TCP functionality with every TCP ACK
packet received. This behavior is shown in Figure 8b, with
the higher number of data pointer authentications per kilobyte
than with just IPv6 compartmentalized. Regardless, Figure 9
shows a linear growth of 14%–19% per compartment when
the compartments are related, but provide orthogonal function-
ality. Compartmentalizing both the IPv6 and packet filtering
represents a worst case for performance loss, since all HAKC
operations for both LKMs will occur in tandem, and will
thus be directly compounded. A better compartmentalization
policy will likely amortize individual overheads to a lower total
overhead, but we leave that evaluation for future work.

D. User Website Browsing

Using ApacheBench to measure raw performance does not
necessarily provide a good indication of whether a user will
notice any performance difference when using the compart-
mentalized kernel for everyday activities. For example, activ-
ities unrelated to the kernel networking stack, such as routing
delays, website rendering, or advertisement negotiation, can
add significant time to end-user web page loading. To answer
Research Question 3, we want to measure any significant
difference in IPv6 website loading time between using the
unmodified kernel and our compartmentalized ipv6.ko LKM
given these external factors.

To that end, we created a Selenium script that spawns
a headless Firefox instance, and proceeds to play a specific
YouTube video, and then visits the 50 most popular websites
(as determined by the Alexa Top 1M) that advertise an IPv6
address in their DNS Authoritative Record (an AAAA entry).
We disable all memory and disk cache use and enable IPv6
use in Firefox. Additionally, before retrieving each website, we
delete all cookies, and perform a DNS query to ensure that ISP
DNS entries are fresh. Afterwards, we measure the time the
Selenium web driver takes to fully render the page, or the time
the YouTube video takes to complete. To account for possible
differences in advertisements, we retrieve each website using
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Fig. 8: Average HAKC operations per second and per KB transmitted while running ApacheBench.
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Fig. 9: Overhead imposed when using multiple Compartments
in a single system, normalized to the unmodified kernel (U)
and single Compartment systems (S).

the unmodified kernel and compartmentalized kernel in turn
before retrieving the next website. We repeated this experiment
5 times, with each retrieval separated by approximately 1 hour.

Overall, we measured the average load time of the com-
partmentalized kernel to be 1.19 ± 4.34 seconds slower than
the unmodified kernel. Because the standard deviation of load
time differences is much larger than the average, we conclude
that the compartmentalized kernel is not significantly different
from the unmodified kernel, and that a user will not notice a
difference using a compartmentalized kernel.

Despite our efforts to mitigate any possible difference
between website retrievals, we did measure large differences
in load times of some websites, on both large and short
time retrieval spans. For example, investing.com would
sometimes load in 4 seconds, and then after rebooting into
a new kernel, the website would take 151 seconds. For this
reason, we did not include investing.com in the average
cited above. We were unable to determine any correlation

int ip6_find_1stfragopt(struct sk_buff *skb, u8 **
nexthdr)

80 {
u16 offset = sizeof(struct ipv6hdr);

82 struct ipv6_opt_hdr *exthdr =
(struct ipv6_opt_hdr *)(ipv6_hdr(skb) + 1);

84 unsigned int packet_len = skb_tail_pointer(skb) -
skb_network_header(skb);

86 /* ... */
while (offset + 1 <= packet_len) {

88 struct ipv6_opt_hdr *exthdr;
switch (**nexthdr) {

90 /* ... */
}

92 offset += ipv6_optlen(exthdr);

*nexthdr = &exthdr->nexthdr;
94 exthdr = (struct ipv6_opt_hdr *)

(skb_network_header(skb) + offset);
96 }

98 return offset;
}

Listing 4: CVE-2017-9074

between time of day or kernel type; the same website would be
slow for the unmodified kernel at one time, and similarly slow
for the compartmentalized kernel at another time, while the
different kernels would statistically tie at every other time. The
websites that exhibited the highest variance are those that serve
dynamic content, such as cnn.com, while the lowest variance
websites, such as hdfcbank.com, do not. We attribute the
high variance to the underlying dynamic content generation on
the server side, i.e., outside of our control.

Table IV lists the websites with the smallest and largest
unmodified kernel load time standard deviations, along with
the measured time differences when using HAKC. In total,
20% (10/49) of the websites were measured to be faster using
the compartmentalized kernel, and in all but one case, the load
time delta was within 2 standard deviations (95% confidence).
This provides further evidence that HAKC compartmentaliza-
tion would go unnoticed by users in everyday usage.

11



256 void mwifiex_set_uap_rates(
struct mwifiex_uap_bss_param *bss_cfg,

258 struct cfg80211_ap_settings *params) {
struct ieee_types_header *rate_ie;

260 /* ... */

262 rate_ie = (void *)cfg80211_find_ie(
WLAN_EID_SUPP_RATES, var_pos, len);
if (rate_ie) {

264 memcpy(bss_cfg->rates, rate_ie + 1,
rate_ie->len);

266 rate_len = rate_ie->len;
}

268

rate_ie = (void *)cfg80211_find_ie(
270 WLAN_EID_EXT_SUPP_RATES,

params->beacon.tail,
272 params->beacon.tail_len);

if (rate_ie)
274 memcpy(bss_cfg->rates + rate_len, rate_ie + 1,

rate_ie->len);
276

return;
278 }

Listing 5: CVE-2019-14815

E. Security Evaluation – CVE Case Studies

Here, we will provide a security evaluation on two real-
world bugs, chosen to illustrate HAKC protection against bugs
within and outside of compartmentalized code: CVE-2017-
9074 [66] and CVE-2019-14815 [67]. CVE-2017-9074 is an
internal IPv6 bug, while CVE-2019-14815 is an external bug
in the Marvell Wifi driver. Of the 567 CVEs in our analysis
set (see § II-B), only 12 involved IPv6, demonstrating the im-
portance of having compartments be hardened against external
bugs, as most kernel bugs will be outside of a compartment.

CVE-2017-9074 (Listing 4) allows for reading memory
outside the bounds of the intended object. The bug involves a
missing check on offset against packet_len that ensures
that the code is reading within the bounds of the socket buffer,
skb. Through a series of system calls, a malicious user can
craft an IPv6 packet that contains an invalid option, which
causes offset to be much larger than the size of the allocated
buffer for skb. offset is used to compute *nexthdr,
which is read in the switch statement. This read is the out-
of-bounds memory read.

HAKC prevents arbitrary out-of-bounds memory ac-
cesses like this, and instead limits the code’s ability to
only access the data explicitly allowable by the Clique
ip6_find_1stfragopt belongs to. The large, corrupted
offset value can place exthdr in one of several places:
1) a different Compartment and a different colored Clique;
2) a different Compartment but the same colored Clique; 3)
the same Compartment and a different colored Clique; and 4)
the same Compartment and the same Clique. In the first two
situations, PAC authentication will fail because the computed
PAC context will not match the PAC context used to sign
exthdr. The third situation allows access only if the Clique
is accessible according to the defined access-control policy,
and the fourth situation will be allowed by HAKC.

To successfully perform this out-of-bounds read on HAKC-
protected code, the attacker would have to construct offset
such that the resultant pointer points to an accessible Clique,
and contains the correct signature. The first condition already

limits arbitrary accesses, and the second condition is computa-
tionally hard. This is how HAKC compartmentalizes code and
data. The attacker is able to only access data allowed by the
access-control policy, even in the presence of bugs, and the
attacker must perform a computationally hard task to do so.

CVE-2019-14815 (Listing 5) is a bug in the Marvell Wifi
driver that uses data from user-space in memcpy without
checking the data length, leading to a heap overflow. Assume
that the attacker uses this CVE from uncompartmentalized
code to overwrite a pointer in compartmentalized code. The
new pointer must again conform to all data access policies,
and must contain a valid signature for the new pointer. Only
if the new pointer is validly accessible and correctly signed,
then the attack will succeed. However, as mentioned earlier,
satisfying all the conditions is computationally hard.

Unfortunately, non-pointer compartmentalized data can be
corrupted. However, this will likely only cause a denial of
service, which, though severe, is considered less serious than
privilege escalation. One mitigation would be to utilize the
“traditional” MTE, and store the color in the pointer along
with the PAC signature. The MTE hardware can retrieve the
color of accessed addresses, and check that value with the
stored value, and throw a fault if they mismatch. The use of
MTE and PAC in this way reduces the available signature bits
by half, making brute force guessing of a signature easier.

VII. DISCUSSION AND THREATS TO VALIDITY

Here we discuss Hardware-Assisted Kernel Compartmen-
talization security and performance limitations.

A. Security Limitations

HAKC does not prevent all attacks. An attacker might
find a valid control-flow path that adheres to all Clique and
Compartment access policies, yet allows the corruption of data
within a Clique. However, that corrupted data pointer cannot
belong to some invalid Clique when dereferenced, and thus the
damage the bug causes is contained to the compartmentalized
code. Additionally, data provided by the kernel is assumed
to be valid, which can lead to a confused deputy exploitation.
Some bug in the kernel can allow invalid data to be signed and
passed to compartmentalized code. Unfortunately, no practical
solution to this problem, beyond formal verification [37],
has been found. Instead, we envision a potential solution:
formally verify the memory management and IPC code [41],
and make all other functionalities HAKC-protected LKMs.
Such a system could provide microkernel-like security, while
keeping the robust functionality of existing kernels.

B. Performance Limitations

As indicated in § VI-C, LKMs that compute on the same
data compound their overheads in the worse case. We have
it as future work to evaluate the performance overhead of
compartmentalizations that are largely unrelated. For example,
we hypothesize that the overhead introduced by compart-
mentalizing ipv6.ko will not affect a compartmentalized
Bluetooth LKM, and the overall system overhead will be the
maximum overhead of either compartmentalized LKM. We
have it as future work to evaluate more compartmentalizations,
and their effect on overall system overhead.
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During the development of HAKC, we theorized strategies
to reduce overhead of compartmentalization. For example,
minimizing recolor operations by coloring all entry Cliques
the same color might reduce overhead, since pointers only
need to be resigned with the target IDn. Additionally, static or
dynamic analysis might indicate efficient compartmentalization
policies. Existing tools, such as the Syzkaller [29] fuzzing
engine or the KUnit unit testing framework, can provide insight
into novel compartmentalization strategies. We also have it
as future work to pursue interesting compartmentalization
strategies, building on HAKC to allow empirical comparisons.

VIII. RELATED WORK

Prior work includes isolation solutions that effect almost
all parts of the computing stack, ranging from hardware
extensions to novel user-space abstractions.

A. Isolation in Computer Systems

Kernel security is a long-standing and ongoing research
topic. Prior work includes creating and improving isolation
domains in both microkernels [30] and monolithic kernels [18],
[60], [62], [73], [75]. Non-monolithic kernels, as well as
some monolithic isolation methods, require significant kernel
redesign, while HAKC is not as intrusive. Furthermore, HAKC
allows for fine-grained isolation, unlike some of the methods
listed above. There is also work regarding isolation in user-
space [7], [26], [28], [33], [52], [53], [59], [93]. However,
these techniques often rely on kernel abstractions, hence they
are not applicable for kernel isolation, or would require the
introduction of a trusted software layer beneath the kernel, i.e.,
hypervisor. Much of the work to handle privilege separation
and isolation can significantly affect performance, hence works
like Split Kernel [43] have been developed to select the level
of protection and isolation for kernel functions based on if a
trusted process is utilizing kernel functionality. HAKC is an
always on solution that protects against exploits even from
trusted processes.

Another approach for operating system isolation are library
OSes [22], [36], [46], [72], [77], which restrict the operating
system exposed to applications. Built on library OSes, multiple
works [14], [17], [42], [44], [54], [56], [83] have investigated
unikernels — purpose-built kernels and user-spaces for a single
application — and ways to create, improve, and use these
minimalistic systems. Compared to HAKC, these approaches
achieve isolation by separating kernel memory based on what
each application needs. However, unlike the previous work,
HAKC runs directly on bare metal, without any monitor
reducing the trusted computing base. Furthermore, HAKC is
much more flexible in defining different levels of granularity
to allow for trade-offs between performance and security.

Finally, there have been research efforts in leveraging
language properties to address memory related issues. Previous
work uses Rust to implement operating systems [8], [61], [70]
as well as unikernels [44], to utilize the language’s type and
memory safety to obtain isolation and increase security. While
Rust prevents many memory related bugs, in order to prevent
data-only attacks involving accessing valid, live memory areas,
a compartmentalization system like HAKC is required.

B. Hardware Based Isolation

Intel’s Memory Protection Keys (MPK) is an x86 extension
that allows a process to partition memory into 16 domains.
R/W privileges for each domain are then controlled by mod-
ifying a special key policy register, which is accessible from
ring 3. User space access has motivated efforts to enforce
isolation using MPK in a secure manner [31], [40], [71], [74],
[78], [84]. Certain MPK-based isolation schemes are vulner-
able to attacks that leverage kernel system calls to subvert
MPK permissions [15]. Unlike HAKC, MPK is designed to
provide coarse-grained, page level isolation. Intel’s Software
Guard Extensions (SGX) [34] provide another avenue for com-
partmentalization, however, SGX is intended for user-space
enclave-like protection against a malicious operating system.
SGX has also been shown to induce significant overhead [94].

Other works have focused on using hardware to sup-
port safe regions — regions of memory only accessible by
privileged instructions — but have only extended simulated
hardware and have focused on user-space applications [25],
[58]. There are several works on using hardware tagging
to support various compartmentalization and pointer bounds
checking schemes [21], [39], [76], [80], [92], however most
of these works are implemented on simulated architectures.
One effort in particular, Mondrix [89], provides inter-modular
Linux kernel compartmentalization using a 2-bit word gran-
ularity tagging extension [88]. Unlike HAKC, Mondrix is
implemented in simulation, and requires a memory supervisor
that monitors all kernel permission changes. Furthermore,
Mondrix only implements inter-module isolation, whereas
HAKC supports both inter-module and intra-module isolation.
The Cheri project [90] provides architecture extensions to
support pointer capabilities, which can be used to encapsulate
memory. Cheri’s fixed capability model provides less flexibility
than PAC, where arbitrary information can be used as the
context to sign pointers. Further, Cheri’s focus on capabilities
misses data-only attacks.

Arm TrustZone is a security feature on Armv8-A and
Armv8-M [2] architectures that provides strict memory iso-
lation between a privileged secure world and an unprivileged
normal world. Lack of inter-process isolation between appli-
cations in the secure world as well as applications in the
normal world have inspired isolation schemes that leverage
the TrustZone ecosystem [9], [11], [85], [95]. Unlike HAKC,
these systems focus on enforcing inter-process isolation and
providing safe regions applications to store sensitive data.

C. Arm PAC and MTE Extensions

Recent works have utilized Arm PAC to enforce control-
flow integrity (CFI), spatial memory safety, and code pointer
integrity (CPI). PACStack [49] is a CFI scheme that secures
return addresses stored on the stack through a chain of hashing,
where a hash for each return pointer is unique based on the
current execution path of a program. PTAuth [23] enforces
temporal memory safety by storing a unique id at the base of
data object, using the unique id as the PAC context during sign-
ing and authentication. PARTS [50] is an LLVM instrumen-
tation framework that utilizes PAC to support a CPI scheme
that is resistant to pointer-reuse attacks, and thwarts control-
flow and data-oriented attacks. Compared to these schemes,

13



HAKC can provide wider protection against many classes of
attacks, and in some cases, like with PACStack, can be used
in conjunction. HAKC is the first design to the best of our
knowledge that utilize MTE-based isolation. However, designs
have been proposed that would leverage MTE-like architectural
features to improve the Clang AddressSanitizer [12].

D. Isolation with Hypervisors

Monolithic kernels such as Linux are known to be vulner-
able to faulty or malicious subsystems, such as device drivers
and network stacks. This issue has motivated researchers
to leverage hypervisors and virtualization schemes to isolate
kernel subsystems [24], [60], [62], [64]. One example of a
hypervisor-based solution is VirtuOS [64]. VirtuOS isolates
various Linux kernel subsystems by using the Xen hypervisor
to create service domains. Although efforts are made to reduce
domain communication overhead, the copying of data, file
descriptor translation, and the migration of domain-specific
information incur significant overhead. Another example is
HUKO [91], also based on Xen, which isolates untrusted
extensions. Both these schemes include the hypervisor in the
TCB, while HAKC relies on hardware for enforcement. There
are multiple known vulnerabilities in existing hypervisors, and
although work has been done to address this [47], [63], [79],
verifying hypervisor implementations is a difficult task. Unlike
hypervisor based isolation schemes, which focus on isolating
systems at the granularity of kernel modules and subsystems,
HAKC is capable of compartmentalizing bare-metal LKMs at
a finer granularity, including compartmentalizing subsystems
within an LKM.

IX. CONCLUSION

We present Hardware-Assisted Kernel Compartmentaliza-
tion, which provides a practical and performant way to com-
partmentalize commodity monolithic kernels using a novel
application of hardware features. HAKC provides strong pro-
tections for code and data pointers used in compartmentalized
code, while minimizing performance overhead and developer
effort. We are releasing all related code as open source at
https://github.com/mit-ll/HAKC.
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