
Preventing Kernel Hacks with HAKC

Derrick McKee, Yianni Giannaris, Carolina Ortega, Howard Shrobe,
Mathias Payer, Hamed Okhravi, and Nathan Burow

NDSS 2022

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported by the Under Secretary of Defense for Research and Engineering under Air Force Contract No.
FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering. © 2022

Massachusetts Institute of Technology. Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by
DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

HAKC NDSS 2022- 2
DM 04/25/22

What is the Largest Class of OS Vulnerabilities?

We analyzed the past 5 years of vulnerabilities in Linux: 508 with critical or high severity

Privilege Separation mitigates the highest percentage of Linux CVEs.

Memory
Safety
33%

Privilege
Separation

45%
13%

Other
9%

HAKC Target

Other includes:
• Race Conditions
• Integer Over/Underflow
• Logic bugs:

– Missing checks
– Buggy initialization
– Buggy error handling

HAKC NDSS 2022- 3
DM 04/25/22

What is HAKC?

• Hardware Assisted Kernel Compartmentalization (HAKC)
• Enforcement mechanism for compartmentalization policies
• Runs on bare metal without virtualization by using new hardware extensions

– PAC computes a hash of a pointer and user-specified context
– MTE colors an address range one of 16 colors

• HAKC restricts bugs to their compartments, which limits their reach

HAKC enforces compartmentalization to prevent the most common class of bugs.

HAKC NDSS 2022- 4
DM 04/25/22

Modules

Linux Today

Core Kernel

IPv6

Bluetooth

Fat Filesystem
IPv6

HAKC NDSS 2022- 5
DM 04/25/22

Kernel CVE Example

void release(struct entry *e) {

 if(e->offset < OFFSET_MAX) {

 int *i = e->buffer + e->offset;

 e->cb(i);

 *i -= 1;

 }

}

● Adapted from CVE-2016-4997

Missing lower
bound check!

i is any arbitrary
kernel data

Attacker controlled

HAKC NDSS 2022- 6
DM 04/25/22

Compartment

Clique

Data Code

IPv6

BT

PF

How Does HAKC Work?

ext4

HAKC NDSS 2022- 7
DM 04/25/22

ext4

How Does HAKC Work?

BT

PF

Compartment

Clique

IPv6

HAKC NDSS 2022- 8
DM 04/25/22

How Does HAKC Work?

BT

ii

i
IPv6

void release(struct entry *e) {

if(e->offset < OFFSET_MAX) {

int *i = e->buffer + e->offset;

*i -= 1;
}

}

e->cb(i);

HAKC Compartment Transition Check

HAKC Data Ownership Transfer to e->cb

HAKC Data Ownership Reversal

HAKC Data Check for i

Added by HAKC

Added by User

HAKC NDSS 2022- 9
DM 04/25/22

HAKC Checks

ii

IPv6
i

get_color check_acl

IPv6

PAC

i

HAKC NDSS 2022- 10
DM 04/25/22

HAKC Experimental Results

• Compartmentalized the IPv6 and one of the packet
filtering modules

• Measured the performance using Apachebench

• User simulation study browsing popular websites

HAKC NDSS 2022- 11
DM 04/25/22

Single Module Apachebench Overhead

H
ig

he
r i

s
be

tte
r

HAKC imposes a low performance overhead of ≤ 20%.

HAKC NDSS 2022- 12
DM 04/25/22

Multiple Module Apachebench Overhead

Overhead increases linearly with Compartment count in the worst case.

H
ig

he
r i

s
be

tte
r

HAKC NDSS 2022- 13
DM 04/25/22

User Browsing Overhead

HAKC Load time is
1.19 ± 4.34s slower

Website Load Time Delta (s) Stdev (s)

linkedin.com -0.47 0.065

hdfcbank.com -0.12 0.085

google.cn -0.068 0.086

bing.com -0.087 0.13

investing.com 38 62

okezone.com -11 20

cnn.com -9.8 15

yahoo.com -4.9 15

Users browsing the internet with a HAKC protected IPv6 module will notice no difference.

HAKC NDSS 2022- 14
DM 04/25/22

HAKC Summary

• Novel two-level enforcement mechanism for arbitrary compartmentalization policies

• By utilizing new hardware extensions, HAKC does not require any virtualization layer
or trusted monitor

• HAKC enforces compartments that provide strong protection for data and control-flow
at low overhead

• Available at https://github.com/mit-ll/HAKC

• Contact
– Email: derrick.mckee@gmail.com

– Twitter: @unbound_brewer

https://github.com/mit-ll/HAKC
mailto:derrick.mckee@gmail.com

