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What is the Largest Class of OS Vulnerabilities?

We analyzed the past 5 years of vulnerabilities in Linux: 508 with critical or high severity

Privilege Separation mitigates the highest percentage of Linux CVEs.
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Other includes:
• Race Conditions
• Integer Over/Underflow
• Logic bugs:

– Missing checks
– Buggy initialization
– Buggy error handling
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What is HAKC?

• Hardware Assisted Kernel Compartmentalization (HAKC)
• Enforcement mechanism for compartmentalization policies
• Runs on bare metal without virtualization by using new hardware extensions

– PAC computes a hash of a pointer and user-specified context
– MTE colors an address range one of 16 colors 

• HAKC restricts bugs to their compartments, which limits their reach

HAKC enforces compartmentalization to prevent the most common class of bugs.
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Kernel CVE Example

void release(struct entry *e) {

    if(e->offset < OFFSET_MAX) {

      int *i = e->buffer + e->offset;

      e->cb(i);

      *i -= 1;

    }

}

● Adapted from CVE-2016-4997

Missing lower 
bound check!

i is any arbitrary 
kernel data

Attacker controlled
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How Does HAKC Work?

ext4
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ext4

How Does HAKC Work?
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How Does HAKC Work?

BT

ii

i
IPv6

void release(struct entry *e) {

if(e->offset < OFFSET_MAX) {

int *i = e->buffer + e->offset;

*i -= 1;
}

}

e->cb(i);

HAKC Compartment Transition Check

HAKC Data Ownership Transfer to e->cb

HAKC Data Ownership Reversal

HAKC Data Check for i

Added by HAKC

Added by User
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HAKC Checks
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HAKC Experimental Results

• Compartmentalized the IPv6 and one of the packet 
filtering modules

• Measured the performance using Apachebench

• User simulation study browsing popular websites
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Single Module Apachebench Overhead
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HAKC imposes a low performance overhead of ≤ 20%. 
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Multiple Module Apachebench Overhead

Overhead increases linearly with Compartment count in the worst case.
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User Browsing Overhead

HAKC Load time is 
1.19 ± 4.34s slower

Website Load Time Delta (s) Stdev (s)

linkedin.com -0.47 0.065

hdfcbank.com -0.12 0.085

google.cn -0.068 0.086

bing.com -0.087 0.13

investing.com 38 62

okezone.com -11 20

cnn.com -9.8 15

yahoo.com -4.9 15

Users browsing the internet with a HAKC protected IPv6 module will notice no difference.
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HAKC Summary

• Novel two-level enforcement mechanism for arbitrary compartmentalization policies

• By utilizing new hardware extensions, HAKC does not require any virtualization layer 
or trusted monitor

• HAKC enforces compartments that provide strong protection for data and control-flow 
at low overhead

• Available at https://github.com/mit-ll/HAKC

• Contact
– Email: derrick.mckee@gmail.com

– Twitter: @unbound_brewer

https://github.com/mit-ll/HAKC
mailto:derrick.mckee@gmail.com

