
The Taming of the Stack:
Isolating Stack Data from Memory Errors

Kaiming Huang†, Yongzhe Huang†, Mathias Payer‡, Zhiyun Qian§, Jack Sampson†, Gang Tan†, Trent Jaeger†

† The Pennsylvania State University ‡ École Polytechnique Fédérale de Lausanne (EPFL) § University of California, Riverside
† {kzh529, yzh89, jms1257, gxt29, trj1}@psu.edu, ‡ mathias.payer@nebelwelt.net, § zhiyunq@cs.ucr.edu

Abstract—Despite vast research on defenses to protect stack
objects from the exploitation of memory errors, much stack
data remains at risk. Historically, stack defenses focus on the
protection of code pointers, such as return addresses, but emerg-
ing techniques to exploit memory errors motivate the need for
practical solutions to protect stack data objects as well. However,
recent approaches provide an incomplete view of security by not
accounting for memory errors comprehensively and by limiting
the set of objects that can be protected unnecessarily. In this
paper, we present the DATAGUARD system that identifies which
stack objects are safe statically from spatial, type, and temporal
memory errors to protect those objects efficiently. DATAGUARD
improves security through a more comprehensive and accurate
safety analysis that proves a larger number of stack objects are
safe from memory errors, while ensuring that no unsafe stack
objects are mistakenly classified as safe. DATAGUARD’s analysis
of server programs and the SPEC CPU2006 benchmark suite
shows that DATAGUARD improves security by: (1) ensuring that
no memory safety violations are possible for any stack objects
classified as safe, removing 6.3% of the stack objects previously
classified safe by the Safe Stack method, and (2) blocking exploit
of all 118 stack vulnerabilities in the CGC Binaries. DATAGUARD
extends the scope of stack protection by validating as safe over
70% of the stack objects classified as unsafe by the Safe Stack
method, leading to an average of 91.45% of all stack objects
that can only be referenced safely. By identifying more functions
with only safe stack objects, DATAGUARD reduces the overhead
of using Clang’s Safe Stack defense for protection of the SPEC
CPU2006 benchmarks from 11.3% to 4.3%. Thus, DATAGUARD
shows that a comprehensive and accurate analysis can both
increase the scope of stack data protection and reduce overheads.

I. INTRODUCTION

Researchers have long wanted to protect stack data from
exploitation from memory errors. At least by the time of
the “Anderson report” [6] in 1972, researchers acknowledged
the possibility of stack overflow attacks [64], which exploit
process execution by writing beyond the bounds of a stack
memory buffer to modify other stack data, particularly return
addresses. By modifying a return address, an adversary can
control which code will be executed when a function returns.
Such attacks have been used in the wild since at least the
Morris worm [71] in 1988, including famous worm malware,
such as Code Red [30] and SQL Slammer [58].

Despite increased awareness and testing, stack memory
errors remain a major threat to software security because

stack overflow vulnerabilities remain common and new exploit
methods have been discovered. First, improvements in testing
for memory errors have not eliminated stack overflow vul-
nerabilities. Recent stack overflow vulnerabilities (e.g, CVE-
2021-28972, CVE-2021-24276, CVE-2021-25178) continue to
threaten critical software, such as the Linux kernel. Second,
adversaries have found other ways that they can effectively
exploit memory errors. For example, adversaries may ex-
ploit out-of-bounds read errors1 (e.g., CVE-2021-3444, CVE-
2020-25624, CVE-2020-16221) to disclose sensitive stack
information (e.g., to circumvent stack defenses), type errors
(e.g., CVE-2021-26825, CVE-2020-15202, CVE-2020-14147)
to reference memory using different type semantics, and tem-
poral errors (e.g., CVE-2020-25578, CVE-2020-20739, CVE-
2020-13899) to reference memory using stale or uninitialized
pointers. Nowadays, many attacks target stack data pointers
and data values to exploit programs by circumventing stack de-
fenses to redirect data flows [38] or disclose sensitive data [75],
and such attacks can even be generated automatically [40].

Current defenses to prevent the exploitation of stack mem-
ory errors have a limited scope and/or remain too expensive
for broad deployment. Originally, the focus of stack defenses
was only on protecting the integrity of return addresses, such
as by using Stack Canaries [20] or Shadow Stacks [15]. While
both defenses can now be enforced with low overhead [4],
[11], [92], the emergence of return-oriented attacks [69] raised
concerns about protecting the integrity of code pointers on the
stack in general, motivating new defenses. The Safe Stack [45]
defense employs a separate stack to store all stack objects
whose accesses cannot cause buffer overflows, which protects
code pointers from being overwritten. However, as we show,
the invariants the Safe Stack defense checks do not prevent
other attacks on memory errors, such as type confusion [82]
or use-before-initialization [83], that are necessary to prevent
exploits on stack objects in general. In addition, said invariants
are also too conservative, which causes many stack objects
to be handled as if they are unsafe, which leaves objects
unprotected unnecessarily and increases the overhead of the
Safe Stack defense. Thus, imprecision in identifying safe
stack objects creates a lose-lose situation, where security and
performance both suffer needlessly.

Alternatively, researchers have explored the design of tech-
niques to prevent exploitation of individual classes of memory
errors systematically, but these techniques have been seen to
be too expensive to be deployed in practice. For example,
techniques to prevent spatial errors validate object bounds
on each reference [60], [73], incurring significant overhead
even when applied only to stack objects [28]. Researchers

1In this paper, we group stack over/underflows and out-of-bounds reads
under the term spatial errors.

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/NDSS.2022.23060
www.ndss-symposium.org

have employed static analysis techniques to remove checks for
objects that can be proven to only be accessed safely [3], [61].
While such analyses validate safety requirements that are less
conservative than those used for the Safe Stack defense, these
static analyses still over-approximate the number of unsafe ob-
jects significantly, causing some unnecessary runtime checks to
be retained on objects that are actually safe. Other defenses are
necessary to prevent exploitation of type [35], [41], [47] and
temporal errors [44], [46], [88] that incur additional overhead.
In addition, the idea of employing isolation or encryption to
provide selective data/memory protection has been proposed
recently [65], [67]. However, these techniques do not ensure
memory safety for all objects in isolated regions and require
user specification and/or ad hoc metrics to select the sensitive
data to protect.

In this paper, we propose the first approach that fully
protects safe stack objects from attacks on memory errors
efficiently. To do so, we develop a safety analysis that
identifies the stack objects that are safe from memory errors
comprehensively, enabling their protection from references to
other (potentially unsafe) objects via isolation on a separate
stack. To ensure security, our proposed analysis is conserva-
tively designed to either prove that all accesses to a stack object
must be safe or classify that object as unsafe (i.e., may not be
safe). We focus on stack objects because they typically have
simpler memory layouts, use constant allocation frequently,
and have more clearly defined scopes (e.g., deallocated on
function returns), which increase the likelihood of successful
safety validation. While our goal may have little impact on
attacks on memory errors on heap and global objects, stack
memory errors are still common and often provide powerful
exploit opportunities. Providing a foundation that isolates all
the stack objects for which safety can be proven systematically
protects many objects that may otherwise be prone to stack
memory exploits, and does so for practical overheads.

Identifying safe stack objects to protect them effectively
and efficiently presents several challenges. First, there is the
challenge of ensuring that safe stack objects are safe from
memory errors comprehensively. In order for stack data and
pointers to be protected from exploitation without runtime
checks, we must validate safety for all classes of memory
errors: spatial, type, and temporal. If we only prove that
a stack object is safe from buffer overflows (one type of
spatial error), type and temporal errors may still enable an
adversary to maliciously modify or disclose other stack objects.
Second, there is the challenge of increasing the number of
stack objects protected from memory errors statically. We
must devise techniques to validate safety requirements that
are more accurate, yet are still practical to apply across entire
codebases. Third, there is the challenge of ensuring that the
safety validation does not misclassify an unsafe object as safe.
The challenge is to ensure that all stack objects that are proven
to be safe from memory errors are actually safe.

We present the DATAGUARD system, which aims to ad-
dress these challenges to protect a large fraction of stack
objects from exploits on memory errors efficiently. First,
DATAGUARD determines whether a stack object is safe from
spatial, type, and temporal memory errors by validating mem-
ory safety constraints generated automatically for each stack
object. Only if a stack object is proven safe from these

three types of memory errors can it be placed on an isolated
stack to ensure its integrity without runtime checks. Second,
DATAGUARD identifies a greater number of stack objects as
safe than prior techniques by augmenting static analyses with
a targeted symbolic execution to remove false positives (i.e.,
falsely unsafe cases). The symbolic execution leverages the
static analysis to only evaluate program paths that may cause
an unsafe operation. Third, all the static analyses and symbolic
execution methods in DATAGUARD are designed to prevent
the misclassification of any unsafe stack objects as safe by
configuring and combining the multiple analyses necessary to
achieve the desired accuracy in a manner that terminates (i.e.,
classifies an object as unsafe) whenever safety can no longer
be guaranteed. DATAGUARD then applies the Clang Safe Stack
defense unmodified, enabling the protection of more stack
objects from memory errors comprehensively. An additional
benefit of the DATAGUARD protection is that by finding a
greater number of safe objects, in particular a greater number
of functions with only safe objects, the performance overhead
of stack protection is reduced.

We evaluate DATAGUARD on nginx, httpd, proftpd, open-
vpn, and opensshd servers and the SPEC CPU2006 [36]
benchmark programs, finding that DATAGUARD improves the
accuracy of classification to improve security and performance.
First, DATAGUARD avoids misclassifying a significant fraction
of unsafe stack objects as safe. For example, over 60% of
the cases found unsafe for type errors and 6.3% of all stack
objects found unsafe by DATAGUARD are classified as safe
by Safe Stack2. Second, DATAGUARD is able to prove safety
from spatial, type, and temporal errors for 91.45% of stack
objects on average for these programs. As a result, over 70%
of the stack objects classified as unsafe by Safe Stack are
classified as safe by DATAGUARD, enabling DATAGUARD to
protect 18% more stack objects on average. We examine the
security impact of DATAGUARD’s classification on the CGC
Binaries [23], finding that, for the 87 binaries that include at
least one stack-based vulnerability, all exploits are thwarted
by DATAGUARD’s classification by isolating safe objects. 95
of the 118 vulnerabilities are thwarted directly, and the other
23 cases are thwarted indirectly because they must exploit
a second memory error to complete their attack. Finally,
experiments show that DATAGUARD can leverage Clang’s
Safe Stack runtime defense, where the DATAGUARD safety
validation results in a performance improvement across the
SPEC CPU2006 benchmarks from 11.3% for the Safe Stack
classification to 4.3% for DATAGUARD.

This paper makes the following contributions:
• We address the goal of marking as many stack objects ”safe”
as possible while ensuring that no unsafe stack object is ever
classified as safe relative to spatial, type, and memory errors.
• We propose the DATAGUARD system - a significantly more
accurate method for validating the safety of stack objects
against spatial, type, and temporal memory errors to increase
the scope of protection for stack objects.
• We provide a novel set of stack object safety constraints and
develop safety analysis for three classes of memory errors that

2As Safe Stack focuses on protecting code pointers only, this limitation does
not create significant attack vectors, but is insufficient for protecting stack data
objects that are prone to attacks on these memory errors.

2

1 void example(int ct, char **buf) {
2 int lct = BUF_SIZE;
3 char lbuf[lct];
4 if (ct < lct){ //(1) ct > buf's size
5 strlcpy(lbuf, *buf, (size_t) ct); //(2) ct < 0
6 }
7 *buf = lbuf; //(3) temporal
8 }

Fig. 1: Example function demonstrates: (1) bounds error that enables overread
of buf; (2) type error due to casting of ct from signed to unsigned; and (3)
temporal error as *buf references local variable lbuf after return.

combines static analysis and symbolic execution to maximize
the number of proven safe stack objects, validating the safety
over 65% of the stack objects found unsafe by Safe Stack.
• We find that DATAGUARD improves the security of safe stack
objects by removing 6.3% of stack objects misclassified as
safe by the Safe Stack due to its incomplete protection against
memory errors and prevents the exploitation of stack memory
errors in CGC Binaries for only 4.3% performance overhead
on average for the 16 supported SPEC CPU2006 benchmarks.

II. MOTIVATION

In this section, we motivate the need to protect stack objects
from memory safety violations and show that current defenses
are too limited and/or expensive.

A. Exploiting Memory Errors on Stack Objects

Figure 1 shows the function example, which demon-
strates the three classes of memory errors that we examine
in this work. Assume that the value assigned at ct may be
controlled by an adversary.

First, line 4 demonstrates a spatial error, which permits
accesses (i.e., reads or writes) outside the memory region of a
stack object. In this case, the spatial error occurs because the
value of the size parameter ct may be larger than the actual
size of the memory region allocated for *buf, whose own size
could also be smaller than the defined constant BUF_SIZE.
Thus, an adversary could read the memory objects following
*buf in the stack segment to exfiltrate sensitive data from
other stack objects. In general, spatial errors may enable access
to memory prior the buffer (i.e., underflows) as well.

Second, line 5 demonstrates one form of a type error,
which causes a stack object to be interpreted in unexpected
ways. In this case, a type error occurs because the value ct
may be negative (as a signed integer), but is cast to positive
value (as size_t is unsigned) at line 5, converting a negative
value to a large positive value that also causes a bounds error
(i.e., a buffer overflow) that may modify sensitive stack data.

Third, line 7 demonstrates one form of a temporal error,
which permits access to a memory object that has been
deallocated. In this case, the pointer *buf is assigned to the
memory location referenced by the local pointer lbuf. Since
*buf may be used after the function example returns (e.g.,
in the function that calls example), this assignment allows
those uses to reference memory that is out of scope, creating a
dangling pointer. Temporal errors may also cause use prior to
initialization as well as or use after deallocation. In addition,
temporal errors on uninitialized data may cause memory errors
if the data is used to compute memory references.

All three classes of memory errors on stack objects are
still frequently discovered. Recent critical vulnerabilities (i.e.,
a CVSS 3.x severity base score of over 7.5) include those for
spatial errors (e.g., CVE-2021-25178, CVE-2021-3444, CVE-
2020-25624), type errors (e.g., CVE-2021-26825, CVE-2020-
15202, CVE-2020-14147), and temporal errors (e.g., CVE-
2020-25578, CVE-2020-20739, CVE-2020-13899). While his-
torically stack exploits have often targeted code pointers (e.g.,
return addresses), the need to circumvent stack defenses (see
Section II-D) has motivated other attack vectors, such as the
modification of control data (e.g., line 6 of Figure 1) and
exfiltration of sensitive stack data (e.g., line 4 in Figure 1).
We examine how DATAGUARD prevents an exfiltration attack
(CVE-2020-20739) in Section VII-G. As a result, defenses that
protect stack objects from all three classes of memory errors
systematically are a necessary foundation for software security.

B. Current Defenses

A set of stack defenses were proposed to prevent exploits
that modify return addresses, such as Stack Canaries [20] and
Shadow Stacks [15]. These defenses can now be implemented
reasonably efficiently (< 5% overhead [4], [11], [92]), but
stack objects other than return addresses are also prone to
attack. Given that advanced adversaries can launch success-
ful attacks by modifying non-return-address stack objects to
redirect control flow (e.g., non-return-address code pointers or
data used in control-flow decisions) and to exfiltrate sensitive
information, limited stack defenses are now insufficient.

Researchers have long recognized this gap and proposed
runtime defenses to prevent an entire class of memory errors
comprehensively, such as to enforce spatial safety [3], [28],
[60], [89], prevent attacks on type errors [35], [41], [47], and
prevent temporal safety violations [25], [44], [46], [88], [91].
but these defenses individually have significant overheads,
even when applied only to stack objects [28] in some cases.
So researchers have proposed optimizations to remove some
runtime checks for references that cannot violate bounds [3],
[24] or can never become dangling references [26], [27]. An
issue is that the underlying static analysis techniques under-
approximate the number of truly safe objects to avoid mis-
classifying unsafe objects as safe, but may miss a significant
fraction of truly safe objects. Ultimately, we want defenses to
protect as many stack objects from these classes of attacks as
possible in reasonable overhead.

An alternative approach focuses on protecting objects that
can be proven safe from memory errors without runtime
checks. For stack objects, such protection can be provided
by using multiple stacks [90], where each with stack objects
satisfying distinct requirements. The Safe Stack defense [45]
applies the multistack [90] approach to protect stack objects
by separating objects whose references are determined safe by
the compiler onto a “safe” stack isolated from other “unsafe”
objects on the “regular” stack. While the focus of the Safe
Stack defense is to protect code pointers (i.e., in addition to
the return addresses), it also protects other stack objects found
to meet its safety criteria, resulting in the ability to protect over
60% of stack objects for the programs assessed in Section VII
without runtime checks. We examine how the safe defense
works and limitations next to motivate the need of providing
a more secure, effective, and efficient defense.

3

C. Safe Stack Background

The safe stack defense consists of a static analysis pass to
classify safe/unsafe stack objects, an instrumentation pass to
place and reference stack objects on their respective stacks, and
runtime support to ensure the integrity of the safe stack. The
static analysis pass classifies objects as safe if they are only
accessed using a constant (i.e., compiler-determined) offset
from the stack pointer within a single stack frame. While
code pointers, such as the return addresses, often satisfy this
requirement, some stack data objects and data pointers may
also comply. The instrumentation pass creates two separate
stacks to separate safe objects from unsafe objects. The run-
time support protects the safe stack by allowing only accesses
to the safe stack through authorized instructions via dedicated
registers, such that no addresses of the safe stack nor pointers
that point to the safe stack are ever stored on the regular stack,
preventing the corruption of safe objects from tampering with
unsafe objects.

To demonstrate how the Safe Stack approach works, return
to the function example in Figure 1. In this example, the Safe
Stack approach classifies lct as safe, placing it on the safe
stack, and lbuf as unsafe, leaving it on the regular (unsafe)
stack. The variable lct is only accessed using a constant
offset from the stack pointer. On the other hand, lbuf is
passed as a parameter to strlcpy in line 5, so its accesses in
strlcpy will not be a constant offset from the stack pointer
in that function. In the latter case, a bug in the program could
change the memory reference to lbuf from something other
than what the compiler defined, and such objects are classified
as unsafe by the Safe Stack approach. Note that the pointer
operations for scanning lbuf in strlcpy are also considered
unsafe because they do not use a constant offset either.

D. Limitations of the Safe Stack Defense

While the Safe Stack defense [45] applies the multi-
stack [90] approach to eliminate runtime checks by isolating
the safe stack, Safe Stack does not validate safety for all three
classes of memory errors, making it insufficient to protect data
objects in general. In particular, Safe Stack does not account
for type errors at all nor use-before-initialization temporal
errors, which permits adversaries to violate memory safety on
stack data objects and their references. To be fair, the focus
of Safe Stack is on protecting code pointers, rather than stack
objects in general. For code pointers, type errors do not impact
return addresses and other safe (to Safe Stack) code pointer
variables, and exploiting code pointer variables via use-before-
initialization is rare and difficult. However, type and temporal
errors are often exploited to enable attacks on stack data.

In addition, Safe Stack’s safety requirements are overly
conservative, leaving many objects unprotected unnecessarily.
For example, Safe Stack is particularly conservative because it
declares all address-taken variables as unsafe, which includes
all arguments passed by reference. We find that many of these
objects can be proven safe even when accounting for all three
classes of memory errors.

In summary, existing multistack defenses, like Safe Stack,
protect some stack objects without runtime checks, but do
not protect stack objects from all three classes of memory
errors systematically, which leads to false negatives that risk

1 int callee(int ict, char *ibuf, int *oct, char *obuf) {
2 if (ict < *oct){
3 if ((strlcpy(obuf, ibuf, (size_t)ict)) >= *oct)
4 return -1; // Truncation Check
5 *oct = (size_t) ict;
6 }
7 else{
8 if ((strlcpy(obuf, ibuf, (size_t) *oct)) >= *oct)
9 return -1; //Truncation Check

10 }
11 return 0;
12 }
13

14 int caller(int fd, char *in) {
15 int imax = 100, omax = imax-10;
16 char ibuf[imax], obuf[omax];
17

18 if ((strlcpy(ibuf, in, (size_t)imax)) >= imax)
19 goto error; // Truncation Check
20 if ((callee(imax, ibuf, &omax, obuf)) < 0)
21 goto error;
22 if ((write(fd, obuf, (size_t)omax)) == omax)
23 return 0;
24 error:
25 return -1;
26 }

Fig. 2: Revised example where the stack objects are provably safe from
bounds, type, and temporal errors.

the integrity of stack protection. In addition, many objects that
could be proven safe are not at present due to false positives
resulting from overly conservative invariants, which both risks
the security of these objects and degrades the performance.

III. OVERVIEW

The core challenge of this work is to identify a maximal
number of stack objects that are safe from spatial, type, and
temporal memory errors without misclassifying any unsafe
stack objects as safe. These safe stack objects are then isolated
to protect them from possibly unsafe memory accesses to other
objects. To achieve this goal, we propose the DATAGUARD
system that implements the approach shown in Figure 3.
DATAGUARD performs a multi-step analysis that combines
static analyses with constrained symbolic execution to validate
stack object safety to prevent unsafe stack objects from being
misclassified as safe. Once the safe stack objects are validated,
DATAGUARD applies the Safe Stack defense of isolating safe
stack objects to protect them at runtime.

To demonstrate the goals of DATAGUARD, Figure 2 shows
an example of code where the safety of stack objects can
be validated statically. The function caller allocates buffer
sizes (i.e., imax and omax) as constants to allocate buffers
of constant size (i.e., ibuf and obuf). A key limitation of
the Safe Stack approach [45] is that all stack objects passed
as parameters are classified as unsafe. While the caller in
Figure 2 passes the constants and buffers to the callee, none
of these parameters have accesses that could cause spatial,
type, or temporal errors. First, although the caller uses a signed
integer type for the buffer sizes and these are cast in the callee
(lines 3 and 8), the constant values are known and will be
unchanged by the cast, so no type error is possible. Second,
although the buffers are used in copy operations (lines 3 and
8), the copies are bound by the strlcpy function to be
within the bounds3Security issues caused by truncation are
not in the scope of this paper. (as determined by the constant

3strlcpy also guarantees the resulting string is null-terminated and
enables detection of truncation.

4

Stack Objects
Step 1: Identify

Error Classes for
Stack Objects

Section 5.1

Step 2: Collect
Safety

Constraints
Section 5.2

Step 3: Verify
Stack Object

Safety
Section 5.3

Per-Object
Classes

Safety
Constraints

Safe Stack
Objects

Compute Safe
Stack Objects

Runtime
Enforcement

Safe Stack
Runtime

Enforcement

Safe Stack Objects
(No Classes)

Unsafe Stack Objects
(Constraint Failure)

Unsafe Stack Objects
(Validation Failure)

Fig. 3: DATAGUARD system technical approach

buffer sizes with safe type casts). Regarding temporal safety,
the buffer references are initialized, their values are initialized
prior to dereferencing (we assume in is initialized also), and
no memory in callee is assigned to these references (i.e.,
in fact these references are unchanged). Thus, the buffers and
their sizes can be isolated of a separate stack (i.e., isolated
stack) without risking other safe stack objects to protect them
from memory errors in other possibly unsafe stack objects (i.e.,
on the regular stack) and other program objects.

DATAGUARD validates stack object safety from memory
errors in three steps, as shown in Figure 3. First, DATAGUARD
identifies the classes of memory errors that may apply for each
stack object, as described in Section V-A. Each class requires
that the stack object be accessed via an associated, unsafe
pointer operation. A stack object is declared safe if no pointer
that may reference the object is used in an unsafe operation.
DATAGUARD leverages prior work for identifying the pointer
operations that may cause spatial and type errors [16], [61],
[62] and proposes how to detect pointer operations required
to cause temporal errors. Second, DATAGUARD generates
constraints for validating the safety of stack objects for each
class of memory error automatically, which we call memory
safety constraints, as described in Section V-B. A stack object
is declared to be unsafe should DATAGUARD not be able to
generate safety constraints for a class requiring validation.
Third, DATAGUARD validates each remaining stack object’s
safety using its safety constraints, as described in Section V-C.
DATAGUARD applies a static analysis first, where the stack
objects that pass validation are declared safe. For the objects
not found to be safe statically, DATAGUARD applies a second
analysis; this time by employing targeted symbolic execution
to validate safety. To ensure that we do not misclassify any
unsafe objects as safe in either analysis, we require that
both analyses overapproximate the possible executions of the
program, i.e., are sound analyses4. The stack objects that pass
either validation are declared safe, whereas others are unsafe
(i.e., cannot be proven safe in either analysis). We assess the
soundness of our approach in Section V-D.

DATAGUARD uses existing runtime enforcement, Clang’s
Safe Stack, to protect the safe stack objects identified by
DATAGUARD. DATAGUARD both removes a significant num-
ber of objects that may be unsafe that other techniques classify
as safe to protect the integrity of the isolated stack and finds
a much greater number of safe objects that prior techniques
classified as unsafe, which extends stack protections to more
objects and reduces the overhead of the Safe Stack defense.
Thus, DATAGUARD creates a win-win situation by extending

4Computer science communities have differing viewpoints of soundness
and completeness. We are using the static analysis community’s definition, as
in [74], where a sound analysis overapproximates the program’s executions.

stack protections while reducing performance overhead.

IV. THREAT MODEL

In this section, we list threats to systems on which DATA-
GUARD will be deployed and outline trust assumptions upon
which DATAGUARD depends in thwarting those threats.

We assume each program protected using DATAGUARD
is benign but may contain memory safety errors, including
spatial, type, or temporal errors. We further assume that
adversaries will exploit memory errors on any stack object
in a program. As described in Section II-A, adversaries can
exploit such memory errors in a variety of ways. We assume
stack objects classified as unsafe by DATAGUARD are prone to
such memory errors and attacks, as are heap and global data.
We leave the problem of extending protection to unsafe stack
objects for future work.

We assume that no stack protection mechanism is deployed
except for ASLR, as DATAGUARD proposes a mechanism
to supplant and extend prior stack defenses. DATAGUARD
uses ASLR to isolate the isolated stack from other references
by placing the isolated stack in an unpredictable location,
as used in Clang’s Safe Stack defense. We note that this
leaves the attacker a (small) probabilistic window of success-
fully compromising an object on the isolated stack through
information disclosure, which is mainly triggered by two
approaches: (1) taking advantage of implementation flaws [19],
[29] and (2) performing just-in-time information disclosure
attack after program load time to decrease the entropy [33],
[34], [63]. As an alternative to ASLR, the isolated stack can
be guarded from other memory accesses through SFI [86] or
hardware isolation, such as Intel MPK [59], [66], [85] for
some additional overhead. Existing works on enhancing the
information-hiding property [11], [87], preventing information
leaks [55], and enforcing access control on sensitive data [31],
[37], [43] can also be applied to strengthen the security of
Safe Stack. We assume that control-flow integrity [1] (CFI)
is deployed and that the program is not permitted to modify
its own code, i.e., the code memory is not writable and data
memory is not executable to ensure that our static and symbolic
analyses really examine an overapproximation of the possible
program executions. We also assume that all constant values
are stored in read-only memory and are not copied into read-
write memory at any time [32].

V. DESIGN

We review the design of the DATAGUARD system, which
comprises the first three steps of Figure 3, and present sound-
ness arguments for the proposed safety validation analyses.

5

A. Identifying Error Classes for Stack Objects

Researchers do not yet have a broadly accepted definition
of safety from memory errors. Distinct safety definitions were
utilized by each of the Safe Stack defense [45], CCured [16],
[61], [62], and SAFECode [24], [26], [27]. In this paper,
our definition of safety is closest in spirit to the CCured
system, where each object is strongly typed and a safe object
complies with its spatial (bounds) and type semantics for all
program executions. A limitation of the CCured approach is
that it does not provide a safety definition for temporal errors,
so we rely on the SAFECode definition for temporal errors.
SAFECode defines safety in terms of points-to information,
where an object is safe if it obeys all its computed points-to
relationships, which enables SAFECode to detect dangling and
uninitialized pointers as points-to violations.

• Definition 1: A stack object is safe if any references
(pointers) that may alias to the object comply with the spatial,
type, and temporal safety requirements associated with the
object and the references themselves are safe objects.

As Definition 1 states, for a stack object to be safe from
memory errors, all pointers that may-alias the object must be
comply with safety requirements for the stack object. Thus,
DATAGUARD computes the pointers that may-alias a stack
object and collects the classes of memory errors associated
with those pointers. If none of a stack object’s pointers
performs any operation that may cause a memory error, that
stack object is safe.

The first step that DATAGUARD takes to determine whether
a stack object is safe, as shown as Step 1 in Figure 3,
is to identify the classes of memory errors for each stack
object that require safety validation. To do this, DATAGUARD
leverages the techniques proposed by CCured (spatial and type
safety) and SAFECode (temporal safety) to determine whether
a pointer may be used in a memory operation that may cause a
particular class of memory error. The classes of memory errors
that must be verified for a stack object are the union of the
classes that may be caused by its aliases.

CCured identifies pointers that may cause spatial and type
errors. First, CCured shows that pointers used in pointer arith-
metic operations (called sequential or seq pointers by CCured),
such as to access array elements or structure fields, may cause
spatial memory errors. While CCured requires runtime checks
for such pointers, DATAGUARD labels any objects that may
be referenced by such pointers as requiring validation for the
spatial error class. Note that DATAGUARD treats fields within
compound objects, including buffers, as distinct variables, as
described in Appendix C.

Second, CCured shows that pointers used in type casting
operations may cause type errors. CCured does aim to prove
safety for upcasts and downcasts [16], but these casts are
uncommon for stack objects. DATAGUARD labels objects that
may be referenced by such pointers as requiring validation
for the type error class. Note that LLVM casts unions into
structures or primitive types, and it occasionally use ptrtoint
and inttoptr cast instructions for accessing fields of compound
objects; so such cases are identified by DATAGUARD as
requiring type safety validation. However, because type errors
are uncommon for stack objects (see Table II) and largely ad

hoc, we only validate unsigned-signed casting for integers of
the same allocated size to identify integers whose values are
not impacted by type cast, which for DATAGUARD to expand
the number of cases that can pass spatial safety validation.

To detect operations that may lead to temporal errors
for pointers, DATAGUARD identifies dangling pointers. The
SAFECode system [26], [27] includes a method to validate
stack objects that are prone to dangling pointers based on
escape analysis. Rather than running full escape analysis,
DATAGUARD detects pointers that may escape to calling
functions or other threads (e.g., via heap or globals) based
on their aliases. If any pointer is aliased by a pointer passed
from a caller or that references a heap or global object, then
DATAGUARD identifies the need for temporal analysis.

DATAGUARD also identifies stack objects that may cause
temporal errors because they may be used prior to initialization
and hence reference stale memory. In this case, both pointer
and data variables may be prone to use-before-initialization. If
a variable is initialized to a value at declaration, it does not
require temporal analysis for UBI, otherwise it does.

B. Collecting Stack Object Constraints

DATAGUARD uses the following approach to collect con-
straints. First, for each stack object, DATAGUARD collects
constraints from the stack object’s declaration for the classes of
memory errors that require safety validation. These constraints
are assigned to pointers whenever that stack object is assigned
to a pointer (e.g., at pointer definitions). For static analysis,
we make such assignments based on whether the pointer may
alias the stack object. For symbolic execution, we make such
assignments when the symbolic execution finds that the stack
object may be referenced by the pointer. Should multiple stack
objects be assigned to the same pointer (i.e., at the same
pointer definition with an LLVM phi instruction), the analyses
proceed independently, as these represent distinct contexts.
State relevant to safety validation (e.g., index of a pointer in
a buffer) may be updated at each pointer definition and each
pointer operation (i.e., at pointer use). Constraints are then
validated on each pointer use.

Spatial Constraints: As is typical since the CCured method
was proposed [61], checking spatial safety involves determin-
ing the size of the object and ensuring that all accesses are
within the bounds determined by that size. To check such a
requirement statically, we require the following information.
Stack objects that do not satisfy the following four constraints
will remain on the regular, unprotected stack.

• Declaration: The size from the object’s base must be
declared as a constant value. The initial index is 0.
• Definition: When a pointer is defined to reference the object,
the reference may be offset to change the index. This offset
must be a constant value.
• Use: When a pointer is used in an operation, the pointer may
be further offset to change the index. Each offset in a use must
also be a constant value.
• Validation: For all uses, pointer index < size and index ≥ 0.

To check that a stack object is free of spatial errors, the
stack object must be declared with constant size. An index
of the pointer into the stack object is maintained. Pointer

6

definitions and uses may change the value of the index by
a constant offset. The resultant index from the combination of
offsets in pointer definitions and uses must be within the range
of the stack object on each use, i.e., greater than 0 and less
than object size.

Type Constraints: The use of structured types and type
casting among them is less common for stack objects, so
DATAGUARD focuses on validating the safety of integer type
casts. Below, we describe the four requirements for type safety
validation for integer stack objects and the definition and use
of their references.

• Declaration: Integer variables are assigned the type and value
(optionally) used in the declaration.
• Definition: When a pointer is defined to reference the object,
if the operation includes a type cast the newtype is identified.
If validation succeeds type is assigned to the newtype.
• Use: When a pointer is used to reference the object, if
the operation includes a type cast the newtype is identified.
If validation succeeds type is assigned to the newtype. If the
operation assigns a value, the value is stored.
• Validation: For a definition or use that produces a newtype,
the resultant type cast must not change the value of the integer
object referenced (e.g., by changing size or signedness).

For type safety validation, we require that type casts not
change the value associated with the reference to change. This
check enables validation of safety from integer overflows, e.g.,
to prevent attacks on control data.

Temporal Constraints: For temporal constraints, we focus
on scoping constraints to prevent (1) memory use before it
is initialized (i.e., use of aliases before the stack object is
declared), and (2) memory use after it is deallocated (i.e., upon
return of a function in which the stack object is declared).

• Declaration: The object is declared in basic block bob jinit
implying that it may be live in a set of basic blocks Bob j.
• Definition: The pointer is defined in basic block bptrde f to
at least one of the objects to which the pointer aliases.
• Use: The pointer uses occur in basic blocks Bptruse .
• Validation: The pointer definition occurs when the object is
live, bptrde f ∈ Bob j, and all uses occur in a basic block in where
the object is still live, Bptruse \Bob j = /0.

We cannot have a pointer used before initialization as long
as each pointer is defined to a live object that it may alias prior
to use. An object cannot be used prior to initialization as long
as each pointer that may alias the object cannot be used before
initialization. An object cannot be referenced by a dangling
pointer as long as there cannot be a use of the object after
its lifetime, e.g., after the function in which it was declared
returns. We define this constraint in terms of the basic blocks
in which an object may be live given the object’s declaration.
Then, DATAGUARD validates that the pointer definition occurs
when the stack object is live and that all uses occur in a basic
block in which the stack object is still live.

C. Validating Stack Object Safety Statically

In this section, we specify methods to validate stack object
safety with respect to the constraints from the last section.

The challenge is to maximize the number of stack objects
that are safe without misclassifying any unsafe stack objects
as safe. We first apply a two-stage analysis that uses an
inexpensive static analysis first, followed by symbolic exe-
cution that leverages the relevant program paths found by
static analysis. Note that researchers have previously used
symbolic execution to determine whether positives found in
static analysis are actually true positives (e.g., a recent example
is the UbiTect system [91]). However, our two-stage analysis
for safety validation differs from bug finding analyses in that
each positive must be a true positive for all possible program
executions, requiring that all the static and symbolic analyses
used in safety validation must overapproximate all program
executions, i.e., be sound analyses.

Validating Spatial Safety. Spatial safety analysis is per-
formed in two stages: (1) a static analysis to classify pointers
to find pointers that may be proven safe, similarly to the Baggy
Bounds [3] and SAFECode [24], [25] optimizations, and (2) a
guided symbolic execution to determine whether the pointers
found to be unsafe in the first stage can be proven safe in a
more comprehensive analysis (i.e., are false positives).

For the static analysis, DATAGUARD first performs a def-
use analysis [52], [84] on each pointer detected to require
spatial safety validation. LLVM uses SSA form for its interme-
diate representation, so each pointer has only one definition,
but may have many uses. The computed def-use chains are
used in both the static analysis and to guide the symbolic
execution. To assess bounds statically, DATAGUARD performs
a value range analysis [8], [72], [81] for each pointer use
from its definition. Value range analysis is a type of data-flow
analysis that tracks the range (interval) of values that a numeric
variable can assume at each point of a program’s execution.
To validate spatial safety for all possible program executions,
every pointer that may alias the stack object must use offsets
from the object’s base whose value range is between 0 and
stack object size as determined by the spatial safety constraints.

A problem is that traditional value range analysis assumes
that values in memory are not prone to memory errors, so the
value ranges computed may not be correct under such errors.
Baggy Bounds [3] does not specifically mention this problem,
although since Baggy Bounds aims to prevent all spatial errors
through runtime checks, this assumption is not necessarily
inconsistent for that method. For DATAGUARD, unsafe stack
objects may remain and we cannot trust that the data in these
stack objects are protected from memory errors. Instead, our
value range analysis only uses constant values, either from
def/use instructions explicitly or from loads of constant values
into registers used by them. All other cases are identified as
unsafe. Thus, under the assumption that code and constant
values are loaded in read-only memory (see Section IV), spatial
safety validation is not impacted by those memory errors.

For the cases that the static analysis finds to be unsafe,
a problem is that these cases may be false positives due
to the overapproximations inherent in the sound analysis.
DATAGUARD employs a second stage that performs a guided
symbolic execution to determine if it can prove whether any
of the positives found in static analysis can actually be proven
safe. To do this, DATAGUARD symbolically executes the part
of the program covered by the def-use chains of each pointer
that may alias the stack object, starting from the stack object

7

declaration. To satisfy the requirement of using constant inputs
for sizes and offsets, the symbolic execution relies on the value
range analysis. If a stack object is inferred to be unsafe by
value range analysis, it either does not use a constant input or
is detected to violate bounds. The former is more likely, so
DATAGUARD classifies pointers that rely on such data as un-
safe, only analyzing the latter cases. We find that imprecision
that may cause false positives occurs due to the lack of path
sensitivity, where the effects of multiple program branches may
falsely indicate that bounds are violated. Symbolic execution
can check these paths independently. All non-constant data
remain symbolic, and the use of symbolic data in computing
sizes or offsets causes a failure in the safety validation.

A challenge in using symbolic execution is to avoid path
explosion. Since DATAGUARD employs symbolic execution
on the positive (i.e., presumed unsafe) cases found by static
analysis, we only need to symbolically execute the program
from the stack object’s declaration to its last unsafe use
in its def-use chains, which improves DATAGUARD’s ability
to identify safe cases over pure symbolic execution without
static analysis based on our evaluation on Section VII-D.
DATAGUARD applies LLVM’s loop simplify [54] and canoni-
calization technique [53] to reduce the path explosion problem
introduced by loops, as applied in patch generation to satisfy
safety properties [39]. DATAGUARD also leverages symbolic
state merging employed by S2E [14] to eliminate unnecessary
forks when encountering branches, which reduces the number
of paths to explore by orders of magnitude [70]. To avoid path
explosion in long sequences of def-use chains, we limit the
analysis depth. As longer def-use chains are more likely to
lead to unsafe operations, we focus on shorter paths.

Validating Type Safety. Since validating type safety involves
checking that values do not change on type casts, the core of
type safety validation is in the static value range analysis. If
a stack object that is validated for type safety is also used as
a bound or memory (e.g., array) index, DATAGUARD uses the
result of type safety to validate spatial safety (i.e., all such
integers must be safe from type errors).

Validating Temporal Safety. The intuition of the proposed
approach to detect dangling pointers is to determine whether
a pointer use may occur outside the scope of a referenced
stack object. To detect such cases without misclassifying any
unsafe cases as safe, DATAGUARD uses a sound liveness
analysis [5], [50], [51] to determine the basic blocks in which
a stack object is in scope in the program (its live set) and
determine whether any uses of pointers that may reference
the stack variable occur in basic blocks outside the live set.
However, false positives may occur in aliasing, so we validate
that the pointer can actually be assigned to the stack object
using symbolic execution for any positive cases.

Liveness analysis computes the variables that are alive at
each basic block, so we can determine the set of basic blocks
in which a stack object declared in block bob jinit is live as Bob j,
which is called the live range [9], [10], [49] of ob j. Similarly,
we compute the live ranges for each of the pointers that may-
alias ob j, which determines the set Bptr. Since LLVM uses
SSA form for its IR, DATAGUARD evaluates safety for a stack
object relative to each pointer individually. To be specific, the
live-range of the pointer ptr that may alias an object ob j begins
at the basic block when ptr is declared, and it ends after the

last use of ptr. For each pointer ptr and aliased object ob j,
DATAGUARD validates whether any use of ptr (in ptr’s live-
range) is outside the ob j’s live-range. We note that aliases may
have uses before the stack object is declared or after the stack
object’s live-range has completed. In static analysis, either case
results in the stack object being classified as unsafe.

However, we also recognize that if a pointer is found unsafe
by the live-range analysis, it may not actually be exploitable,
since overapproximation in alias analysis may identify aliases
that cannot actually reference the stack object. As a result,
we similarly propose to apply guided symbolic execution to
validate whether each stack object found to be unsafe is really
assigned to a pointer whose uses may occur outside the stack
object’s live range. If the symbolic execution proves that such
a reference is not possible for all pointers failing temporal
validation statically, then the stack object is found to be safe.
To do that, we again track the computed def-use chains. For
each stack object, we start the symbolic execution at the
object’s declaration and follow all the def-use chains for all
the aliases, similarly to symbolic spatial validation, including
the methods to avoid path explosion.

D. Validation Soundness

In this section, we assess the soundness of the proposed
static analyses and symbolic execution for safety validation.

Static Analysis Soundness The static analyses methods for
safety validation are built upon multiple prior static analyses.
They include: (1) LLVM’s built-in def-use analysis; (2) SVF
pointer alias analysis using its VFG [76]–[80]; (3) Program
Dependence Graph (PDG) of PtrSplit [48]; (4) value range
analysis [8], [72], [81]; and (5) live range analysis [9], [10],
[49]. These static analyses are claimed to be sound by their
respective papers. However, we note that the soundness argu-
ments in these papers are informal and there are no formal
soundness proofs (with the exception of value range anal-
ysis, whose soundness proof is formalized [72]). Therefore,
it is possible that these analyses and their implementations
do not handle all corner cases in sound ways. To separate
the analyses DATAGUARD relies on from how DATAGUARD
applies them, we next argue that DATAGUARD’s static analyses
achieve relative soundness: assuming those prior analyses are
sound, DATAGUARD’s static analyses are sound. We note that
DATAGUARD avoids several corner cases (e.g., type casting)
by design by classifying objects accessed using such operations
as unsafe, as listed in Appendix C.

DATAGUARD’s safety validation methods require finding
all pointers that may alias each stack object. For that, DATA-
GUARD relies on the SVF pointer alias analysis [76]–[80]
intraprocedurally based on its VFG and the PDG representation
of PtrSplit [48] to represent the data flows between functions
to compute interprocedural may-aliases. Since both the VFG
construction in SVF and the PDG representation are claimed
to be sound, DATAGUARD soundly overapproximates the set
of pointers that may alias a stack object.

The spatial and type safety validations apply value range
analysis [8], [72], [81] to compute the possible ranges of
indices in accessing stack objects. The value range analysis is
computed based on the PDG and tracks only simple patterns:
(1) pointers with constant offsets from bases of stack objects

8

and (2) constant offsets when dereferencing pointers. Since the
PDG is claimed to be sound and we assume (Section IV) that
all constants are stored in read-only memory and are not copied
into read-write memory at any time [32], it is straightforward
that DATAGUARD’s value range analysis is sound.

The temporal validation applies liveness analysis [50] to
compare the basic blocks in which a stack object is live to
those basic blocks of each pointer that may alias the object.
Liveness analysis is also computed based on the PDG and
tracks the def-use chains and object’s scope in a fully context-
sensitive manner. Since the PDG is claimed to be sound, it is
straightforward that DATAGUARD’s liveness analysis is sound.

Symbolic Execution Soundness By default, symbolic execu-
tion is a sound form of analysis because it follows all execution
paths in a program [7]. In practice, factors complicate ensuring
the soundness of a particular symbolic execution analysis that
DATAGUARD addresses.

First, path explosion in symbolic execution often means
that it is impractical to execute all paths in the program,
even with loop canonicalization and symbolic state merging.
DATAGUARD limits the depth of the symbolic execution to
avoid expensive cases, but any symbolic execution terminated
for this reason classifies the associated stack object as unsafe.

Second, symbolic analyses may sacrifice soundness when
employing concrete values for some variables, creating a
concolic execution [7], [14]. DATAGUARD only concretizes
values that are constants in spatial safety analysis. All other
variables are initialized with symbolic values. Only symbolic
values are used to initialize variables in the temporal analysis.

Third, the symbolic analyses in this paper do not start at
the program initialization, so if other execution contexts (i.e.,
threads) have been created they may impact the state of the
symbolic execution. DATAGUARD validates whether a single
stack object (at a time) is safe relative to spatial and temporal
errors. This would imply, if successful, the object would be on
an isolated stack, protected from tampering by accesses from
this thread or others to unsafe globals, stack and heap objects.

Fourth, DATAGUARD’s symbolic executions utilize the def-
use chains soundly in validating stack objects found unsafe
by static analysis. The symbolic execution analysis starts at
the stack object’s declaration and symbolically executes the
program until the last unsafe pointer operation (use) of any
alias of the stack object. Thus, all paths that can possibly
lead to a memory error are executed symbolically before a
stack object can be declared safe. DATAGUARD only allows
safe objects (i.e., proven by the static analysis) to be used in
any constraints derived from the symbolic execution. Unsafe
objects remain symbolic, so they are not constrained during
the execution. The loop-canonicalization applied to simplify
loops [39] and symbolic state merging [70] are also sound.

VI. IMPLEMENTATION

DATAGUARD is implemented on Ubuntu 20.04 with Linux
kernel version 5.8.0-44-generic on x86 64 architecture using
LLVM 10.0, running on an Intel CPU i9-9900K with 64 GB
RAM. The CCured pointer analysis tool is ported, adapted,
and extended from nesCheck [57] which consists of 1,958
SLoC in C++. Originally, nesCheck aims to analyze TinyOS

where all code for applications, libraries, and OS is fully
available at compile time, so that the whole-program static
analysis can be done effectively. In our work, we statically
link libraries at compilation to make the code of the library
available in bitcode. Also, we found that the original nesCheck
framework fails to propagate changes in the classification of
global pointers. To solve this problem, we port the PDG
of the PtrSplit framework [48] which leverages SVF’s [77]
alias analysis into the framework to propagate classifications
to pointers comprehensively. The static analysis portion of
DATAGUARD consists of 4,568 SLoC in C and C++.

The def-use chain implemented in DATAGUARD is derived
from LLVM’s built-in def-use analysis. The interprocedural
alias analysis is based on the PDG-based alias analysis from
PtrSplit [48], using the SVF analysis for intra-procedural
pointer alias analysis. The implementation of value range
analysis, live range analysis is based on the data-flow equations
provided in Appendix A and B. For the symbolic execution, we
apply S2E [14]. DATAGUARD adapts LLVM’s loop canonical-
ization feature [53] and S2E’s symbolic state merging [70] to
reduce the effect by potential path explosion problem. DATA-
GUARD limits the scope of symbolic execution by limiting
the depth of the call stack, currently set to four functions.
This depth was chosen based on angr’s CFGEmulated method
supporting a depth of three [17], [18] and experience that the
depth of four functions is practical. The depth is configurable.

As buffers are often processed using functionality provided
by the C library, we also evaluate the uClibc library in
the DATAGUARD safety analyses. uClibc is a lightweight C
library for developing embedded Linux systems, and nearly
all programs that work with glibc work with uClibc without
modifications, even with other shared libraries and multi-
threading. KLEE, the symbolic execution engine for S2E,
already has a model for uClibc but lacks such a model for
glibc. But even with uClibc, KLEE symbolic execution fails for
some library functions in some cases. DATAGUARD maintains
a list of unsafe library functions; if unsafe library function is
called, we assume related memory object/pointer is unsafe.

VII. EVALUATION

In this section, we examine the ability of DATAGUARD to
improve the protection of safe stack objects, determine how the
steps in the DATAGUARD approach impact the validation of
stack objects, and assess how the application of DATAGUARD
impacts the security and performance of programs. In this
evaluation, we examine several server programs, nginx-1.18.0,
httpd-2.4.46, proftpd-1.3.7, openvpn-2.5.2, and opensshd-8.6,
and the SPEC CPU2006 benchmark suite5.

A. Stack Object Safety Comparison

Q1: How does DATAGUARD impact the security of safe
stack objects compared with prior work? Table I shows the
counts and percentages of safe stack objects found using the
NesCheck framework’s CCured implementation, Clang Safe
Stack, and DATAGUARD methods.

5We examined 16 out of 19 benchmarks in SPEC CPU INT 2006 and
SPEC CPU FP 2006 that are written in C or C++. The remaining benchmarks
(xalancbmk, povray and dealII) are not supported by SVF.

9

CCured-default CCured-min Safe Stack-default Safe Stack-min DataGuard Total
nginx 14,573 (79.52%) 14,496 (79.10%) 13,047 (71.20%) 12,375 (67.53%) 16,684 (91.05%) 18,324
httpd 61,915 (73.06%) 60,526 (71.42%) 49,523 (58.44%) 46,833 (55.27%) 78,266 (92.36%) 84,741
proftpd 14,521 (81.66%) 14,189 (79.79%) 12,837 (72.19%) 12.513 (70.37%) 16,190 (91.04%) 17,782
openvpn 48,379 (76.58%) 47,662 (75.45%) 40,627 (64.31%) 39,145 (61.97%) 57,693 (91.33%) 63,171
opensshd 20,238 (79.45%) 20,062 (78.75%) 18,176 (71.35%) 17,712 (69.53%) 23,871 (93.71%) 25,474
perlbench 52,738 (91.61%) 51,165 (88.57%) 42,398 (73.65%) 42,014 (72.98%) 52,324 (90.89%) 57,567
bzip2 1,293 (92.29%) 1,162 (82.94%) 1,057 (75.44%) 1,049 (74.87%) 1,238 (88.39%) 1,401
gcc 123,427 (73.34%) 120,856 (71.82%) 96,796 (57.52%) 91,344 (54.28%) 152,452 (90.59%) 168,283
mcf 580 (90.34%) 569 (88.63%) 441 (68.69%) 436 (67.91%) 602 (93.77%) 642
gobmk 34,376 (85.53%) 33,969 (84.52%) 26,229 (65.26%) 26,013 (64.72%) 38,552 (95.92%) 40,191
hmmer 20,133 (75.84%) 19,874 (74.87%) 13,873 (52.26%) 13,629 (51.34%) 25,674 (96.71%) 26,546
sjeng 3,461 (85.62%) 3,415 (84.49%) 2,798 (69.22%) 2,712 (67.10%) 3,741 (92.55%) 4,042
libquantum 2,576 (66.80%) 2,521 (65.38%) 2,036 (52.80%) 1,878 (48.70%) 3,214 (83.35%) 3,856
h264ref 19,525 (87.70%) 19,283 (86.61%) 14,418 (64.76%) 14,339 (64.40%) 20,177 (90.63%) 22,264
lbm 448 (82.96%) 442 (81.85%) 376 (69.63%) 369 (68.33%) 506 (93.70%) 540
sphinx3 2,744 (72.90%) 2,713 (72.10%) 2,058 (54.67%) 1,962 (52.13%) 3,398 (90.28%) 3,764
milc 4,325 (81.50%) 4,233 (79.76%) 3,887 (73.24%) 3,794 (71.49%) 4,680 (88.19%) 5,307
omnetpp 20,572 (83.44%) 20,264 (82.19%) 16,967 (68.82%) 16,283 (66.04%) 22,091 (89.60%) 24,655
soplex 14,253 (72.80%) 14,072 (71.87%) 11,044 (56.41%) 9,513 (50.12%) 16,368 (83.60%) 19,579
namd 21,676 (85.17%) 21,352 (83.90%) 18,389 (72.26%) 18,213 (78.34%) 23,249 (91.36%) 25,448
astar 4,016 (87.36%) 3,977 (86.51%) 3,606 (78.44%) 3,524 (76.66%) 4,206 (91.49%) 4,597

TABLE I: Safe objects of CCured, Safe Stack, and DATAGUARD on server programs and SPEC Benchmarks. The CCured-default and Safe Stack-default
columns show the safe objects under the default setups of the corresponding approach. The CCured-min column excludes the unsafe temporal cases found by
DATAGUARD from CCured-default. The Safe Stack-min column excludes the type casting and UBI cases from Safe Stack-default. The DATAGUARD column
shows the number of safe objects found by DATAGUARD. The Total column shows the total number of objects on the stack.

Total Spatial Type Temporal Safe
nginx 11,679 1,555 (13.31%) 555 (4.75%) 1,401 (11.99%) 8,785 (75.22%)
httpd 58,572 12,116 (20.69%) 2,905 (4.96%) 16,232 (27.71%) 37,899 (64.70%)
proftpd 10,354 1,332 (12.86%) 488 (4.71%) 1,156 (11.16%) 8,155 (78.76%)
openvpn 38,065 7,061 (18.55%) 2,326 (6.11%) 8,734 (22.93%) 26,020 (68.36%)
opensshd 15,067 2,185 (14.50%) 479 (3.18%) 1,924 (12.77%) 11,798 (78.30%)
perlbench 33,241 2,255 (6.78%) 454 (1.37%) 5,571(16.76%) 27,345 (82.30%)
bzip2 778 52 (6.68%) 9 (1.16%) 146 (18.76%) 616 (79.17%)
gcc 103,285 22,661 (21.94%) 6,012 (5.82%) 19,476 (18.85%) 69,863 (67.64%)
mcf 384 28 (7.29%) 7 (1.82%) 57 (14.84%) 303 (78.90%)
gobmk 22,363 2,959 (13.23%) 170 (0.76%) 5,302 (23.71%) 15,522 (69.40%)
hmmer 16,257 3,759 (23.12%) 203 (1.25%) 2,803 (17.24%) 11,126 (68.43%)
sjeng 2,449 348 (14.20%) 74 (3.02%) 420 (17.14%) 1,768 (72.19%)
libquantum 2,182 524 (24.01%) 162 (7.42%) 343 (15.72%) 1,387 (63.57%)
h264ref 13,246 1,535 (11.59%) 91 (0.69%) 2,192 (16.55%) 10,109 (76.32%)
lbm 307 35 (11.40%) 8 (2.61%) 56 (18.24%) 226 (73.62%)
sphinx3 2,143 478 (22.30%) 135 (6.30%) 509 (23.75%) 1,320 (61.60%)
milc 2,943 338 (11.48%) 117 (3.98%) 314 (10.67%) 2,326 (79.03%)
omnetpp 13,780 1,247 (9.05%) 848 (6.15%) 1,832 (13.29%) 10,636 (77.18%)
soplex 11,941 1,910 (16.00%) 1,482 (12.41%) 2,453 (20.54%) 7,107 (59.51%)
namd 14,026 1,780 (12.69%) 154 (1.10%) 2,325 (16.58%) 10,852 (77.37%)
astar 2,571 193 (7.51%) 71 (2.76%) 414 (16.10%) 1,925 (74.87%)

TABLE II: DATAGUARD’s counts of pointers used in operations that may cause memory errors by class for server programs and SPEC CPU2006 benchmarks.
Total shows the total number of stack pointers. Spatial shows the pointers used in pointer arithmetic. Type shows the pointers used in type casting. Temporal
refers to the pointers that may alias escaping pointers or are uninitialized. Safe refers to the stack pointers that are not associated with any memory error class.
Note that these three cases can overlap with each other, so they do not necessarily add up to 100%.

As shown in Table I DATAGUARD classifies 91.45% of
stack objects as safe in server programs and the SPEC
CPU2006 benchmarks on average. After excluding unsafe
cases found by DATAGUARD that are ignored by CCured and
Safe Stack (i.e., CCured-min and Safe Stack-min), the fraction
of safe stack objects found by CCured and Safe Stack are
79.54% and 64.48%, respectively. Thus, over 50% and 70%
of the stack objects found unsafe by CCured and Safe Stack,
respectively, are able to be validated as safe for all three classes
of memory errors, which expands the scope of objects that can
be protected without runtime checks on the isolated stack.

In addition, DATAGUARD improves security by ensuring
that all stack objects deemed safe are free from spatial, type,
and temporal memory errors. DATAGUARD finds that 3% of
the objects found safe by CCured and 6.3% of the objects
found safe by Safe Stack are classified as unsafe. Thus,

DATAGUARD removes many objects from the isolated stack
that may actually be exploitable, protecting all stack objects,
not just code pointers, comprehensively.

B. Identify Error Classes

Q2: How frequently are stack objects used in unsafe pointer
operations for each error class? We evaluate the first step
analysis of the DATAGUARD design that is shown in Figure 3
and described in Section V-A on the server programs and SPEC
CPU2006 benchmarks. As shown in Table II. We show these
results in terms of the fraction of pointers that may be prone
to each class of memory errors. We observe that 14.24% of
stack pointers require spatial safety validation, 3.92% of stack
pointers require type safety validation, and 17.39% require
temporal safety validation based on the methods described
in Section V-A, resulting 27.3% of stack pointers that needs

10

Safe Pointer Diff. from CCured
CCured 10,124 (86.68%) 0 (00.00%)
Symbolic Exec (SE) 10,501 (89.91%) 377 (24.24%)
Value Range 11,085 (94.91%) 961 (61.80%)
Value Range+SE 11,498 (98.45%) 1,374 (88.36%)

TABLE III: Comparison of the effectiveness of methods for spatial safety
validation for nginx by pointer counts for CCured (pointers free from pointer
arithmetic) and three bounds validation methods from Section V-C: Symbolic
Execution (SE) alone, Value Range analysis alone, and Value Range+SE, which
refers to DATAGUARD’s bounds validation scheme. The Safe Pointer column
shows the total number and percentage of safe stack pointers only accounting
for spatial safety. The Diff. from CCured shows the count and percentage of
pointers found unsafe by CCured that DATAGUARD proves safe from spatial
memory errors. Note that symbolic execution can validate more stack objects
as safe by leveraging static analysis (e.g., def-use chains) than alone.

further memory safety validation. 72.70% of stack pointers
are shown to be free from any class of memory errors. Stack
objects that may only be aliased by safe pointers are safe, and
no further safety validation is required.

C. Collect Safety Constraints

Q3: What fraction of stack objects requiring validation cannot
be associated with constraints, and are thus unsafe? As we
illustrated in Section V-B, a stack object aliased by pointers
used in operations with pointer arithmetic can be safe if we can
statically collect and verify spatial safety constraints. Based
on the proposed spatial safety constraints, a safe declaration
must specify a constant size for the stack object size, which
is required in C89 coding standard and strongly recommended
in C99 coding standard. DATAGUARD also requires all uses
of any pointer that may alias this stack object to increment
that pointer by a constant offset. On average across server
programs and the SPEC CPU2006 benchmarks, we identify
25.65% of pointers that require spatial safety validation do
not meet these requirements, so the associated stack objects
that may be aliased by these pointers are unsafe.

D. Validate Safety Constraints

Q4: How much does the two-stage validation improve the abil-
ity to identify safe stack objects over prior work? We evaluate
DATAGUARD’s validation of safety constraints described in
Section V-C using nginx as the benchmark to examine how
each stage of DATAGUARD’s spatial safety validation and
temporal safety validation impact the ability to prove stack
object safety. More evaluation results on server programs and
SPEC CPU 2006 benchmarks are also available as online doc,
please see Appendix D.

1) Spatial Safety Validation: Table III compares spatial
safety validation schemes on nginx. Among all pointers to
stack objects, CCured classifies 86.68% of them as safe from
spatial errors, since they are not used in any operations in-
volving pointer arithmetic. Inspired by the observation that not
all of these pointers actually violate spatial safety constraints,
DATAGUARD performs spatial safety validation. DATAGUARD
applies a combination of static analysis and symbolic execu-
tion, which finds that 1,374 (88.36%) of unsafe pointers by
CCured pass spatial safety validation in DATAGUARD.

Examining the impact of symbolic execution and static
analysis separately, 377 (24.24%) of pointers pass spatial
safety analysis using symbolic execution alone and 961
(61.80%) pass spatial safety analysis using static analysis

Safe Pointer Safe Address-Taken
Safe Stack 10,278 (88.00%) 0 (00.00%)
Error Class (EC) 11,244 (96.27%) 966 (68.95%)
Liveness (LV) + EC 11,463 (98.15%) 1,185 (84.58%)
SE+LV+EC 11,586 (99.20%) 1,308 (93.36%)

TABLE IV: Comparison of Temporal Validation Schemes on nginx. Safe Stack
counts pointers that may reference across stack frames or outside of the stack
and pointers that may suffer from UBI. EC counts pointers that may cause
temporal errors per Section V-A. LV counts pointers validated via liveness
analysis. SE counts pointers proven safe from temporal errors by symbolic
execution. Safe Pointer refers to the total number and percentage of pointers
to stack objects proven safe from temporal errors. Safe Address-Taken refers to
the number and percentage of pointers to address-taken stack objects variables
proven safe from temporal errors.

alone. Thus, neither symbolic execution nor static analysis
alone approach the effectiveness of the combination. Further,
note that the symbolic execution leverages the results of
static analysis (e.g., def-use chains and location of unsafe
operations), which enables the combination to find more safe
pointers (413) than symbolic execution alone (377), which
shows that static analysis provides constraints that limit the
depth required to validate successfully, enabling the validation
of more safe pointers.

2) Temporal Safety Validation: Table IV compares the
number of pointers found safe from temporal errors when
applying DATAGUARD’s temporal safety validation methods
on nginx. Among all the pointers that may reference stack
objects, the Safe Stack defense finds 88.00% pass temporal
safety validation. However, since Safe Stack classifies all
references that cross stack frames as unsafe, there likely are
cases in which a pointer is passed to another stack frame
(address-taken variables), but is always accessed within the
aliased memory object’s live-range.

DATAGUARD’s temporal safety validation consists of the
three parts shown in Table IV. DATAGUARD determines
whether pointers may be prone to any temporal errors as
described in Section V-A, applies the live range analysis, and
finally the guided symbolic execution. First, 966 (68.95%) of
the pointers to address-taken variables lack operations that may
cause them to be prone to temporal errors. This means majority
of these pointers are initialized and never may-alias any stack
objects in other stack frames. After applying the live range
analysis, DATAGUARD identifies 219 more pointers are safe
from temporal errors, raising the percentage of pointers that
pass temporal safety validation to 98.15%, including 84.58%
of the pointers to address-taken variables. Finally, after adding
symbolic execution for the cases that cannot be proven safe by
live range analysis, the number of pointers safe from temporal
errors rises to 99.20% of the total, resulting in 93.36% of the
pointers to address-taken variables, which are declared unsafe
by the Safe Stack defense, pass temporal safety validation.

E. Performance Evaluation

Q5: How does the increase in safe stack objects impact
performance? In this section, we evaluate the impact of
DATAGUARD’s classification on the runtime performance of
nginx and SPEC CPU2006 benchmarks. DATAGUARD adapts
Clang’s Safe Stack protection scheme based on the original
Safe Stack defense [45]. In this defense, functions containing
only safe stack objects only reference the isolated stack,
whereas functions that have some unsafe stack objects will

11

Fig. 4: DATAGUARD SPEC2006 Benchmark Runtime Overhead

allocate a regular stack frame for those objects. If there are
both safe and unsafe stack objects in a function, then it adds
code to select the correct stack frame for each access.

Thus, the greater the fraction of stack frames executed that
only contain safe stack objects, the better the performance.
We measure the number of functions containing only safe
stack objects (termed safe functions) using classifications from
DATAGUARD, CCured, and Clang’s Safe Stack for nginx
and the SPEC CPU2006 benchmarks. On average across all
programs, DATAGUARD finds that 76.12% of the functions
are safe functions, whereas CCured and Safe Stack have only
41.52% and 31.33% safe functions, respectively. Note that the
difference in the percentage of safe stack objects found among
the three classification schemes shown in Table I is about half
the difference of safe functions, showing the importance of the
effort of proving that objects are safe.

For all SPEC CPU2006 benchmarks we compile using
Clang-10.0 and use the ”train” workload. Figure 4 shows
the overhead of Clang’s Safe Stack using safety validation
results from DATAGUARD, CCured, and Clang’s Safe Stack
systems. The base overhead (0%) refers to the software without
any security prevention mechanisms. On average, the runtime
overheads are 8.6% for CCured, 11.3% for Clang’s Safe Stack,
and 4.3% for DATAGUARD. Thus, the increasing of the fraction
of functions with only safe objects improves performance.

F. Exploit Mitigation

Q6: Does DATAGUARD enhance the security of programs?
Although DATAGUARD increases the number of safe objects
that can be protected, a valid question is whether this tangibly
improves security. A problem is that some stack objects remain
on the regular stack with other unsafe objects, so the attacks
performed may still be possible. For any exploit, the exploit
object (i.e., object exploited due to a memory error) will still
be on the regular stack (i.e., since it was unsafe), but the target
object (i.e., maliciously read or written to hijack the program
execution using the exploit) may or may not still be on the
regular stack depending on its classification. If the target object
is not placed on the isolated stack, the attack is still possible.

1) CGC Binaries: In order to measure the security im-
pact of DATAGUARD, we apply DATAGUARD to the DARPA
CGC Binaries [23]. DARPA CGC Binaries are custom-made

Control Data Safe-Stack-Safe DataGuard-Safe
nginx 1,023 632 (61.78%) 946 (92.47%)
httpd 2,276 1,431 (62.87%) 2,108 (92.62%)
proftpd 1,214 576 (47.45%) 1,128 (92.92%)
openvpn 3,482 1,965 (56.43%) 3,289 (94.46%)
opensshd 1,458 862 (59.12%) 1,326 (90.95%)

TABLE V: Protection of Control Data on Server Programs

programs specifically designed to contain vulnerabilities that
represent a wide variety of software flaws. They are more
than simple test cases, as they approximate real software
with enough complexity to stress both manual and automated
vulnerability discovery. These binaries come with extensive
functionality tests, triggers for introduced bugs, patches, which
enable benchmarking of patching and bug mitigation strategies.

Since the CGC Binaries originally targeted DECREE—a
custom Linux-derived operating system that has no signals, no
shared memory, no threads, no standard libc runtime, and only
seven system calls, which makes them incompatible with exist-
ing analysis tools—we leverage the approach implemented by
Trailofbits [22] to modify the CGC Binaries to work on Ubuntu
20.04 by replacing the build system and re-implementing CGC
system calls via standard libc functionality (uClibc) and native
operating system semantics. In our experiment, we picked all
87 CGC Binaries (out of 242) that have stack-related memory
bugs. 74 have stack-based buffer overflows, 39 have stack
integer overflows, 3 exploit uninitialized stack pointers, and
2 exploit dangling stack pointers.

We say DATAGUARD successfully mitigates the attack
when the exploit object is on the regular stack and the target
object is on the isolated stack, since Clang’s Safe Stack defense
prevents access of the isolated stack from objects on the
regular stack. DATAGUARD mitigates 95 of the 118 exploits
in the CGC Binaries dataset by satisfying this criterion. For
the remaining 23 exploits, DATAGUARD successfully classifies
all exploit objects as unsafe, but the target objects are also
unsafe. The reason is that the target objects themselves serve
as exploit objects for other exploits, as stepping stones. For all
these stepping stone objects, we find all their target objects are
protected by DATAGUARD through classifying them as safe.
Thus, DATAGUARD protects all the selected 87 CGC Binaries
from being exploited.

2) Impact on Control Data: To examine exploitability from
another perspective, we consider the problem that adversaries
may be able impact the control flow of a program by modifying
the stack objects used in making control decisions, i.e., control
data. To examine whether DATAGUARD prevents such exploits
on control data broadly, we evaluate five popular server pro-
grams, as shown in Table V. The column Control Data refers to
stack variables used in conditional statements. The Safe-Stack-
Safe column identifies the fraction of these stack variables
placed on the isolated stack by the Safe Stack method, whereas
the DATAGUARD-safe column identifies the fraction of stack
variables placed on the isolated stack using the DATAGUARD
method. In general, DATAGUARD finds 92.68% of the control
data on stack is safe and can be protected from memory errors,
which is over 35% more than Safe Stack approach.

G. Case Study

Q7: Is DATAGUARD capable of preventing real-world ex-
ploits? In this section, we examine a CVE exploit to illustrate

12

how the DATAGUARD approach improves on prior defenses.
For all the CVEs that we examined, please refer to the online
doc in Appendix D.

The vulnerability (CVE-2020-20739) occurs in the
im_vips2dz function (in /libvips/deprecated/im vips2dz.c)
of libvips in versions prior to 8.8.2. This function misses
bounds check that enables exfiltration of stack objects, includ-
ing the remote server’s filepaths. libvips is a widely-adopted
library for image processing with 5.4k stars on Github.

1 int
2 im_vips2dz(IMAGE *in, const char *filename){
3 char *p, *q;
4 char name[FILENAME_MAX];
5 char mode[FILENAME_MAX];
6 char buf[FILENAME_MAX];
7 ...
8

9 im_strncpy(name, filename, FILENAME_MAX);
10 if((p = strchr(name, ':'))){
11 *p = '\0';
12 im_strncpy(mode, p + 1, FILENAME_MAX);
13 }
14

15 strcpy(buf, mode);
16 p = &buf[0];
17 ...
18 }

Fig. 5: Case Study of CVE-2020-20739

As shown in Figure 5, at line 5, string mode is declared
but not initialized immediately. It is initialized at line 12 by
copying all the content after a “:” in filename into it.
However, if filename does not contain a “:”, mode will
never be assigned a value, which DATAGUARD detects as
unsafe for temporal errors. At line 15, the content of mode is
copied to buf using strcpy - which DATAGUARD detects
for failing spatial safety. Thus, if mode is not initialized and
does not contain any null bytes, it will cause stack information
to leak. The lack of a bounds check exposes other stack objects
above it on the stack, such as name, to be target objects.
name is copied from filename that often contains sensitive
information, such as the absolute path of an image file on the
server host. If an adversary can obtain that, they could craft
legitimate pathnames to extract files from the server.

DATAGUARD prevents this exploit in the following manner.
First, DATAGUARD’s live range analysis pinpoints that the
buffer mode may be used prior to initialization, classifying this
stack object as unsafe for temporal errors. Then DATAGUARD
identifies the buffers mode and buf are unsafe in terms of
spatial safety since they are involved in unsafe library call -
strcpy. On the other hand, DATAGUARD finds that the target
objects (e.g., name) are safe from bounds, type, and temporal
errors, despite being initially classified as requiring spatial
and temporal safety validation. Thus, all the target objects,
including name, are classified as safe, so the exploit object
mode is isolated separately on the regular stack, while all
target objects are placed on the isolated stack. Thus, the exploit
of leaking contents passed to the function through filename
by this vulnerability is no longer feasible using DATAGUARD.

This exploit is not prevented by other stack defenses [4],
[11], [15], [20], [45], [92]. For the Safe Stack defense [45]
specifically, as the calls to im_strncpy at line 9 and 12,
strchr at line 10, and strcpy at line 15 pass the target

stack objects as parameters, Safe Stack will classify them as
unsafe and place them on the regular stack with the exploit
object, allowing the attack to succeed. We believe this exploit
can be prevented by other bounds check mechanisms [3], [28],
[60], [61], but they incur higher overhead than DATAGUARD.

VIII. RELATED WORK

A. Stack-Specific Defenses

Stack defenses, such as the Stack Canary [20], Shadow
Stack [15], and Safe Stack [45] defenses, aim to ensure that
stack objects have expected values prior to their use, partic-
ularly code pointers, such as return addresses. Such defenses
were developed to protect code pointers, but not stack data.
Thus, they are prone to memory overreads. In addition, they
do not check for illicit modification until the protected value
is used (i.e., the function returns), which leaves a window of
vulnerability. Stack Canary defenses [20] are the most efficient,
but are prone to exploits [42], [68]. Shadow Stacks were once
seen as expensive [21], but recent work has shown that Shadow
Stack implementations can perform overheads approaching
Stack Canary defenses [4], [11], [92]. Safe Stack protects stack
objects deemed safe by isolating them on an “isolated” stack,
although they do not account for type errors and use-before-
initialization, and their performance is sensitive to the fraction
of functions with only safe stack objects.

B. Data-Oriented Defenses

Alternatively, defenses have been explored to restrict mem-
ory accesses to mitigate data-oriented attacks, such as defenses
that enforce bounds [3], [12], [28], [60], [73], [89], prevent
type errors [35], [41], [47] and prevent temporal errors [25],
[44], [46], [88]. These defenses prevent the exploitation of
memory errors by enforcing their respective properties using
runtime checks. These defenses target only one of these
attack vectors, leaving other errors to be dealt with separately.
Nonetheless, performance is often a concern, leading to the
need for methods to remove runtime checks (see below).
Runtime checks for bounds are expensive if applied compre-
hensively, even only for stack objects [28]. Type checking can
be done efficiently for C++ [41], but C has more ad hoc
type casting. In addition, stack objects are often of simple
types, so there are few type casts and that are not upcasts or
downcasts. Simple approaches to prevent temporal errors, such
as to ”zero” pointers at allocation and after deallocation [44],
[46], [88] still can incur significant overhead (over 40% [44]).

More comprehensive defenses aim to enforce memory
safety comprehensively [73], enforce strong type safety for
types and bounds [16], [61], [62], enforce weak type safety
comprehensively [24], [26], [27], and ensure that write opera-
tions comply with program data flows [2], [13]. Comprehen-
sive runtime enforcement of memory safety for C programs is
quite expensive (>2X). The right trade-off of performance for
the protection offered has not been achieved for such systems.

C. Removing Runtime Checks

The high cost of runtime checks for bounds, type, and
temporal errors have inspired researchers to explore methods
to reduce overhead by removing checks that can be proven
unnecessary. CCured [16], [61], [62] identifies pointers that

13

are not used in unsafe operations. However, even though most
objects are used only in trivially safe operations, this work
shows that use in unsafe operations does not imply the pointer
and the objects it references cannot be shown to be used safely.
For bounds checks, researchers propose removing runtime
checks for buffers whose bounds may never be exceeded [3],
[89], for example using the compiler’s variable range anal-
ysis. For temporal checks, researchers propose using escape
analysis [26], [27] to reduce the scope of pointer tracking and
remove some safe cases. In this work, we find that extending
these analyses improves the number of stack objects that can be
validated to be safe. The Safe Stack defense [45] also removes
runtime checks by protecting objects on an isolated stack that
are proven not to require runtime checks. However, the current
validation technique does not check for type errors and use-
before-initialization errors, and it is more conservative than
necessary (e.g., all address-taken variables are unsafe).

IX. CONCLUSIONS

In this paper, we presented DATAGUARD system that
leverages static analysis and symbolic execution to validate
stack objects that are free from spatial, type, and temporal
memory errors. DATAGUARD performs analysis in three steps.
First, DATAGUARD statically identifies the error classes requir-
ing validation for each stack object by determining whether
these objects may be referenced by pointers that use unsafe
pointer operations. Second, DATAGUARD generates memory
safety constraints automatically for validating spatial, type, and
temporal safety. Third, DATAGUARD applies a combination
of static analysis and symbolic execution analysis accurately to
enable a greater number of safe stack objects to be identified
than prior techniques and conservatively to avoid misclassify-
ing any unsafe stack object as safe. DATAGUARD improves
security to ensure that all safe stack objects isolated are safe
from all three classes of memory errors (removing 6.3% of
objects found safe by Safe Stack) and many additional stack
objects can be proven safe (65% of objects found unsafe by
Safe Stack), protecting all these safe stack objects without
memory checks. In addition, increasing the scope of stack
objects that can be protected by isolation reduces the overhead
of using Clang’s Safe Stack defense from 11.3% to 4.3% for
the SPEC CPU2006 benchmarks. DATAGUARD is available at
https://github.com/Lightninghkm/DataGuard.

ACKNOWLEDGMENT

We would like to thank our shepherd, Tiffany Bao, for the
invaluable guidance on revision of this paper, and anonymous
reviewers for their insightful feedback. This research was
sponsored by the U.S. Army Combat Capabilities Develop-
ment Command Army Research Laboratory and was accom-
plished under Cooperative Agreement Number W911NF-13-2-
0045 (ARL Cyber Security CRA), National Science Founda-
tion grants CNS-1801534, CNS-1801601 and CNS-1652954,
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant
agreement No. 850868), and DARPA grant HR0011-19-C-
0106. Any opinions, findings, and conclusions or recommen-
dations expressed in this paper are those of the authors and
do not necessarily reflect the views of the NSF. The views
and conclusions contained in this document are those of the

authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Combat Ca-
pabilities Development Command Army Research Laboratory
of the U.S. government. The U.S. government is authorized
to reproduce and distribute reprints for government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-Flow
Integrity,” in Proceedings of the 12th Conf. Computer and Commu-
nications Security (CCS), 2005.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing
Memory Error Exploits with WIT,” in IEEE Symposium on Security
and Privacy (S&P), 2008.

[3] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy Bounds
Checking: An Efficient and Backwards-Compatible Defense against out-
of-Bounds Errors,” in Proceedings of the 18th Conference on USENIX
Security Symposium (USENIX Security), 2009.

[4] N. S. Almakhdhub, A. A. Clements, S. Bagchi, and M. Payer, “µRAI:
Securing Embedded Systems with Return Address Integrity,” in Pro-
ceedings of The Network and Distributed System Security Symposium
(NDSS), 2020.

[5] B. Alpern and F. B. Schneider, “Recognizing Safety and Liveness,”
Distributed Computing, vol. 2, no. 3, pp. 117–126, 1987.

[6] J. P. Anderson, “Computer Security Technology Planning Study, Volume
II,” Deputy for Command and Management Systems, HQ Electronics
Systems Division (AFSC), Tech. Rep. ESD-TR-73-51, October 1972.

[7] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi,
“A Survey of Symbolic Execution Techniques,” ACM Comput. Surv.,
vol. 51, no. 3, 2018.

[8] J. Birch, R. Engelen, and K. Gallivan, “Value Range Analysis of Condi-
tionally Updated Variables and Pointers,” in Proceedings of Compilers
for Parallel Computing, 2004.

[9] M. Braun and S. Hack, “Register Spilling and Live-Range Splitting
for SSA-Form Programs,” in The 18th International Conference on
Compiler Construction, (CC), 2009.

[10] Z. Budimlic, K. D. Cooper, T. J. Harvey, K. Kennedy, T. S. Oberg, and
S. Reeves, “Fast Copy Coalescing and Live-range Identification,” in
Proceedings of the ACM SIGPLAN 2002 conference on Programming
language design and implementation. (PLDI), 2002.

[11] N. Burow, X. Zhang, and M. Payer, “SoK: Shining Light on Shadow
Stacks,” 2019 IEEE Symposium on Security and Privacy (S&P), pp.
985–999, 2019.

[12] S. A. Carr and M. Payer, “DataShield: Configurable Data Confidentiality
and Integrity,” in AsiaCCS: ACM Symp. on InformAtion, Computer and
Communications Security, 2017.

[13] M. Castro, M. Costa, and T. Harris, “Securing Software by Enforcing
Data-flow Integrity,” in Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI), 2006.

[14] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for
In-vivo Multi-path Analysis of Software Systems,” in Proceedings of
the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2011.

[15] T.-c. Chiueh and F.-H. Hsu, “RAD: A Compile-time Solution to Buffer
Overflow Attacks,” in Proceedings 21st International Conference on
Distributed Computing Systems (ICDCS), 2001.

[16] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer,
“CCured in the Real World,” in Proceedings of the ACM SIGPLAN
2003 conference on Programming language design and implementation
(PLDI), 2003.

[17] “Symbol execution angr learning-control flow graph,” https://www.pr
ogrammersought.com/article/7999770219/.

[18] “CFG - angr documentation,” https://docs.angr.io/built-in-analyses/cfg.
[19] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro,

C. Liebchen, M. Qunaibit, and A.-R. Sadeghi, “Losing control: On
the effectiveness of control-flow integrity under stack attacks,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2015.

14

https://github.com/Lightninghkm/DataGuard
https://github.com/Lightninghkm/DataGuard
https://www.programmersought.com/article/7999770219/
https://www.programmersought.com/article/7999770219/
https://docs.angr.io/built-in-analyses/cfg

[20] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang, “StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-overflow Attacks,” in Proceedings
of the 7th USENIX Security Symposium (USENIX Security), 1998.

[21] T. H. Dang, P. Maniatis, and D. Wagner, “The Performance Cost of
Shadow Stacks and Stack Canaries,” in Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security
(AsiaCCS), 2015.

[22] “DARPA Challenge Binaries on Linux, OS X, and Windows,” https:
//github.com/trailofbits/cb-multios, 2017.

[23] “DARPA Cyber Grand Challenge,” https://github.com/CyberGrandCha
llenge/, 2016.

[24] D. Dhurjati and V. Adve, “Backwards-compatible array bounds check-
ing for c with very low overhead,” in Proceedings of the 28th Interna-
tional Conference on Software Engineering (ICSE), 2006.

[25] ——, “Efficiently detecting all dangling pointer uses in production
servers,” in Proceedings of the International Conference on Dependable
Systems and Networks (DSN), 2006.

[26] D. Dhurjati, S. Kowshik, and V. Adve, “SAFECode: Enforcing Alias
Analysis for Weakly Typed Languages,” in Proceedings of the 27th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2006.

[27] D. Dhurjati, S. Kowshik, V. S. Adve, and C. Lattner, “Memory safety
without garbage collection for embedded applications,” ACM Trans.
Embed. Comput. Syst., vol. 4, pp. 73–111, 2005.

[28] G. Duck, R. Yap, and L. Cavallaro, “Stack bounds protection with
low fat pointers,” in Proceedings of the 2017 Network and Distributed
System Security Symposium (NDSS), 2017.

[29] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. Shrobe,
S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi, “Missing the
point(er): On the effectiveness of code pointer integrity,” in IEEE
Symposium on Security and Privacy(S&P), 2015.

[30] “F-secure virus descriptions: Code red,” http://www.f-secure.com/v-d
escs/bady.shtml.

[31] T. Frassetto, P. Jauernig, C. Liebchen, and A.-R. Sadeghi, “IMIX:
In-Process memory isolation EXtension,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018.

[32] X. Ge, M. Payer, and T. Jaeger, “An Evil Copy: How the Loader Betrays
You,” in Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2017.

[33] E. Göktas, R. Gawlik, B. Kollenda, E. Athanasopoulos, G. Portokalidis,
C. Giuffrida, and H. Bos, “Undermining information hiding (and what
to do about it),” in USENIX Security Symposium, 2016.

[34] E. Göktaş, A. Economopoulos, R. Gawlik, E. Athanasopoulos, G. Por-
tokalidis, and H. Bos, “Bypassing clang’s safestack for fun and
profit,” https://www.blackhat.com/eu-16/briefings.html#bypassing-cla
ngs-safestack-for-funand-profit, 2016.

[35] I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and
E. van der Kouwe, “TypeSan: Practical Type Confusion Detection,”
in Proceedings of the 23rd ACM Conference on Computer and Com-
munications Security (CCS), 2016.

[36] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[37] W. Herlands, T. Hobson, and P. J. Donovan, “Effective entropy:
Security-Centric metric for memory randomization techniques,” in 7th
Workshop on Cyber Security Experimentation and Test (CSET 14),
2014.

[38] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-Oriented Programming: On the Expressiveness of Non-control
Data Attacks,” in Proceedings of the 37th IEEE Symposium on Security
and Privacy (S&P), 2016.

[39] Z. Huang, D. Lie, G. Tan, and T. Jaeger, “Using Safety Properties
to Generate Vulnerability Patches,” in Proceedings of the 40th IEEE
Symposium on Security and Privacy (S&P), 2019.

[40] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block Oriented
Programming: Automating Data-Only Attacks,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2018.

[41] Y. Jeon, P. Biswas, S. A. Carr, B. Lee, and M. Payer, “HexType: Effi-
cient Detection of Type Confusion Errors for C++,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2017.

[42] K.Bulba and Ki13r, “Bypassing Stackguard and Stackshield,” Phrack,
vol. 11, no. 56, 2000.

[43] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos,
“No need to hide: Protecting safe regions on commodity hardware,” in
Proceedings of the Twelfth European Conference on Computer Systems
(EuroSys), 2017.

[44] E. V. D. Kouwe, V. Nigade, and C. Giuffrida, “DangSan: Scalable Use-
after-free Detection,” Proceedings of the 12th European Conference on
Computer Systems, 2017.

[45] V. Kuzentsov, M. Payer, L. Szekeres, G. Candea, D. Song, and R. Sekar,
“Code Pointer Integrity,” in Proceedings of the 11th Usenix Symposium
on Operating Systems Design and Implementation (OSDI), 2014.

[46] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and W. Lee,
“Preventing Use-after-free with Dangling Pointers Nullification,” in
Proceedings of the 2015 Network and Distributed System Security
Symposium (NDSS), 2015.

[47] B. Lee, C. Song, T. Kim, and W. Lee, “Type Casting Verification:
Stopping an Emerging Attack Vector,” in Proceedings of th 24th
USENIX Security Symposium, 2015.

[48] S. Liu, G. Tan, and T. Jaeger, “PtrSplit: Supporting general pointers
in automatic program partitioning,” in Proceedings of the 24th ACM
Conference on Computer and Communications Security (CCS), 2017.

[49] “Live Range Analysis,” https://www.cs.clemson.edu/course/cpsc827/
material/Optimization/Live%20Range%20Analysis.pdf, 2012.

[50] “Live Variable Analysis,” Wikipedia at https://en.wikipedia.org/wiki/Li
ve variable analysis, 2020.

[51] “Live Variable Analysis,” https://www.cs.cornell.edu/courses/cs4120/
2011fa/lectures/lec21-fa11.pdf, 2020.

[52] “LLVM Documentation - MemorySSA,” LLVM document at https:
//llvm.org/docs/MemorySSA.html, 2020.

[53] “Canonicaliza natural loops,” LLVM documentation at https://llvm.org
/docs/Passes.html#loop-simplify-canonicalize-natural-loops, 2020.

[54] “Loop Simplify Form,” LLVM documentation at https://llvm.org/docs/
LoopTerminology.html#loop-simplify-form, 2020.

[55] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee, “Aslr-
guard: Stopping address space leakage for code reuse attacks,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security(CCS), 2015.

[56] “Mapping High Level Constructs to LLVM IR - Union,”
https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/
latest/basic-constructs/unions.html.

[57] D. Midi, M. Payer, and E. Bertino, “Memory safety for embedded
devices with nescheck,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security (AsiaCCS),
2017.

[58] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver, “Inside the Slammer worm,” IEEE Security & Privacy,
vol. 1, no. 4, pp. 33–39, 2003.

[59] “Intel 64 and IA-32 Architectures Software Developer’s Manual,”
https://software.intel.com/content/www/us/en/develop/download/inte
l-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d
-3a-3b-3c-3d-and-4.html, 2021.

[60] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “SoftBound:
Highly Compatible and Complete Spatial Memory Safety for C,” in
Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2009.

[61] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“CCured: Type-safe Retrofitting of Legacy Software,” ACM Trans.
Program. Lang. Syst., 2005.

[62] G. C. Necula, S. McPeak, and W. Weimer, “CCured: Type-safe
retrofitting of legacy code,” in Proceedings of the ACM Conference
on the Principles of Programming Languages, January 2002.

[63] A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and C. Giuffrida,
“Poking holes in information hiding,” in USENIX Security Symposium,
2016.

15

https://github.com/trailofbits/cb-multios
https://github.com/trailofbits/cb-multios
https://github.com/CyberGrandChallenge/
https://github.com/CyberGrandChallenge/
http://www.f-secure.com/v-descs/bady.shtml
http://www.f-secure.com/v-descs/bady.shtml
https://www.blackhat.com/eu-16/briefings.html#bypassing-clangs-safestack-for-funand-profit
https://www.blackhat.com/eu-16/briefings.html#bypassing-clangs-safestack-for-funand-profit
https://www.cs.clemson.edu/course/cpsc827/material/Optimization/Live%20Range%20Analysis.pdf
https://www.cs.clemson.edu/course/cpsc827/material/Optimization/Live%20Range%20Analysis.pdf
https://en.wikipedia.org/wiki/Live_variable_analysis
https://en.wikipedia.org/wiki/Live_variable_analysis
https://www.cs.cornell.edu/courses/cs4120/2011fa/lectures/lec21-fa11.pdf
https://www.cs.cornell.edu/courses/cs4120/2011fa/lectures/lec21-fa11.pdf
https://llvm.org/docs/MemorySSA.html
https://llvm.org/docs/MemorySSA.html
https://llvm.org/docs/Passes.html#loop-simplify-canonicalize-natural-loops
https://llvm.org/docs/Passes.html#loop-simplify-canonicalize-natural-loops
https://llvm.org/docs/LoopTerminology.html#loop-simplify-form
https://llvm.org/docs/LoopTerminology.html#loop-simplify-form
https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/basic-constructs/unions.html
https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/basic-constructs/unions.html
https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/basic-constructs/unions.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html

[64] A. One, “Smashing the Stack for Fun and Profit,” Phrack, vol. 7, no. 49,
1997, available at http://www.phrack.org/issues.html?id=14&issue=49.

[65] T. Palit, J. Firose Moon, F. Monrose, and M. Polychronakis, “Dynpta:
Combining static and dynamic analysis for practical selective data
protection,” in 2021 IEEE Symposium on Security and Privacy (SP),
2021.

[66] “PKS: Add Protection Keys Supervisor (PKS) support,” https://lwn.ne
t/Articles/826091/, 2020.

[67] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and M. Poly-
chronakis, “xmp: Selective memory protection for kernel and user
space,” in 2020 IEEE Symposium on Security and Privacy (SP), 2020.

[68] G. Richarte, “Four Different Tricks to Bypass StackShield and Stack-
Guard Protection,” in Proceedings of the 11th international conference
on World Wide Web (WWW), 2002.

[69] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-Oriented
Programming: Systems, Languages, and Applications,” in Proceedings
of ACM Transactions on Information and System Security (TISSEC),
2012.

[70] “Exponential Analysis Speedup with State Merging,” http://s2e.syste
ms/docs/StateMerging.html, 2018.

[71] D. Seeley, “A Tour of the Worm,” https://www.cs.unc.edu/∼jeffay/co
urses/nidsS05/attacks/seely-RTMworm-89.html.

[72] A. Simon, Value-Range Analysis of C Programs: Towards Proving the
Absence of Buffer Overflow Vulnerabilities, 1st ed. Springer Publishing
Company, Incorporated, 2008.

[73] M. S. Simpson and R. K. Barua, “MemSafe: Ensuring the Spatial and
Temporal Memory Safety of C at Runtime,” in Proceedings of the
2010 10th IEEE Working Conference on Source Code Analysis and
Manipulation (SCAM), 2010.

[74] Y. Smaragdakis and G. Kastrinis, “Defensive Points-To Analysis: Effec-
tive Soundness via Laziness,” in 32nd European Conference on Object-
Oriented Programming (ECOOP), 2018.

[75] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time Code Reuse: On the Effectiveness of Fine-
grained Address Space Layout Randomization,” in Proceedings of the
34th IEEE Symposium on Security and Privacy (S&P), 2013.

[76] Y. Sui and J. Xue, “On-demand strong update analysis via value-flow
refinement,” in Proceedings of the 2016 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (FSE),
2016.

[77] ——, “SVF: interprocedural static value-flow analysis in LLVM,” in
Proceedings of the 25th International Conference on Compiler Con-
struction, 2016.

[78] ——, “Value-flow-based demand-driven pointer analysis for c and c++,”
IEEE Transactions on Software Engineering, vol. 46, no. 8, pp. 812–
835, 2018.

[79] Y. Sui, D. Ye, and J. Xue, “Static memory leak detection using full-
sparse value-flow analysis,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis (ISSTA), 2012.

[80] ——, “Detecting memory leaks statically with full-sparse value-flow
analysis,” IEEE Transactions on Software Engineering (TSE), vol. 40,
no. 2, pp. 107–122, 2014.

[81] D. Teixeira and F. M. Q. Pereira, “The Design and Implementation of
a Non-Iterative Range Analysis Algorithm on a Production Compiler,”
in The 15th Brazilian Symposium on Programming Languages (SBLP),
2011.

[82] “CWE-843: Access of Resource Using Incompatible Type,” https://cw
e.mitre.org/data/definitions/843.html, 2021.

[83] “CWE-457: Use of Uninitialized Variable,” https://cwe.mitre.org/data
/definitions/457.html, 2021.

[84] “Use-Define and Define-Use chain,” Wikipedia at https://en.wikipedia
.org/wiki/Use-define chain, 2020.

[85] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg, “ERIM: Secure, efficient in-process isolation
with protection keys (mpk),” in 28th USENIX Security Symposium
(USENIX Security 19), 2019.

[86] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
Software-Based Fault Isolation,” in Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles (SOSP), 1993.

[87] Z. Wang, C. Wu, Y. Zhang, B. Tang, P.-C. Yew, M. Xie, Y. Lai, Y. Kang,
Y. Cheng, and Z. Shi, “SafeHidden: An efficient and secure information
hiding technique using re-randomization,” in 28th USENIX Security
Symposium (USENIX Security 19), 2019.

[88] Y. Younan, “FreeSentry: Protecting Against Use-after-free Vulnerabili-
ties Due to Dangling Pointers,” in 22nd Annual Network and Distributed
System Security Symposium (NDSS), 2015.

[89] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens, and
W. Joosen, “AriCheck: An Efficient Pointer Arithmetic Checker for
C Programs,” Proceedings of the 5th International Symposium on
Information, Computer and Communications Security (AsiaCCS), 2010.

[90] Y. Younan, D. Pozza, F. Piessens, and W. Joosen, “Extended Protection
against Stack Smashing Attacks without Performance Loss,” in 2006
22nd Annual Computer Security Applications Conference (ACSAC),
2006.

[91] Y. Zhai, Y. Hao, H. Zhang, D. Wang, C.-Y. Song, Z. Qian, M. Lesani,
S. V. Krishnamurthy, and P. Yu, “UBITect: A Precise and Scalable
Method to Detect Use-Before-Initialization Bugs in Linux Kernel,”
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (FSE), 2020.

[92] J. Zhou, Y. Du, Z. Shen, L. Ma, J. Criswell, and R. J. Walls, “Silhouette:
Efficient Protected Shadow Stacks for Embedded Systems,” in 29th
USENIX Security Symposium (USENIX Security), 2020.

APPENDIX

A. Value-Range Analysis

The value-range analysis starts from its definition to its
use. Figure 6 shows the data flow equations of the value range
analysis. For each basic block, gen[B] refers to the variables
that defined in basic block B with its value range information,
in[B] refers to the variables and its range information at the
beginning of basic block B, and out[B] refers to the variables
and its value range at the end of basic block B. We apply the
value range analysis using the algorithm of [8], [72], [81] on
the pointers with respect to their def-use chain, where the value
range interval represents the range of memory accesses relative
to the base of any object that may be aliased by the pointer.
In order to compute the value range of a pointer numerically,
we assign the pointer with a random value when it is declared
in the program, as we do not need the actual address.

Fig. 6: Data Flow Equations of Value-Range Analysis

With value-range analysis, DATAGUARD computes the
interval interpreted using the spatial safety constraints of the
referenced object, regardless the actual value of the pointer.
Upon pointer use, DATAGUARD compares the value range of
the pointer to that constrained at its definition. If the value
range is not a subset of the value range for its constraint, we
deem it as out-of-bounds. The current stage of DATAGUARD’s
value range analysis runs on numeric values, which is also
adopted by compilers such as GCC and LLVM. An alternative
solution would be to let the value range analysis be capable
of symbolic computation, which is already achieved in many
symbolic execution engines.

B. Live-Range Analysis

For temporal safety analysis, we employ liveness analysis
over def-use chains with respect to the data flow equations in

16

http://www.phrack.org/issues.html?id=14&issue=49
https://lwn.net/Articles/826091/
https://lwn.net/Articles/826091/
http://s2e.systems/docs/StateMerging.html
http://s2e.systems/docs/StateMerging.html
https://www.cs.unc.edu/~jeffay/courses/nidsS05/attacks/seely-RTMworm-89.html.
https://www.cs.unc.edu/~jeffay/courses/nidsS05/attacks/seely-RTMworm-89.html.
https://cwe.mitre.org/data/definitions/843.html
https://cwe.mitre.org/data/definitions/843.html
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/457.html
https://en.wikipedia.org/wiki/Use-define_chain
https://en.wikipedia.org/wiki/Use-define_chain

Figure 7. de f [B] refers to the variables that defined in basic
block B, in[B] refers to the variables alive at the beginning of
basic block B, out[B] refers to the variables alive at the end of
basic block B. S refers to the successor blocks of B. Based on
the liveness information of the memory object, we compute
the live-range of pointers and memory objects in the format
of a set of basic block IDs when the pointer or object is alive.

Fig. 7: Data Flow Equations of Live-Range Analysis

C. Handling Corner Cases

In this section, we describe how corner cases that may
impact soundness are addressed in DATAGUARD.

• Arrays: An array is classified as unsafe prior to analyzing
Spatial Constraints (see Section V-B) by DATAGUARD if it
fails to satisfy both of the following: (1) the size of the array
is constant; (2) accesses to the array are always through the
base pointer with constant offset.

• Compound Objects: We handle all fields within compound
objects as distinct variables in DATAGUARD. It is straightfor-
ward to handle structures since structure fields are treated as
distinct variables in LLVM IR through the GEP instruction.

LLVM now casts unions into structures or primitive
types [56], so objects of union types are classified as unsafe.
For intentional overflows, if we cannot validate the Spatial
Constraints for any field of the structure, it will be classified
as unsafe by DATAGUARD.

Compiler-introduced padding within a structure could be
left uninitialized even though all the fields are initialized.
Similar to the UbiTect [91], this does not affect our analysis in
terms of temporal safety as paddings are invisible at language
level and thus will not be used. In terms of spatial safety,
since DATAGUARD analyzes fields inside compound objects
as distinct variables, paddings are not considered and will not
affect the analysis.

• Aliasing: DATAGUARD relies on the SVF pointer alias
analysis intraprocedurally based on its VFG and the PDG
representation of PtrSplit to represent the data flows between
functions to compute interprocedural may-aliases. Both are
claimed to be sound, so based on the relative soundness
assumption (see Section V-D), DATAGUARD overapproximates
the set of pointers that may-alias a stack object.

• Type Casts: As shown in Section V-B, DATAGUARD focuses
on integer type casts, other type casts are deemed as unsafe.

• Assembly: DATAGUARD classifies stack objects as unsafe
if they are passed to or returned from functions written
using assembly code, such as inline assembly. For objects
defined within the assembly code, they remain in their original
allocation sites. It is possible that a runtime memory access
failure may occur if an assembly function tries to access a
stack object that has been moved to the safe stack (defined
in another function), but we believe that such failures will be
rare and have not experienced any. We note that DATAGUARD

handles such imprecision in a manner that prevents any unsafe
stack object from being classified as safe (i.e., all assembly
stack objects are unsafe).

For the standalone assembly files, they will not be included
in LLVM IR so there is no way to analyze them using an IR-
level LLVM pass.

• Undefined Behaviors: Our threat model assumes that the
program is benign but may contain memory safety errors.
However, if the program is designed to use an undefined behav-
ior (e.g., buffer overflow) to access another stack object that is
classified as safe by DATAGUARD to realize its functionality,
this may cause a memory access failure at runtime because
DATAGUARD has moved the safe object to the safe stack. We
believe these cases will be rare and have not experienced any.
Note that if an unsafe stack object stores a reference to another
stack object through a defined behavior (e.g., field in a struct),
the referenced stack object will also be classfied as unsafe.

In fact, the proposed approach fundamentally prevents the
exploitation of unsafe object X from corrupting a safe object
Y. That is, ignoring the side effects of undefined behaviors on
unsafe objects like X actually facilitates the protection of safe
objects Y. Since Y is safe, it will be put on to the isolated safe
stack in that case, which means the corruption of X will no
longer affect Y. The impact of preventing a successful attack on
an unsafe stack object from propagating to safe stack objects
is demonstrated in the evaluation of CGC binaries that use
stepping stones in Section VII-F1, where all stepping stones
are thwarted by DATAGUARD.

D. Additional Evaluation Results

In addition to the evaluation results shown in Section VII-D
and Section VII-F, we further evaluate all 16 supported SPEC
CPU 2006 benchmarks and 5 server programs and provide
the results in online docs. We also provide the CVEs that
we evaluated to demonstrate the applicability of DataGuard
in online docs.

• Spatial Safety Validation: https://docs.google.com/docu
ment/d/1Hfi2p15euGRPQfFZ8H2obJ fVe3OTcqCJw0w5CwZ
hPQ/edit?usp=sharing

• Temporal Safety Validation: https://docs.google.com/do
cument/d/1ysXx-23M783KsnMRocafK5bsH2hayGOOaRfVg
MQuqgs/edit?usp=sharing

• Protection of Control Data: https://docs.google.com/docu
ment/d/1tmsYIUdms7PpNd8gACk-Xlm5MLFjXnfVrsOxZJ4l
f5Y/edit?usp=sharing

• CVEs Evaluated: https://docs.google.com/document/d/1z
40 5RKFcdiLRv35Yn8fUsYZNqPsB-0xdOrryvw3KL0/edit
?usp=sharing

17

https://docs.google.com/document/d/1Hfi2p15euGRPQfFZ8H2obJ_fVe3OTcqCJw0w5CwZhPQ/edit?usp=sharing
https://docs.google.com/document/d/1Hfi2p15euGRPQfFZ8H2obJ_fVe3OTcqCJw0w5CwZhPQ/edit?usp=sharing
https://docs.google.com/document/d/1Hfi2p15euGRPQfFZ8H2obJ_fVe3OTcqCJw0w5CwZhPQ/edit?usp=sharing
https://docs.google.com/document/d/1ysXx-23M783KsnMRocafK5bsH2hayGOOaRfVgMQuqgs/edit?usp=sharing
https://docs.google.com/document/d/1ysXx-23M783KsnMRocafK5bsH2hayGOOaRfVgMQuqgs/edit?usp=sharing
https://docs.google.com/document/d/1ysXx-23M783KsnMRocafK5bsH2hayGOOaRfVgMQuqgs/edit?usp=sharing
https://docs.google.com/document/d/1tmsYIUdms7PpNd8gACk-Xlm5MLFjXnfVrsOxZJ4lf5Y/edit?usp=sharing
https://docs.google.com/document/d/1tmsYIUdms7PpNd8gACk-Xlm5MLFjXnfVrsOxZJ4lf5Y/edit?usp=sharing
https://docs.google.com/document/d/1tmsYIUdms7PpNd8gACk-Xlm5MLFjXnfVrsOxZJ4lf5Y/edit?usp=sharing
https://docs.google.com/document/d/1z40_5RKFcdiLRv35Yn8fUsYZNqPsB-0xdOrryvw3KL0/edit?usp=sharing
https://docs.google.com/document/d/1z40_5RKFcdiLRv35Yn8fUsYZNqPsB-0xdOrryvw3KL0/edit?usp=sharing
https://docs.google.com/document/d/1z40_5RKFcdiLRv35Yn8fUsYZNqPsB-0xdOrryvw3KL0/edit?usp=sharing

	Introduction
	Motivation
	Exploiting Memory Errors on Stack Objects
	Current Defenses
	Safe Stack Background
	Limitations of the Safe Stack Defense

	Overview
	Threat Model
	Design
	Identifying Error Classes for Stack Objects
	Collecting Stack Object Constraints
	Validating Stack Object Safety Statically
	Validation Soundness

	Implementation
	Evaluation
	Stack Object Safety Comparison
	Identify Error Classes
	Collect Safety Constraints
	Validate Safety Constraints
	Spatial Safety Validation
	Temporal Safety Validation

	Performance Evaluation
	Exploit Mitigation
	CGC Binaries
	Impact on Control Data

	Case Study

	Related Work
	Stack-Specific Defenses
	Data-Oriented Defenses
	Removing Runtime Checks

	Conclusions
	References
	Appendix
	Value-Range Analysis
	Live-Range Analysis
	Handling Corner Cases
	Additional Evaluation Results

