
Evocatio: Conjuring Bug
Capabilities from a Single PoC
Zhiyuan Jiang,
Flavio Toffalini,
Manuel Egele,

Shuitao Gan,
Lucio Romerio,
Chao Zhang,

Adrian Herrera,
Chaojing Tang,
Mathias Payer

1

Motivation

2

Fuzzing finds 1000s of crashes

● How severe are the crashes?

● Which bug should be fixed first?

So far, the user has to
inspect each crash manually

Severity Assessment

3

● Scoring bug severity is subjective

● Highly dependent on threat model

We want:

● Determine bug severity across multiple dimensions

● Calculate severity based on user-defined threat model

● Fully automatic and objective

Before assessing the bug severity

● What can the bug do?

● on the stack
● starts at 10th bytes into buffer
● buffer
● 5 bytes
● read
● out of bounds

(Bugtype, Acctype, Acclen, Bufname, Off, Loc)

4

Bug Capability

Capabilities of Bug A

Threat
model P

rio
rit

y

Bugs

Capabilities of Bug B

Capabilities of Bug A

5

Evocatio: Automatically Assessing Bug Capabilities

6

I) Capability Detection: CapSan

7

● Extract capability of a PoC automatically

● Sensitive to capability changing

● Configurable monitor items

● Convenient and light-weight

II) Capability Discovery: Critical Bytes Inference

8

Assess impact for each input byte

● 𝐶byte : affecting control flow

● 𝐷byte : affecting data flow

❖ Single-byte inference

❖ Byte-sequence inference

D C

D D D C

Byte-sequence

III) CapFuzz: Capability guided Fuzzing

9

Goal: find more capabilities of a bug
Input: single crashing seed
Output: seeds with different capabilities

● Prioritize Critical Bytes

● Mutation

● Seed Retention

● Seed Selection

Severity Assessment

10

Example threat model

● Goal: achieve remote code execution

● Bug type
● Max. length of OOB reads/writes
● Readable/writable address ranges
● Num. of OOB objects
● Max. OOB size objects
● Num. of different read/write offsets

Evaluation

● 38 bugs (34 CVEs + 4 issues)

● One PoC for each bug

● 8 real-world programs

● 6 bug types

11

Evaluation: Capabilities discovered by Evocatio

12

CVE Bug Effect Size Origin Origin Size Origin Offset

Read Write Stack Heap Read Write Read Write

CVE-2016-9532 HOF[SOF] [20…23]2 [20]1 1 9 [20…220]65374 [20]1 [20…28]2 [20]1

CVE-2018-7871 HOF[W|UAF|N] [20…23]4 [22…23]6 0 408 [20…214]216 [22…218]13 [23…210]54 [20]1

CVE-2019-16705 HOF[W|UAF] [20…20…210]3 [25…25]1 0 42 [20…28…212]81 [215…218]11 [23…210]44 [20]1

CVE-2021-3156 HOF[-] - [20…210]694 0 2 - [22…24…25]31 - [20…210]2

● ∼50% in the same risk level, quantitative estimate of severity

● Out of 16 patched CVEs, 7 patches were incomplete (and bypassable)

Fuzzing detects bugs, assessing their severity is hard

● Programmers are overwhelmed by too many reports
● Bug severity assessment must be automatic and objective
● Completely fixing a bug is hard based on a single PoC
Our findings

● Bug capabilities give developers context
● Guided fuzzing detects underlying bug capabilities
● Evocatio detected 7 incomplete patches, generating new capabilities
● https://github.com/HexHive/Evocatio

13

Key takeaways

https://github.com/HexHive/Evocatio

