Evocatio: Conjuring Bug
Capabillities from a Single PoC

Zhiyuan Jiang, Shuitao Gan, Adrian Herrera,
Flavio Toffalini, Lucio Romerio, Chaojing Tang,
Manuel Egele, Mathias Payer

@ .
e® hexhive

Motivation

Fuzzing finds 1000s of crashes
e How severe are the crashes?
e \Which bug should be fixed first?

j> So far, the user has to
Inspect each crash manually

@l

NN We

e
Wi N

N NNW
Ne s e

Ll

T
NIN|N| =

S Ll S Y el
P s R e B e

1]
N -

Severity Assessment

e Scoring bug severity is subjective
e Highly dependent on threat model S

We want:

e Determine bug severity across multiple dimensions
e C(alculate severity based on user-defined threat model

e Fully automatic and objective

Bug Capability

Before assessing the bug severity
e \What can the bug do?

(Bugtype, Acc._,Acc_, Buf Off, Loc)

type’ len name’

N4 o

\ — o starts at 10™ bytes into buffer
—» o Dbuffer

—> @ D bytes
—» o read
—» o out of bounds

Capabilities of Bug A

.

Bugs

oYY

coleg @ . @ @ Capabilities of Bug B

B o o
. 2 /

=
<

'Threat

Priority

rnodel

<
2

% A4
. Capabilities of Bug A

2 R

Evocatio: Automatically Assessing Bug Capabilities

The iteécture of

...................

Bug Capability Generator
Critical Bytes T—I——5___—" Test(Core Fuzzing)

Guided Mutation ——P || Testcases P _
(-

Critical Bytes Prioritization

_ v
/ Imt'::;g;)m L- : C-Bytes/D-Bytes Mutation Rule Sied Beeiiion

Seed Selection

|) Capability Detection: CapSan

e Extract capability of a PoC automatically
e Sensitive to capability changing

e Configurable monitor items

The Architecture of CAPFUZZ

e Convenient and light-weight e yes

Bug Capability Generator
Guided Mutation e —

— - |

Testcases >

Critical Bytes Prioritization e
eed Retention |

C-Bytes/D-Bytes Mutation Rule

Il) Capability Discovery: Critical Bytes Inference

Assess impact for each input byte

° bete . affecting control flow I

° Dbyte . affecting data flow

% Single-byte inference
% Byte-sequence inference \

Byte-sequence

lIl) CapFuzz: Capability guided Fuzzing

Goal: find more capabilities of a bug
Input: single crashing seed
Output: seeds with different capabilities

e Prioritize Critical Bytes
e Mutation

e Seed Retention

e Seed Selection

Severity Assessment

Example threat model
e Goal: achieve remote code execution

Bug type

Max. length of OOB reads/writes
Readable/writable address ranges
Num. of OOB objects

Max. OOB size objects

Num. of different read/write offsets

Remote Code Execution

v

{ %)

U

Evaluation

e 38 bugs (34 CVEs + 4 issues)
e One PoC for each bug
e 3 real-world programs

e 06 bug types

Evaluation: Capabilities discovered by Evocatio

$ 3

CVE Bug Effect Size
Read
CVE-2016-9532 | HOF[SOF] [20...23]2

CVE-2018-7871 | HOF[W|UAFIN] | [2°...2%]4

CVE-2019-16705 | HOF[W|UAF] [20...2°...210]3

CVE-2021-3156 | HOF[]

!

Origin
Write Stack
[2°]1 1
[22...2%6 0
[25...29]1 0

[2°...2191694 | O

Heap

408

42

!

Origin Size

Read

[2°...22°]65374

[2°...214]216

[2°0...28...212]81

!

Origin Offset

Write

[2°]1

[22...2'8]13

[215...218]11

[22...2%...25]31

® -50% in the same risk level, quantitative estimate of severity

Read Write

[2°...28]2 [2°]1

[23...21954 | [2°]1

[23..21944 | [2°]1

[2°...210]2

® Qut of 16 patched CVEs, 7 patches were incomplete (and bypassable)

12

Key takeaways

Fuzzing detects bugs, assessing their severity is hard

e Programmers are overwhelmed by too many reports
e Bug severity assessment must be automatic and objective
e Completely fixing a bug is hard based on a single PoC

Our findings
e Bug capabilities give developers context
e Guided fuzzing detects underlying bug capabilities
e Evocatio detected 7 incomplete patches, generating new capabilities
e htips://qgithub.com/HexHive/Evocatio
@ =
P / 1
=P e® hexhive.

https://github.com/HexHive/Evocatio

