
One Fuzz Doesn’t Fit All: Optimizing Directed Fuzzing 
via Target-tailored Program State Restriction

Prashast Srivastava, Stefan Nagy, Matthew Hicks, Antonio Bianchi, Mathias Payer



Motivation

2

● Fuzzing is a highly effective dynamic testing methodology

● Off-the-shelf fuzzers are unsuitable for targeted testing 

● Directed fuzzing designed to test specific code locations

● Existing approaches are wasteful, calling for an effective, lightweight solution



Directed Fuzzing

3

● Existing directed fuzzers employ distance minimization

● Distance minimization biases fuzzers towards targeted locations

● Wasteful exploration of target-unreachable code regions
> <

< <>

!<

Mutation
Module

Fuzz
Target

Feedback

Fuzz Input

Input



4

Problem: Existing directed fuzzers needlessly explore 
code regions that cannot reach the target

> <

< <>

!<

Solution: Terminate execution when target becomes 
unreachable by tripwiring dead ends

Observation: Current exploration schemes are ill-suited 
for disjoint target locations



Tripwiring-directed Fuzzing

5

Fuzzer Static Analysis 
Module

Target Location

Tripwires

Dynamic 
Feedback

Dynamic 
Feedback

Tripwired
Code Regions



Tripwiring-directed Fuzzing

6

- Lightweight reachability analysis statically identifies target-reachable code regions

Fuzzer Static Analysis 
Module

Target Location

Tripwires

Dynamic 
Feedback

Dynamic 
Feedback

Tripwired
Code Regions



Tripwiring-directed Fuzzing

7

- Lightweight reachability analysis statically identifies target-reachable code regions

- Refine target-reachable code regions with dynamically observed indirect call edges 

Fuzzer Static Analysis 
Module

Target Location

Tripwires

Dynamic 
Feedback

Dynamic 
Feedback

Tripwired
Code Regions



Tripwiring-directed Fuzzing

8

- Lightweight reachability analysis statically identifies target-reachable code regions

- Refine target-reachable code regions with dynamically observed indirect call edges 

- Prioritize mutation of test cases with greater coverage of target-relevant code regions

Fuzzer Static Analysis 
Module

Target Location

Tripwires

Dynamic 
Feedback

Dynamic 
Feedback

Tripwired
Code Regions



SieveFuzz — Tripwiring-directed fuzzer

9

● Extends AFL++ and uses SVF for static analysis



SieveFuzz — Tripwiring-directed fuzzer

10

● Extends AFL++ and uses SVF for static analysis

● High-level workflow consists of three separate stages:

○ INIT: Query whether the target is reachable from 
the fuzz target entry point

○ FUZZ: Identify target-unreachable regions and 
perform tripwired fuzzing updated with dynamic 
indirect call information

FUZZINIT

Target 
reachable



SieveFuzz — Tripwiring-directed fuzzer

11

● Extends AFL++ and uses SVF for static analysis

● High-level workflow consists of three separate stages:

○ INIT: Query whether the target is reachable from 
the fuzz target entry point

○ FUZZ: Identify target-unreachable regions and 
perform tripwired fuzzing updated with dynamic 
indirect call information

○ EXP: Perform undirected fuzzing to recover 
indirect edges until target becomes reachable

FUZZINIT

EXP

Target 
reachable

Target 
unreachable

Target 
unreachable

Target 
reachable



SieveFuzz — Tripwiring-directed fuzzer

12

● Extends AFL++ and uses SVF for static analysis

● High-level workflow consists of three separate stages:

○ INIT: Query whether the target is reachable from 
the fuzz target entry point

○ FUZZ: Identify target-unreachable regions and 
perform tripwired fuzzing updated with dynamic 
indirect call information

○ EXP: Perform undirected fuzzing to recover 
indirect edges until target becomes reachable

● Enforces tripwiring at function-level granularity

FUZZINIT

EXP

Target 
reachable

Target 
unreachable

Target 
unreachable

Target 
reachable



SieveFuzz — Lightweight Implementation

13

● Client-server communication between the fuzzer and static analysis module

● Function activation bitmap allows tripwiring functions dynamically

● Diversity heuristic implemented using input trace length



Evaluation Overview

14

Benchmarks: 10 security vulnerabilities across 9 varied benchmarks (3 synthetic + 6 real-world)

Experiments: 10x24hr fuzzing campaigns comparing against AFL++, AFLGo, and BEACON

Evaluation Metrics:

- Tripwiring Efficiency: Quantify restricted search space and time taken to perform tripwiring

- Bug-discovery Effectiveness: Time taken to discover the ground truth bugs



Evaluation: Tripwiring Efficiency

15

Benchmark Analysis 
Cost (ms)

Re-runs Re-run Cost 
(s)

gif2tga 2 0 0.0

jasper 60 29 1.74

listswf 10 31 0.31

mjs 26 2 0.05

Tidy 91 44 4.00

tiffcp-1 194 29 5.62

tiffcp-2 175 29 5.07

● Quantified the cumulative time taken to 
perform tripwiring during fuzzing campaigns



Evaluation: Tripwiring Efficiency

16

Benchmark Analysis 
Cost (ms)

Re-runs Re-run Cost 
(s)

gif2tga 2 0 0.0

jasper 60 29 1.74

listswf 10 31 0.31

mjs 26 2 0.05

Tidy 91 44 4.00

tiffcp-1 194 29 5.62

tiffcp-2 175 29 5.07

● Quantified the cumulative time taken to 
perform tripwiring during fuzzing campaigns

● Re-running tripwiring takes less than 6 
seconds of the total fuzzer runtime



Evaluation: Tripwiring Effectiveness

17

Benchmark Reduction

gif2tga 38%

jasper 8%

listswf 12%

mjs 39%

Tidy 20%

tiffcp-1 18%

tiffcp-2 18%

● Quantified the amount of code regions removed using tripwiring



Evaluation: Tripwiring Effectiveness

18

Benchmark Reduction

gif2tga 38%

jasper 8%

listswf 12%

mjs 39%

Tidy 20%

tiffcp-1 18%

tiffcp-2 18%

● Quantified the amount of code regions removed using tripwiring

● Tripwiring eliminates 29% of code regions on average as 
target-irrelevant functionality



Evaluation: Bug-discovery Effectiveness

19

Benchmark Bug Discovery Effectiveness (# trials) Mean Exposure Time (#hrs)

AFL++ AFLGo SieveFuzz AFL++ AFLGo SieveFuzz

gif2tga 2 0 4 9.86 n/a 6.83

jasper 4 8 8 16.85 6.10 8.77

listswf 10 9 10 3.49 5.27 0.97

mjs 2 8 5 8.16 10.02 7.20

Tidy 4 5 7 19.10 14.28 6.20

tiffcp-1 4 2 10 4.20 4.80 1.36

tiffcp-2 0 0 2 n/a n/a 0.32



Evaluation: Bug-discovery Effectiveness

20

Benchmark Bug Discovery Effectiveness (# trials) Mean Exposure Time (#hrs)

AFL++ AFLGo SieveFuzz AFL++ AFLGo SieveFuzz

gif2tga 2 0 4 9.86 n/a 6.83

jasper 4 8 8 16.85 6.10 8.77

listswf 10 9 10 3.49 5.27 0.97

mjs 2 8 5 8.16 10.02 7.20

Tidy 4 5 7 19.10 14.28 6.20

tiffcp-1 4 2 10 4.20 4.80 1.36

tiffcp-2 0 0 2 n/a n/a 0.32



Evaluation: Bug-discovery Effectiveness

21

Benchmark Bug Discovery Effectiveness 
(# trials)

Mean Exposure Time (#hrs)

BEACON SieveFuzz BEACON SieveFuzz

gif2tga 10 10 2.15 0.17

jasper 10 6 8.51 7.8

listswf 8 10 13.36 0.51

tiffcp-1 0 9 n/a 0.30

tiffcp-2 0 6 n/a 6.65

SieveFuzz is more effective at bug-discovery than existing state-of-the-art 
undirected fuzzer (AFL++) and directed fuzzers (AFLGo, BEACON)



Conclusion

22

- Existing directed fuzzers wastefully explore target-irrelevant code regions

- Disjoint target locations cause particular large amounts of wastage

- Tripwiring is an effective directed fuzzing strategy for disjoint targets

- SieveFuzz’s tripwiring triggers bugs on average 47% more consistently and
117% faster than undirected (AFL++) and directed fuzzers (AFLGo, BEACON)

Code and artifact available at: https://github.com/HexHive/SieveFuzz

https://github.com/HexHive/SieveFuzz


Backup Slides

23



24



25


