
49

Magma: A Ground-Truth Fuzzing Benchmark

AHMAD HAZIMEH, EPFL, Switzerland
ADRIAN HERRERA, ANU & DST, Australia
MATHIAS PAYER, EPFL, Switzerland

High scalability and low running costs have made fuzz testing the de facto standard for discovering software
bugs. Fuzzing techniques are constantly being improved in a race to build the ultimate bug-finding tool.
However, while fuzzing excels at finding bugs in the wild, evaluating and comparing fuzzer performance is
challenging due to the lack of metrics and benchmarks. For example, crash count—perhaps the most commonly-
used performance metric—is inaccurate due to imperfections in deduplication techniques. Additionally, the
lack of a unified set of targets results in ad hoc evaluations that hinder fair comparison.

We tackle these problems by developing Magma, a ground-truth fuzzing benchmark that enables uniform
fuzzer evaluation and comparison. By introducing real bugs into real software, Magma allows for the realistic
evaluation of fuzzers against a broad set of targets. By instrumenting these bugs, Magma also enables the
collection of bug-centric performance metrics independent of the fuzzer. Magma is an open benchmark
consisting of seven targets that perform a variety of input manipulations and complex computations, presenting
a challenge to state-of-the-art fuzzers.

We evaluate seven widely-used mutation-based fuzzers (AFL, AFLFast, AFL++, FairFuzz, MOpt-AFL,
honggfuzz, and SymCC-AFL) against Magma over 200,000 CPU-hours. Based on the number of bugs reached,
triggered, and detected, we draw conclusions about the fuzzers’ exploration and detection capabilities. This
provides insight into fuzzer performance evaluation, highlighting the importance of ground truth in performing
more accurate and meaningful evaluations.

CCS Concepts: • General and reference → Metrics; Evaluation; • Software and its engineering →
Software defect analysis; • Security and privacy → Software and application security;

Keywords: fuzzing; benchmark; software security; performance evaluation

ACM Reference Format:
Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-Truth Fuzzing Benchmark. In
Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, 3, Article 49 (December 2020). ACM, New York, NY. 29 pages.
https://doi.org/10.1145/3428334

1 INTRODUCTION
Fuzz testing (“fuzzing”) is a widely-used dynamic bug discovery technique. A fuzzer procedurally
generates inputs and subjects the target program (the “target”) to these inputs with the aim of
triggering a fault (i.e., discovering a bug). Fuzzing is an inherently sound but incomplete bug-finding
process (given finite resources). State-of-the-art fuzzers rely on crashes to mark faulty program
behavior. The existence of a crash is generally symptomatic of a bug (soundness), but the lack of a

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement No. 850868).
Authors’ addresses: Ahmad Hazimeh, EPFL, Switzerland, ahmad.hazimeh@epfl.ch; Adrian Herrera, ANU & DST, Australia,
adrian.herrera@anu.edu.au; Mathias Payer, EPFL, Switzerland, mathias.payer@nebelwelt.net.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2476-1249/2020/12-ART49 $15.00
https://doi.org/10.1145/3428334

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

https://doi.org/10.1145/3428334
https://doi.org/10.1145/3428334

49:2 A. Hazimeh, et al.

crash does not necessarily mean that the program is bug-free (incompleteness). Fuzzing is wildly
successful in finding bugs in open-source [2] and commercial off-the-shelf [4, 5, 51] software.
The success of fuzzing has resulted in an explosion of new techniques claiming to improve

bug-finding performance [38]. In order to highlight improvements, these techniques are typically
evaluated across a range of metrics, including: (i) crash counts; (ii) ground-truth bug counts; and/or
(iii) code-coverage profiles. While these metrics provide some insight into a fuzzer’s performance,
we argue that they are insufficient for use in fuzzer comparisons. Furthermore, the set of targets
that these metrics are evaluated on can vary wildly across papers, making cross-fuzzer comparisons
impossible. Each of these metrics has particular deficiencies.

Crash counts. The simplest fuzzer evaluation method is to count the number of crashes triggered
by a fuzzer, and compare this crash count with that achieved by another fuzzer (on the same target).
Unfortunately, crash counts often inflate the number of actual bugs in the target [30]. Moreover,
deduplication techniques (e.g., coverage profiles, stack hashes) fail to accurately identify the root
cause of these crashes [8, 30].

Bug counts. Identifying a crash’s root cause is preferable to simply reporting raw crashes, as
it avoids the inflation problem inherent in crash counts. Unfortunately, obtaining an accurate
ground-truth bug count typically requires extensive manual triage, which in turn requires someone
with extensive domain expertise and experience [41].

Code-coverage profiles. Code-coverage profiles are another performance metric commonly used
to evaluate and compare fuzzing techniques. Intuitively, covering more code correlates with finding
more bugs. However, previous work [30] has shown that there is a weak correlation between
coverage-deduplicated crashes and ground-truth bugs, implying that higher coverage does not
necessarily indicate better fuzzer effectiveness.
The deficiencies of existing performance metrics calls for a rethinking of fuzzer evaluation

practices. In particular, the performance metrics used in these evaluations must accurately measure
a fuzzer’s ability to achieve its main objective: finding bugs. Similarly, the targets that are used to
assess how well a fuzzer meets this objective must be realistic and exercise diverse behavior. This
allows a practitioner to have confidence that a given fuzzing technique will yield improvements
when deployed in real-world environments.

To satisfy these criteria, we present Magma, a ground-truth fuzzer benchmark based on real
programs with real bugs. Magma consists of seven widely-used open-source libraries and applica-
tions, totalling 2MLOC. For each Magma workload, we manually analyze security-relevant bug
reports and patches, reinserting defective code back into these seven programs (in total, 118 bugs
were analyzed and reinserted). Additionally, each reinserted bug is accompanied by a light-weight
oracle that detects and reports if the bug is reached or triggered. This distinction between reaching
and triggering a bug—in addition to a fuzzer’s ability to detect a triggered bug—presents a new
opportunity to evaluate a fuzzer across multiple dimensions (again, focusing on ground-truth bugs).
The remainder of this paper presents the motivation behind Magma, the methodology behind

Magma’s design and choice of performance metrics, implementation details, and a set of preliminary
results that demonstrate Magma’s utility. We make the following contributions:

• A set of bug-centric performance metrics for a fuzzer benchmark that allow for a fair and
accurate evaluation and comparison of fuzzers.

• A quantitative comparison of existing fuzzer benchmarks.
• The design and implementation of Magma, a ground-truth fuzzing benchmark based on real
programs with real bugs.

• An evaluation of Magma against seven widely-used fuzzers.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

Magma: A Ground-Truth Fuzzing Benchmark 49:3

2 BACKGROUND ANDMOTIVATION
This section introduces fuzzing as a software testing technique, and how new fuzzing techniques
are currently evaluated and compared against existing ones. This aims to motivate the need for
new fuzzer evaluation practices.

2.1 Fuzz testing (fuzzing)
A fuzzer is a dynamic testing tool that discovers software flaws by running a target program (the
“target”) with a large number of automatically-generated inputs. Importantly, these inputs are
generated with the intention of triggering a crash in the target. This input generation process
is dependent on the fuzzer’s knowledge of the target’s input format and program structure. For
example, grammar-based fuzzers (e.g., Superion [63], Peachfuzz [42], and QuickFuzz [22]) leverage
the target’s input format (which must be specified a priori) to intelligently craft inputs (e.g., based on
data width and type, and on the relationships between different input fields). In contrast,mutational
fuzzers (e.g., AFL [66], Angora [12], and MemFuzz [13]) require no a priori knowledge of the input
format. Instead, mutational fuzzers leverage preprogrammed mutation operations to iteratively
modify the input.

Fuzzers are classified by their knowledge of the target’s program structure. For example, whitebox
fuzzers [17, 18, 47] leverage program analysis to infer knowledge about the program structure. In
comparison, blackbox fuzzers [3, 64] blindly generate inputs in the hope of discovering a crash.
Finally, greybox fuzzers [12, 34, 66] leverage program instrumentation (instead of program analysis)
to collect runtime information. Program-structure knowledge guides input generation in a manner
more likely to trigger a crash.

Importantly, fuzzing is a highly stochastic bug-finding process. This randomness is independent
of whether the fuzzer synthesizes inputs from a grammar (grammar-based fuzzing), transforms
an existing set of inputs to arrive at new inputs (mutational fuzzing), has no knowledge of that
target’s internals (blackbox fuzzing), or uses sophisticated program analyses to understand the
target (whitebox fuzzing). The stochastic nature of fuzzing makes evaluating and comparing fuzzers
difficult. This problem is exacerbated by existing fuzzer evaluation metrics and benchmarks.

2.2 The Current State of Fuzzer Evaluation
The rapid emergence of new and improved fuzzing techniques [38] means that fuzzers are constantly
compared against one another, in order to empirically demonstrate that the latest fuzzer supersedes
previous state-of-the-art fuzzers. To enable fair and accurate fuzzer evaluation, it is critical that
fuzzing campaigns are conducted on a suitable benchmark that uses an appropriate set of metrics.
Unfortunately, fuzzer evaluations have so far been ad hoc and haphazard. For example, Klees et
al.’s study of 32 fuzzing papers found that none of the surveyed papers provided sufficient detail to
support their claims of fuzzer improvement [30]. Notably, their study highlights a set of criteria
that should be adopted across all fuzzer evaluations. These criteria include:

Performance metrics: How the fuzzers are evaluated and compared. This is typically one of the
approaches previously discussed (crash count, bug count, or coverage profiling).

Targets: The software being fuzzed. This software should be both diverse and realistic so that a
practitioner has confidence that the fuzzer will perform similarly in real-world environments.

Seed selection: The initial set of inputs that bootstrap the fuzzing process. This initial set of inputs
should be consistent across repeated trials and the fuzzers under evaluation.

Trial duration (timeout): The length of a single fuzzing trial should also be consistent across
repeated trials and the fuzzers under evaluation. We use the term trial to refer to an instance

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

49:4 A. Hazimeh, et al.

of the fuzzing process on a target program, while a fuzzing campaign is a set of 𝑁 repeated
trials on the same target.

Number of trials: The highly-stochastic nature of fuzzing necessitates a large number of repeated
trials, allowing for a statistically sound comparison of results.

Klees et al.’s study demonstrates the need for a ground-truth fuzzing benchmark. Such a benchmark
must use suitable performance metrics and present a unified set of targets.

2.2.1 Existing Fuzzer Benchmarks. Fuzzers are typically evaluated on a set of targets sourced
from one of the following benchmarks. These benchmarks are summarized in Table 1.

The LAVA-M [14] test suite (built on top of coreutils-8.24) aims to evaluate the effectiveness
of a fuzzer’s exploration capability by injecting bugs in different execution paths. However, the
LAVA bug injection technique only injects a single, simple bug type: an out-of-bounds memory
access triggered by a “magic value” comparison. This bug type does not accurately represent
the statefulness and complexity of bugs encountered in real-world software. We quantify these
observations in Section 6.3.6.

In contrast, the Cyber Grand Challenge (CGC) [11] sample set provides a wider variety of bugs
that are suitable for testing a fuzzer’s fault detection capabilities. Unfortunately, the relatively small
size and simplicity of the CGC’s synthetic workloads does not enable thorough evaluation of the
fuzzer’s ability to explore complex programs.
BugBench [35] and the Google Fuzzer Test Suite (FTS) [20] both contain real programs with

real bugs. However, each target only contains one or two bugs (on average). This sparsity of
bugs, combined with the lack of automatic methods for triaging crashes, hinders adoption and
makes both benchmarks unsuitable for fuzzer evaluation. In contrast, Google FuzzBench [19]—the
successor to the Google FTS—is a fuzzer evaluation platform that relies solely on coverage profiles
as a performance metric. As previously discussed, this metric has limited utility when evaluating
fuzzers on their bug-finding capability. UniFuzz [33]—which was developed concurrently but
independently from Magma—is similarly built on real programs containing real bugs. However, it
lacks ground-truth knowledge and it is unclear how many bugs each target contains. Not knowing
how many bugs exist in a benchmark makes fuzzer comparisons challenging.

Finally, popular open-source software (OSS) is often used to evaluate fuzzers [10, 30, 31, 37, 44, 62].
Although real-world software is used, the lack of ground-truth knowledge about the triggered
crashes makes it difficult to provide an accurate, verifiable, quantitative evaluation. First, it is

Table 1. Summary of existing fuzzer benchmarks and our benchmark, Magma. We characterize benchmarks
across two dimensions: the targets that make up the benchmark workloads and the bugs that exist across
these workloads. For both dimensions we count the number of workloads/bugs (#) and classify them as Real
or Synthetic. Bug density is the mean number of bugs per workload. Finally, ground truth may be available
(✓), available but not easily accessible (◗), or unavailable (✗).

Benchmark Workloads Bugs Bug Density Ground truth# Real/Synthetic # Real/Synthetic

BugBench [35] 17 R 19 R 1.12 ◗

CGC [11] 131 S 590 S 4.50 ◗

Google FTS [20] 24 R 47 R 1.96 ◗

Google FuzzBench [19] 21 R − − − −
LAVA-M [14] 4 R 2265 S 566.25 ✓

UniFuzz [33] 20 R ? R ? ✗

Open-source software − R ? R ? ✗

Magma 7 R 118 R 16.86 ✓

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

Magma: A Ground-Truth Fuzzing Benchmark 49:5

often unclear which software version is used, making fair cross-paper comparisons impossible.
Second, multiple software versions introduce version divergence, a subtle evaluation flaw shared
by both crash and bug count metrics. After running for an extended period, a fuzzer’s ability to
discover new bugs diminishes over time [9]. If a second fuzzer later fuzzes a new version of the
same program—with the bugs found by the first fuzzer appropriately patched—then the first fuzzer
will find fewer bugs in this newer version. Version divergence is also inherent in UniFuzz, which
builds on top of older versions of OSS.

2.2.2 Crashes as a Performance Metric. Most, if not all, state-of-the-art fuzzers implement fault
detection as a crash listener. A program crash can be caused by an architectural violation (e.g.,
division-by-zero, unmapped/unprivileged page access) or by a sanitizer (a dynamic bug-finding
tool that generates a crash when a security policy violation—e.g., object out-of-bounds, type safety
violation—occurs [55]).

The simplicity of crash detection has led to the widespread use of crash count as a performance
metric for comparing fuzzers. However, crash counts have been shown to yield inflated results,
even when combined with deduplication methods (e.g., coverage profiles and stack hashes) [8, 30].
Instead, the number of bugs found by each fuzzer should be compared: if fuzzer 𝐴 finds more
bugs than fuzzer 𝐵, then 𝐴 is superior to 𝐵. Unfortunately, there is no single formal definition
for a bug. Defining a bug in its proper context is best achieved by formally modeling program
behavior. However, deriving formal program models is a difficult and time-consuming task. As such,
bug detection techniques tend to create a blacklist of faulty behavior, mislabeling or overlooking
some bug classes in the process. This often leads to incomplete detection of bugs and root-cause
misidentification, resulting in a duplication of crashes and an inflated set of results.

3 DESIRED BENCHMARK PROPERTIES
Benchmarks are important drivers for computer science research and product development [7].
Several factors must be taken into account when designing a benchmark, including: relevance;
reproducibility; fairness; verifiability; and usability [1, 60]. While building benchmarks around these
properties is well studied [1, 7, 24, 29, 35, 50, 52, 57, 60], the highly-stochastic nature of fuzzing
introduces new challenges for benchmark designers.
For example, reproducibility is a key benchmark property that ensures a benchmark produces

“the same results consistently for a particular test environment” [60]. However, individual fuzzing
trials vary wildly in performance, requiring a large number of repeated trials for a particular
test environment [30]. While performance variance exists in most benchmarks (e.g., the SPEC
CPU benchmark [57] uses the median of three repeated trials to account for small variations
across environments), this variance is more pronounced in fuzzing. Furthermore, a fuzzer may
actively modify the test environment (e.g., T-Fuzz [44] and FuzzGen [26] transform the target,
while Skyfire [62] generates new seed inputs for the target). This is very different to traditional
performance benchmarks (e.g., SPEC CPU [57], DaCapo [7]), where the workloads and their inputs
remain fixed across all systems-under-test. This leads us to define the following set of properties
that we argue must exist in a fuzzing benchmark:
Diversity (P1): The benchmark contains a wide variety of bugs and programs that resemble real

software testing scenarios.
Verifiability (P2): The benchmark yields verifiable metrics that accurately describe performance.
Usability (P3): The benchmark is accessible and has no significant barriers for adoption.
These three properties are explored in the remainder of this section, while Section 4 describes how
Magma satisfies these criteria.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

49:6 A. Hazimeh, et al.

3.1 Diversity (P1)
Fuzzers are actively used to find bugs in a variety of real programs [2, 4, 5, 51]. Therefore, a fuzzing
benchmark must evaluate fuzzers against programs and bugs that resemble those encountered in
the “real world”. To this end, a benchmark must include a diverse set of bugs and programs.

Bugs should be diverse with respect to:
Class: Common Weakness Enumeration (CWE) [40] bug classes include memory-based errors,

type errors, concurrency issues, and numeric errors.
Distribution: “Depth”, fan-in (i.e, the number of paths which execute the bug), and spread (i.e.,

the ratio of faulty-path counts to the total number of paths).
Complexity: Number of input bytes involved in triggering a bug, the range of input values which

triggers the bug, and the transformations performed on the input.
Similarly, targets (i.e, the benchmark workloads) should be diverse with respect to:

Application domain: File and media processing, network protocols, document parsing, cryptog-
raphy primitives, and data encoding.

Operations performed: Parsing, checksum calculation, indirection, transformation, state man-
agement, and data validation.

Input structure: Binary, text, formats/grammars, and data size.
Satisfying the diversity property requires bugs that resemble those encountered in real-world

environments. Both LAVA-M and Google FuzzBench fail this requirement: the former contains only
a single bug class (an out-of-bounds memory access), while FuzzBench does not consider bugs as
an evaluation metric. BugBench primarily focuses on memory corruption vulnerabilities, but also
contains uninitialized read, memory leak, data race, atomicity, and semantic bugs (totalling nine
bug classes). Conversely, Google FTS and FuzzBench satisfy the target diversity requirement: both
contain workloads from a wide variety of application domains (e.g., cryptography, image parsing,
text processing, and compilers).

Ultimately, real programs are the only source of real bugs. Therefore, a benchmark designed to
evaluate fuzzers must include real programs with a variety of real bugs, thus ensuring diversity and
avoiding bias (e.g., towards a specific bug class). Whereas discovering and reporting real bugs is
desirable (i.e, when OSS is used), performance metrics based on an unknown set of bugs (with an
unknown distribution) make it impossible to compare fuzzers. Instead, fuzzers should be evaluated
on workloads containing known bugs for which ground truth is available and verifiable.

3.2 Verifiability (P2)
Existing ground-truth fuzzing benchmarks lack a straightforward mechanism for determining a
crash’s root cause. This makes it difficult to verify a fuzzer’s results. Crash count, a widely-used
performance metric, suffers from high variability, double-counting, and inconsistent results across
multiple trials (see Section 2.2.2). Automated techniques for deduplicating crashes are not reliable,
and hence should not be used to verify the bugs discovered by a fuzzer. Ultimately, a fuzzing
benchmark should provide a set of known bugs for which ground truth can be used to verify a
fuzzer’s findings.
While the CGC sample set provides crashing inputs—also known as a proof of vulnerability

(PoV)—for all known bugs, it does not provide a mechanism for determining the root cause of a
fuzzer-generated crash. Similarly, the Google FTS provides PoVs (for 87 % of bugs) and a script for
triaging and deduplicating crashes. This script parses the crash report or looks for a specific line of
code at which to terminate program execution. However, this approach is limited and does not
allow for the detection of complex bugs (e.g., where simply executing a line of code is not sufficient
to trigger the bug).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

Magma: A Ground-Truth Fuzzing Benchmark 49:7

In contrast to the CGC and Google FTS benchmarks, for which ground truth is available but not
easily accessible, LAVA-M clearly reports the bug triggered by a crashing input. However, LAVA-M
does not provide a runtime interface for accessing this information. Unless a fuzzer is specialized
to collect LAVA-M metrics, it cannot monitor progress in real-time. Thus, a post-processing step is
required to collect metrics. Finally, Google FuzzBench relies solely on coverage profiles (rather than
fault-based metrics) to evaluate and compare fuzzers. FuzzBench dismisses the need for ground
truth, which we believe sacrifices the significance of the results: more coverage does not necessarily
imply higher bug-finding effectiveness.
Ground-truth bug knowledge allows for a fuzzer’s findings to be verified, enabling accurate

performance evaluation and allowing meaningful comparisons between fuzzers. To this end, a
fuzzing benchmark must provide easy access to ground-truth metrics describing the bugs a fuzzer
can reach, trigger, and detect.

3.3 Usability (P3)
Fuzzers have evolved from simple blackbox random-input generation to complex control- and data-
flow analysis tools. Each fuzzer may introduce its own instrumentation into a target (e.g., AFL [66]),
run the target in a specific execution engine (e.g., QSYM [65], Driller [58]), or provide inputs through
a specific channel (e.g., libFuzzer [34]). Fuzzers come in a variety of forms (described in Section 2.1),
so a fuzzing benchmarkmust not exclude a particular type of fuzzer. Additionally, using a benchmark
must be manageable and straightforward: it should not require constant user intervention, and
benchmarking should finish within a reasonable time frame. The inherent randomness of fuzzing
complicates this, as multiple trials are required to achieve statistically-meaningful results.
Some existing benchmark workloads (e.g., those from CGC and Google FTS) contain multiple

bugs, so it is not sufficient to only run the fuzzer until the first crash is encountered. However, the
lack of easily-accessible ground truth makes it difficult to determine if/when all bugs are triggered.
Moreover, inaccurate deduplication techniques mean that the user cannot simply equate the number
of crashes with the number of bugs. Thus, additional time must be spent triaging crashes to obtain
ground-truth bug counts, further complicating the benchmarking process.
In summary, a benchmark should be usable by fuzzer developers, without introducing insur-

mountable or impractical barriers to adoption. To satisfy this property, a benchmark must thus
provide a small set of targets with a large number of discoverable bugs, and it must provide a usable
framework that measures and reports fuzzer progress and performance.

4 MAGMA: APPROACH
We present Magma, a ground-truth fuzzing benchmark that satisfies the previously-discussed
benchmark properties. Magma is a collection of seven targets with widespread use in real-world
environments. These initial targets have been carefully selected for their diversity and the variety
of security-critical bugs that have been reported throughout their lifetimes (satisfying P1).

Importantly,Magma’s sevenworkloads contain 118 bugs forwhich ground truth is easily accessible
and verifiable (satisfying P2). These bugs are sourced from older versions of the seven workloads,
and then forward-ported to the latest version contained within Magma. Finally, Magma imposes
minimal requirements on the user, allowing fuzzer developers to seamlessly integrate the benchmark
into their development cycle (satisfying P3).
For each workload, we manually inspect bug and vulnerability reports to find bugs that are

suitable for inclusion in Magma (e.g., ensuring that the bug affects the core codebase). For these
bugs, we reintroduce (“inject”) each bug into the latest version of the code through a process we
call forward-porting (see Section 4.2). In addition to the bug, we also insert minimal source-code
instrumentation—a canary—to collect data about a fuzzer’s ability to reach and trigger the bug

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

49:8 A. Hazimeh, et al.

(see Section 4.3). A bug is reached when the faulty line of code is executed, and triggered when the
fault condition is satisfied. Finally, Magma provides a runtime monitor that runs in parallel with the
fuzzer to collect real-time statistics. These statistics are used to evaluate the fuzzer (see Section 4.4).
Fuzzer evaluation is based on the number of bugs reached, triggered, and detected. The Magma

instrumentation only yields usable information when the fuzzer exercises the instrumented code,
allowing us to determine whether a bug is reached. The fuzzer-generated input triggers a bug when
the input’s dataflow satisfies the bug’s trigger condition(s). Once triggered, the fuzzer should flag
the bug as a fault or crash, enabling us to assess the fuzzer’s bug detection capability. These metrics
are described further in Section 4.3.

Finally, Magma provides a fatal canaries mode. In fatal canaries mode, the program is terminated
if a canary’s condition is satisfied (similar to LAVA-M). The fuzzer then saves this crashing input for
post-processing. Fatal canaries are a form of ideal sanitization, in which triggering a bug immediately
results in a crash, regardless of the nature of the bug. Fatal canaries allow developers to evaluate their
fuzzers under ideal sanitization assumptions without incurring additional sanitization overhead.
This mode increases the number of executions during an evaluation, reducing the cost of evaluating
a fuzzer but sacrificing the ability to evaluate a fuzzer’s detection capabilities.

4.1 Target Selection
Magma contains seven targets, which we summarize in Table 2. In addition to these seven targets
(i.e., the codebases into which bugs are injected), Magma also includes 25 drivers (i.e., executable
programs that provide a command-line interface to the target) that exercise different functionality
within the target. Inspired by Google OSS-Fuzz [2], these drivers are sourced from the original
target codebases (as drivers are best developed by domain experts).

Magma’s seven targets were selected for their diversity in functionality (summarized qualitatively
in Table 2). Inspired by benchmarks in other fields [7, 27, 48, 50], we apply Principal Component
Analysis (PCA) to quantify this diversity. PCA is a statistical analysis technique that transforms
an 𝑁 -dimensional space into a lower-dimensional space while preserving variance as much as
possible [43]. Reducing high-dimensional data into a set of principal components allows for the
application of visualization and/or clustering techniques to compare and discriminate benchmark
workloads.

We apply PCA as follows. First, we use an Intel Pin [36] tool to record instruction traces for
𝐾 = 284 subjects (i.e., a library wrapped with a particular driver program [34, 39]): four from

Table 2. The targets, driver programs, bug counts, and evaluated features incorporated into Magma. The
versions used are the latest at the time of writing.

Target Drivers Version File type Bugs Magic
values

Recursive
parsing Compression Checksums Global

state
libpng read_fuzzer, readpng 1.6.38 PNG 7 ✓ ✗ ✓ ✓ ✗

libtiff read_rgba_fuzzer,
tiffcp

4.1.0 TIFF 14 ✓ ✗ ✓ ✗ ✗

libxml2
read_memory_fuzzer,
xml_reader_for_file_fuzzer,
xmllint

2.9.10 XML 18 ✓ ✓ ✗ ✗ ✗

poppler pdf_fuzzer, pdfimages,
pdftoppm

0.88.0 PDF 22 ✓ ✓ ✓ ✓ ✗

openssl
asn1, asn1parse, bignum,
bndiv, client, cms, conf,
crl, ct, server, x509

3.0.0 Binary blobs 21 ✓ ✗ ✓ ✓ ✓

sqlite3 sqlite3_fuzz 3.32.0 SQL queries 20 ✓ ✓ ✗ ✗ ✓

php exif, json, parser,
unserialize

8.0.0−dev Various 16 ✓ ✓ ✗ ✗ ✗

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

Magma: A Ground-Truth Fuzzing Benchmark 49:9

Fig. 1. Scatter plots of benchmark scores over the first four principal components (which account for ∼60 %
of the variance in the benchmark workloads). Each point corresponds to a particular subject in a benchmark.

LAVA-M, 14 from the FTS, 25 from Magma, and 241 from the CGC [59]. Each trace is driven
by seeds provided by the benchmark (exercising functionality—and hence code—that would be
explored by a fuzzer) and contains instructions executed by both the subject and any linked
libraries. Second, instructions are categorized according to Intel XED, a disassembler built into
Pin. A XED instruction category is “a higher level semantic description of an instruction than its
opcodes” [25]. XED contains 𝑁 = 94 instruction categories, spanning logical, floating point, syscall,
and SIMD operations (amongst others). We use these categories as an approximation of the subject’s
functionality. Third, we create a matrix 𝑋 , where 𝑥𝑖 𝑗 ∈ 𝑋 (𝑖 ∈ [1, 𝑁] and 𝑗 ∈ [1, 𝐾]) is the mean
number of instructions executed in a particular category for a given subject (over all seeds supplied
with that subject). Finally, PCA is performed on a normalized version of 𝑋 . The first four principal
components, which in our case account for 60 % of the variance between benchmarks, are plotted
in a two-dimensional space in Figure 1.

Figure 1 shows that the four LAVA-M workloads are tightly clustered over the first four principal
components. This is unsurprising, given that the LAVA-M workloads are all sourced from coreutils
and hence share the same codebase. In contrast, both the CGC and Magma provide a wide-variety of
workloads. For example, openssl—which contains a large amount of cryptographic and networking
code—appears distinct from the main clusters in Figure 1. The CGC’s TAINTEDLOVE workload is
similarly distinct, due to the relatively large number of floating point operations performed.

4.2 Bug Selection and Insertion
Magma contains 118 bugs, spanning 11 CWEs (summarized in Figure 2; the complete list of bugs is
given in Table A1). Compared to existing benchmarks, Magma has both the second-largest variety
of bugs (by CWE) and second-largest “bug density” (the ratio of the number of bugs to the number
of targets) after the CGC and LAVA-M, respectively. While the CGC has a wider variety of bugs, its
workloads are not indicative of real-world software (in terms of both size and complexity). Similarly,
while LAVA-M’s bug density (566.25 bugs per target) is an order-of-magnitude larger than Magma’s
(16.86 bugs per target), LAVA-M is restricted to a single, synthetic bug type.

Importantly, Magma contains real bugs sourced from bug reports and forward-ported to the
most recent version of the target codebase. This is in contrast to existing fuzzing benchmarks (e.g.,
BugBench, Google FTS) that rely on old, unpatched versions of the target codebase. Unfortunately,
using older codebases limits the number of bugs available in each target (as evident by the low bug

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

49:10 A. Hazimeh, et al.

Fig. 2. Comparison of benchmark bug classes. The 𝑦-axis uses a log scale. A complete list of Magma bugs is
presented in Table A1.

densities in Table 1). In comparison, forward-porting—which is synonymous to back-porting fixes
from newer codebases to older, buggy releases—does not suffer from this issue, making Magma’s
targets easily extensible.

Forward-porting begins with the identification—from the reported bug fix—of the code changes
that must be reverted to reintroduce the bug. Bug-fix commits can contain multiple fixes to one
or more bugs, so disambiguation is necessary to prevent the introduction of unintended bugs.
Alternatively, bug fixes may be spread over multiple commits (e.g., if the original fix did not cover
all edge cases). Following the identification of code changes, we identify what program state
is involved in evaluating the trigger condition. If necessary, we introduce additional program
variables to access that state. From this state, we determine a boolean expression that serves as
a light-weight oracle for identifying a triggered bug. Finally, we identify a point in the program
where we inject a canary before the bug can manifest faulty behavior. This canary helps measure
our fuzzer performance metrics, discussed in the following section.

4.3 Performance Metrics
Fuzzer evaluation has traditionally relied on crash counts, bug counts, and/or code-coverage
profiles for measuring and comparing fuzzer performance. While the problems with crash counts
and code-coverage profiles are well known (see Section 2.2.2), in our view, simply counting the
number of bugs discovered is too coarse-grained. Instead, we argue that it is important to distinguish
between reaching, triggering, and detecting a bug. Consequently, Magma uses these three bug-centric
performance metrics to evaluate fuzzers.

A reached bug refers to a bug whose oracle was called, implying that the executed path reaches
the context of the bug, without necessarily triggering a fault. This is where coverage profiles fall
short: simply covering the faulty code does not mean that the program is in the correct state to
trigger the bug. Hence, a triggered bug refers to a bug that was reached, and whose triggering
condition was satisfied, indicating that a fault occurred. Whereas triggering a bug implies that
the program has transitioned into a faulty state, the symptoms of the fault may not be directly
observable at the oracle injection site. When a bug is triggered, the oracle only indicates that the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

Magma: A Ground-Truth Fuzzing Benchmark 49:11

conditions for a fault have been satisfied, but this does not imply that the fault was encountered or
detected by the fuzzer.
Source-code instrumentation (i.e., the canary) provides ground-truth knowledge and runtime

feedback of reached and triggered bugs. Each bug is approximated by (a) the lines of code patched in
response to a bug report, and (b) a boolean expression representing the bug’s trigger condition. The
canary reports: (i) when the line of code is reached; and (ii) when the input satisfies the conditions
for faulty behavior (i.e., triggers the bug). Section 5.4 discusses how we prevent canaries from
leaking information to the system-under-test.

Finally, we also draw a distinction between triggering and detecting a bug. Whereas most security-
critical bugs manifest as a low-level security policy violation for which state-of-the-art sanitizers
are well-suited (e.g., memory corruption, data races, invalid arithmetic), other bug classes are not as
easily observed. For example, resource exhaustion bugs are often detected long after the fault has
manifested, either through a timeout or an out-of-memory error. Even more obscure are semantic
bugs, whose malfunctions cannot be observed without a specification or reference. Consequently,
various fuzzing techniques have been developed to target these bug classes (e.g., SlowFuzz [46]
and NEZHA [45]). Such advancements in fuzzer techniques may benefit from an evaluation which
includes the bug detection rate as another dimension for comparison.

4.4 Runtime Monitoring
Magma provides a runtime monitor that collects real-time statistics from the instrumented target.
This provides a mechanism for visualizing the fuzzer’s progress and its evolution over time, without
complicating the instrumentation.
The runtime monitor collects data about reached and triggered bugs (Section 4.3). Because

this data primarily relates to the fuzzer’s program exploration capabilities, we post-process the
monitor’s output to study the fuzzer’s fault detection capabilities. This is achieved by replaying the
crashing inputs (produced by the fuzzer) against the benchmark canaries to determine which bugs
were triggered and hence detected. Importantly, it is possible that the fuzzer produces crashing
inputs that do not correspond to any injected bug. If this occurs, the new bug is triaged and added
to the benchmark for other fuzzers to discover.

5 DESIGN AND IMPLEMENTATION DECISIONS
Magma’s unapologetic focus on fuzzing (as opposed to being a general bug-detection benchmark)
necessitates a number of key design and implementation choices. We discuss these choices here.

5.1 Forward-Porting
5.1.1 Forward-Porting vs. Back-Porting. In contrast to back-porting bugs to previous versions,

forward-porting ensures that all known bugs are fixed, and that the reintroduced bugs will have
ground-truth oracles. While it is possible that the new fixes and features in newer codebases may
(re)introduce unknown bugs, forward-porting allows Magma to evolve with each published bug fix.
Additionally, future code changes may render a forward-ported bug obsolete, or make its trigger
conditions unsatisfiable. Without verification, forward-porting may inject bugs which cannot be
triggered. We use fuzzing to reduce this possibility, reducing the cost of manually verifying injected
bugs. A fuzzer-generated PoV demonstrates that the bug is triggerable. Bugs that are discovered
this way are added to the list of verified bugs, helping the evaluation of other fuzzers. While this
approach may skew Magma towards fuzzer-discoverable bugs, we argue that this is a nonissue:
any newly-discovered PoV will update the benchmark, thus ensuring a fair and balanced bug
distribution.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

49:12 A. Hazimeh, et al.

5.1.2 Manual Forward-Porting. All Magma bugs are manually introduced. This process involves:
(i) searching for bug reports; (ii) identifying bugs that affect the core codebase; (iii) finding the
relevant fix commits; (iv) recognizing the bug conditions from the fix commits; (v) collecting these
conditions as a set of path constraints; (vi) modeling these path constraints as a boolean expression
(the bug canary); and (vii) injecting these canaries to flag bugs at runtime. The complexity of
this process led us to reject a wholly-automated approach; automating bug injection would likely
result in an incomplete and error-prone technique, ultimately yielding fewer bugs of lower quality.
Moreover, an automated approach still requires manual verification of the results. Dedicating
human resources to the forward-porting process maximizes the correctness of Magma’s bugs.
To justify a manual approach, we enumerate the scopes (i.e., code blocks, functions, modules)

spanned by each bug fix and use these scopes as a measure of bug-porting complexity (scope
measures for all bugs are given in Table A1). While a simple bug-porting technique works well for
fixes with a scope of one, the bug-porting technique must become more advanced as the number of
scopes increases (e.g., it must handle interprocedural constraints). Of the 118 Magma bugs, 34 % had
a scope measure greater than one.

Finally, our manual porting process was heavily reliant on prose; in particular, by the comments
and discussions contained within bug reports. These discussions provide valuable insight into
(a) developers’ intent, and (b) the construction of precise trigger conditions. Additionally, function
names (particularly those from the standard library) provide key insight into the code’s objective,
without requiring in-depth analysis into what each function does. An automated technique would
require either: (i) an in-depth analysis of such functions, likely resulting in path explosion; or
(ii) inference of bug conditions and function utilities via natural language processing (NLP). Both of
these approaches are too complex to be included in the scope of Magma’s development and would
likely require several years of research to be effective.

5.2 Weird States
When a fuzzer generates an input that triggers an undetected bug, and execution continues past
this bug, the program transitions into an undefined state: a weird state [15]. Any information
collected after transitioning to a weird state is unreliable. To address this issue, we allow the fuzzer
to continue the execution trace, but only collect bug oracle data before and until the first bug is
triggered (i.e., transition to a weird state). Oracles do not signify that a bug has been executed; they
only indicate whether the conditions required to execute a bug are satisfied.
Listing 1 shows an example of the interplay between weird states. This example contains two

bugs: an out-of-bounds write (bug 1) and a division-by-zero (bug 2). When tmp.len == 0, the
condition for bug 1 (line 6) remains unsatisfied, logging and triggering bug 2 instead (lines 8
and 9, respectively). However, when tmp.len > 16, bug 1 is logged and triggered (lines 5 and 6,

1 void libfoo_baz(char *str) {
2 struct { char buf [16]; size_t len; } tmp;
3 tmp.len = strlen(str);
4 // Bug 1: possible OOB write in strcpy ()
5 magma_log(1, tmp.len >= sizeof(tmp.buf));
6 strcpy(tmp.buf , str);
7 // Bug 2: possible div -by-zero if tmp.len == 0
8 magma_log(2, tmp.len == 0);
9 int repeat = 64 / tmp.len;
10 int padlen = 64 % tmp.len;
11 }

Listing 1. Weird states can result in execution traces which do not exist in the context of normal program
behavior.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

Magma: A Ground-Truth Fuzzing Benchmark 49:13

respectively). Furthermore, tmp.len is overwritten by a non-zero value, leaving bug 2 untriggered.
In contrast, bug 1 is triggered when tmp.len == 16, overwriting tmp.lenwith the NULL terminator
and setting its value to 0 (on a Little-Endian system). This also triggers bug 2, despite the input not
explicitly specifying a zero-length str.

5.3 A Static Benchmark
Much like other widely-used performance benchmarks—e.g., SPEC CPU [57] and DaCapo [7]—
Magma is a static benchmark that contains realistic workloads. These benchmarks assume that if
the system-under-test performs well on the benchmark’s workloads, then it will perform similarly
on real workloads. While realistic, static benchmarks are susceptible to overfitting. Overfitting can
occur if developers tweak the system-under-test to perform better on a benchmark, rather than
focusing on real workloads.

Overfitting could be overcome by dynamically synthesizing a benchmark (and ensuring that the
system-under-test is unaware of the synthesis parameters). However, this approach risks generating
workloads different from real-world scenarios, rendering the evaluation biased and/or incomplete.
While program synthesis is a well-studied topic [6, 23, 26], it remains difficult to generate large
programs that remain faithful to real development patterns and styles.
To prevent overfitting, Magma’s forward-porting process allows targets to be updated as they

evolve in the real-world. Each forward-ported bug requires minimal code changes: the addition of
Magma’s instrumentation and the faulty code itself. This makes it relatively straightforward to
update targets, including introducing new bugs and new features. For example, two undergraduate
students without software security experience added over 60 bugs in three new targets over a single
semester. These measures ensure that Magma remains representative of real, complex targets and
suitable for fuzzer evaluation.

5.4 Leaky Oracles
Introducing oracles into the benchmark may leak information that interferes with a fuzzer’s
exploration capability, potentially leading to overfitting (as discussed in Section 5.3). For example,
if oracles were implemented as if statements, fuzzers that maximize branch coverage could detect
the oracle’s branch and hence generate an input that satisifies the branch condition.
One possible solution to this leaky oracle problem is to produce both instrumented and unin-

strumented target binaries (with respect to Magma’s instrumentation, not any instrumentation
that the fuzzer injects). The fuzzer’s input would be fed into both binaries, but the fuzzer would
only collect the data it needs (e.g., coverage feedback) from the uninstrumented binary. The in-
strumented binary would collect canary data and report it to the runtime monitor. This approach,
however, introduces other challenges associated with duplicating the execution trace between
two binaries (e.g., replicating the environment, maintaining synchronization between executions),
greatly complicating Magma’s implementation and introducing runtime overheads.
Instead, we use always-evaluate memory writes, whereby an injected bug oracle evaluates a

boolean expression representing the bug’s trigger condition. This typically involves a binary
comparison operator, which most compilers (e.g., gcc, clang) translate into a pair of cmp and set
instructions embedded into the execution path. The results of this evaluation are then shared with
the runtime monitor (Section 4.4). This process is demonstrated in Listings 2 and 3.
Listing 2 shows Magma’s canary implementation. The always-evaluated memory accesses are

shown on lines 4 and 5. The faulty flag addresses the problem of weird states (Section 5.2), and
disables future canaries after the first bug is encountered.

Listing 3 shows an example program instrumented with a canary. A call to magma_log is inserted
(line 3) prior to the execution of the faulty code (line 5). Compound trigger conditions—i.e., those

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

49:14 A. Hazimeh, et al.

1 void magma_log(int id, bool condition) {
2 extern struct magma_bug *bugs; // = mmap (...)
3 extern bool faulty; // = false initially
4 bugs[id]. reached += 1 & (faulty ^ 1);
5 bugs[id]. triggered += condition & (faulty ^ 1);
6 faulty = faulty | condition;
7 }

Listing 2. Magma instrumentation.

1 void libfoo_bar () {
2 // uint32_t a, b, c;
3 magma_log (42, (a == 0) | (b == 0));
4 // possible divide -by-zero
5 uint32_t x = c / (a * b);
6 }

Listing 3. Instrumented example.

including the logical and and or operators—often generate implicit branches at compile-time (due
to short-circuit compiler behavior). To avoid leaking information through coverage, we provide
custom x86-64 assembly blocks to evaluate these logical operators in a single basic block (without
short-circuit behavior). We revert to C’s bitwise operators (& and |)—which are more brittle and
susceptible to safety-agnostic compiler passes [56]—when the compilation target is not x86-64.
Although this approach may introduce memory access patterns that are detectable by taint

tracking and other data-flow analysis techniques, statistical tests can be used to infer whether the
fuzzer overfits to these access patterns. By repeating the fuzzing campaign with the uninstrumented
binary, we can verify if the results vary significantly.

5.5 Proofs of Vulnerability
In order to increase confidence in the injected bugs, a proof of vulnerability (PoV) input must be
supplied for every bug, verifying that the bug can be triggered. The process of manually crafting
PoVs, however, is arduous and requires domain-specific knowledge, both about the input format
and the target program, potentially bringing the bug-injection process to a grinding halt.

When available, we extract PoVs from public bug reports. When no PoV is available, we launch
multiple fuzzing campaigns against these targets in an attempt to trigger each injected bug. Inputs
that trigger a bug are saved as a PoV. Bugs which are not triggered, even after multiple campaigns,
are manually inspected to verify path reachability and satisfiability of trigger conditions.

5.6 Unknown Bugs
Because Magma uses real-world programs, it is possible that bugs exist for which no ground-truth
is available (i.e., an oracle does not exist). A fuzzer might inadvertantly trigger these bugs and
(correctly) detect a fault. Due to the imperfections in automated deduplication techniques, these
crashes are not included in Magma’s metrics. Instead, such crashes are used to improve Magma
itself. The bug’s root cause can be determined by manually studying the execution trace, after
which the bug can be added to the benchmark.

5.7 Fuzzer Compatibility
Fuzzers are not limited to a specific execution engine under which they analyze and explore a
program. For example, some fuzzers (e.g., Driller [58], T-Fuzz [44]) leverage symbolic execution
(using an engine such as angr [54]) to explore the target. This can introduce (a) incompatibilities
with Magma’s instrumentation, and (b) inconsistencies in the runtime environment (depending on
how the symbolic execution engine models the environment).
However, the defining trait of most fuzzers, in contrast to other types of bug-finding tools, is

that they concretely execute the target on the host system. Unlike benchmarks such as the CGC
and BugBench—which aim to evaluate all bug-finding tools—Magma is unapologetically a fuzzing
benchmark. This includes whitebox fuzzers that use symbolic execution to guide input generation,
provided that the target is executed on the host system (SymCC [49] is one such fuzzer that we
include in our evaluation).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

Magma: A Ground-Truth Fuzzing Benchmark 49:15

We therefore impose the following restriction on the fuzzers evaluated by Magma: the fuzzer
must execute the target in the context of an OS process, with unrestricted access to OS facilities
(e.g., system calls, libraries, file system). This allows Magma’s runtime monitor to extract canary
statistics using the operating system’s services at relatively low overhead/complexity.

6 EVALUATION
6.1 Methodology
We evaluated several fuzzers in order to establish the versatility of our metrics and benchmark
suite. We chose a set of seven mutational fuzzers whose source code was available at the time
of writing: AFL [66], AFLFast [10], AFL++ [16], FairFuzz [31], MOpt-AFL [37], honggfuzz [21],
and SymCC-AFL [49]. These seven fuzzers were evaluated over ten identical 24 h and 7 d fuzzing
campaigns for each fuzzer/target combination. This amounts to 200,000 CPU-hours of fuzzing.
To ensure fairness, benchmark parameters were identical across all fuzzing campaigns. Each

fuzzer was bootstrapped with the same set of seed files (sourced from the original target codebase)
and configured with the same timeout and memory limits. Magma’s monitoring utility was config-
ured to poll canary information every five seconds, and fatal canaries mode (Section 4) was used
to evaluate a fuzzer’s ability to reach and trigger bugs. All experiments were run on one of three
machines, each with an Intel® Xeon® Gold 5218 CPU and 64 GB of RAM, running Ubuntu 18.04
LTS 64-bit. The targets were compiled for x86-64.

AddressSanitizer (ASan) [53] was used to evaluate detected bugs. Crashing inputs (generated by
fatal canaries) were validated by replaying them through the ASan-instrumented target. Although
this evaluation method measures ASan’s fault-detection capabilities, it still highlights the bugs that
fuzzers can realistically detect when fuzzing without ground truth.

6.2 Time to Bug
We use the time required to find a bug as a measure of fuzzer performance. As discussed in
Section 4.3, Magma records the time taken to both reach and trigger a bug, allowing us to compare
fuzzer performance across multiple dimensions. Fuzzing campaigns are typically limited to a finite
duration (we limit our campaigns to 24 h and 7 d, repeated ten times), so it is important that the
time-to-bug discovery is low.
The highly-stochastic nature of fuzzing means that the time-to-bug can vary wildly between

identical trials. To account for this variation, we repeat each trial ten times. Despite this repetition,
a fuzzer may still fail to find a bug within the alloted time, leading to missing measurements. We
therefore apply survival analysis to account for this missing data and high variation in bug discovery
times. Specifically, we adopt Wagner’s approach [61] and use the Kaplan-Meier estimator [28] to
model a bug’s survival function. This survival function describes the probability that a bug remains
undiscovered (i.e., “survives”) within a given time (here, 24 h and 7 d trials). A smaller survival time
indicates better fuzzer performance.

6.3 Experimental Results
Figure 3, Figure 4, Table A2, and Table A3 present the results of our fuzzing campaigns.

6.3.1 Bug Count and Statistical Significance. Figure 3 shows the mean number of bugs found per
fuzzer (across ten 24 h campaigns). These values are susceptible to outliers, limiting the conclusions
that we can draw about fuzzer performance. We therefore conducted a statistical significance
analysis of the collected sample-set pairs to calculate p-values using the Mann-Whitney U-test.
P-values provide a measure of how different a pair of sample sets are, and how significant these
differences are. Because our results are collected from independent populations (i.e., different

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

49:16 A. Hazimeh, et al.

Fig. 3. The mean number of bugs (and standard deviation) found by each fuzzer across ten 24 h campaigns.

Fig. 4. Significance of evaluations of fuzzer pairs using p-values from the Mann-Whitney U-Test. We use
𝑝 < 0.05 as a threshold for significance. Values greater than 0.05 are shaded red. Darker shading indicates a
lower p-value, or higher statistical significance. White cells indicate that the pair of sample sets are identical.

fuzzers), we make no assumptions about their distributions. Hence, we apply the Mann-Whitney
U-test to measure statistical significance. Figure 4 shows the results of this analysis.

TheMann-Whitney U-test shows that AFL, AFLFast, AFL++, and SymCC-AFL performed similarly
against most targets (signified by the large number of red and white cells in Figure 4), despite some
minor differences in mean bug counts (shown in Figure 3). Figure 4 shows that, in most cases, the
small fluctuations in mean bug counts are not significant, and the results are thus not sufficiently
conclusive. One oddity is the performance of AFL++ against libtiff. Figure 3 reveals that AFL++
scored the highest mean bug count compared to all other fuzzers, and Figure 4 shows that this
difference is statistically significant.

On the other hand, FairFuzz [31] displayed significant performance regression against libxml2,
openssl, and php. While the original evaluation of FairFuzz claims that it achieved the highest
coverage against xmllint, that improvement was not reflected in our results.

Finally, honggfuzz and MOpt-AFL performed significantly better than all other fuzzers in three
out of seven targets. Additionally, honggfuzz was the best fuzzer for libpng as well. We attribute
honggfuzz’s performance to its wrapping of memory-comparison functions, which provides com-
parison progress information to the fuzzer (similar to Steelix [32]).

6.3.2 Time to Bug. In total, during the 24 h campaigns, 74 of the 118 Magma bugs (62 %) were
reached. Additionally, 43 of the 54 verified bugs (79 %)—i.e., those with PoVs—were triggered.
Notably, no single fuzzer triggered more than 37 bugs (68 % of the verified bugs). These results are
presented in Table A2. Here, bugs are sorted by the mean trigger time, which we use to approximate
“difficulty”.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

Magma: A Ground-Truth Fuzzing Benchmark 49:17

(a) Bug AAH018 (libtiff with read_rgba_fuzzer). (b) Bug JCH232 (sqlite3 with sqlite3_fuzz).

(c) Bug AAH020 (libtiff with tiffcp). (d) Bug AAH020 (libtiff with read_rgba_fuzzer).

Fig. 5. Survival functions for a subset of Magma bugs. The 𝑦-axis is the survival probability for the given bug.
Dotted lines represent survival functions for reached bugs, while solid lines represent survival functions for
triggered bugs. Confidence intervals are shown as shaded regions.

The long bug discovery times (19 of the 43 triggered bugs—44 %—took on average more than 20 h
to trigger) suggests that the evaluated fuzzers still have a long way to go in improving program
exploration. However, while many of the Magma bugs are difficult to discover, Table A2 highlights
a set of 17 “simple” bugs that all fuzzers find consistently within 24 h. These bugs provide a baseline
for detecting performance regression: if a new fuzzer fails to discover these bugs, then its program
exploration strategy should be revisited.

Most of the bugs in Table A2 were reached by all fuzzers. SymCC-AFL was the worst performing
fuzzer in this regard, failing to reach nine bugs (the highest amongst the seven evaluated fuzzers).
Interestingly, most bugs show a large difference between reach and trigger times. For example,
only the first three bugs listed in Table A2 were triggered when first reached. In contrast, bugs
such as MAE115 (from openssl) take 10 s to reach (by all fuzzers), but up to 20 h (on average) to
trigger. This difference between time-to-reach and time-to-trigger a bug provides another feature
for determining bug “difficulty”: while control flow may be trivially satisfied (as evidence by the
time to reach a bug), bugs such as MAE115 may require complex, stateful data-flow constraints.
The longer, 7 d campaigns in Table A3 reveal a peculiar result: while honggfuzz was faster to

trigger bugs during the 24 h campaigns,MOpt-AFL was faster to trigger 11 additional bugs after
24 h, making it the most successful fuzzer over the 7 d campaigns. Notably, honggfuzz failed to
trigger any of these 11 bugs. This highlights the importance of long fuzzing campaigns and the
utility of Magma’s survival time analysis for comparing fuzzer performance.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

49:18 A. Hazimeh, et al.

Figure 5 plots four survival functions for three Magma bugs (AAH018, JCH232, and AAH020).
These plots illustrate the probability of a bug surviving a 24 h fuzzing trial, and are generated
by applying the Kaplan-Meier estimator to the results of ten repeated fuzzing trials. Dotted lines
represent survival functions for reached bugs, while solid lines represent survival functions for
triggered bugs. Confidence intervals are shown as shaded regions. Figure 5a shows the time to
reach bug AAH018 (libtiff). Notably, this bug was not triggered by any of the seven evaluated
fuzzers. Thus, the probability of bug AAH018 “surviving” 24 h (i.e., not being triggered) remains
at one. In comparison, Figure 5b shows the differences in the time taken to reach and trigger bug
JCH232 (sqlite3). Here, honggfuzz is the best performer, because the bug’s probability of survival
approaches zero the fastest. Notably, the variance is much higher compared to bug AAH018 (as
evident by the larger confidence intervals). Finally, Figure 5d and Figure 5c compare the probability
of survival for bug AAH020 (libtiff) across two driver programs: tiffcp and read_rgba_fuzzer.
The former is a general-purpose application, while the latter is a driver specifically designed as a
fuzzer harness. While the bug is reached relatively quickly by both drivers, the fuzzer harness is
clearly superior at triggering the bug, as it is faster across all fuzzers. This result supports our claim
in Section 4.1 that domain experts are most suitable for selecting and developing fuzzing drivers.
Again, it is clear that honggfuzz outperforms all other fuzzers (in both reaching and triggering

bugs), finding 11 additional bugs not triggered by other fuzzers. In addition to its finer-grained
instrumentation, honggfuzz natively supports persistent fuzzing. Our experiments show that
honggfuzz’s execution rate was at least three times higher than that of AFL-based fuzzers using
persistent drivers. This undoubtedly contributes to honggfuzz’s strong performance.

1 void png_check_chunk_length(png_ptr , length) {
2 size_t row_factor = png_ptr ->width // uint32_t
3 * png_ptr ->channels // uint32_t
4 * (png_ptr ->bit_depth > 8? 2: 1)
5 + 1
6 + (png_ptr ->interlaced? 6: 0);
7
8 if (png_ptr ->height > UINT_32_MAX/row_factor) {
9 idat_limit = UINT_31_MAX;
10 }
11 }

Listing 4. Divide-by-zero bug in libpng. Input undergoes non-trivial transformations to trigger the bug.

6.3.3 Achilles’ Heel of Mutational Fuzzing. AAH001 (CVE-2018-13785, shown in Listing 4), is a
divide-by-zero bug in libpng. It is triggered when the input is a non-interlaced 8-bit RGB image
with a width of 0x55555555. This “magic value” is not encoded anywhere in the target, and is
easily calculated by solving the constraints for row_factor == 0. However, mutational fuzzers
struggle to discover this bug type. This is because mutational fuzzers sample from an extremely
large input space, making them unlikely to pick the exact byte sequence required to trigger the
bug (here, 0x55555555). Notably, only honggfuzz, AFL, and SymCC-AFL were able to trigger this
bug. SymCC-AFL was the fastest to do so, likely due to its constraint-solving capabilities.

6.3.4 Magic Value Identification. AAH007 is a dangling pointer bug in libpng, and illustrates
how some fuzzer features improve bug-finding ability. To trigger this bug, it is sufficient for a
fuzzer to provide a valid input with an eXIF chunk (which remains unmarked for release upon
object destruction, leading to a dangling pointer). Unlike the AFL-based fuzzers, honggfuzz is
able to consistently trigger this bug relatively early in each campaign. We posit that this is due
to honggfuzz replacing the strcmp function with an instrumented wrapper that incrementally

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

Magma: A Ground-Truth Fuzzing Benchmark 49:19

Table 3. Overheads introduced by LAVA-M compared to coreutils-8.24. These overheads denote increases
in LLVM IR instruction counts, object file sizes, and average runtimes when processing seeds generated from
a 24 h fuzzing campaign. The total number of unique bugs triggered across all 10 trials/fuzzer is also shown,
with the best performing fuzzer highlighted in green.

Target Bugs Overheads (%) Total bugs triggered (#)
LLVM IR Size Runtime afl aflfast afl++ moptafl fairfuzz honggfuzz symccafl

base64 44 107.9 57.2 9.7 1 0 48 0 3 33 0
md5sum 57 60.2 46.1 9.5 0 1 40 1 1 29 0
uniq 28 63.6 27.8 11.6 3 0 29 1 0 13 3
who 2136 1786.7 2409.1 42.9 1 1 819 1 1 750 1

satisfies string magic-value checks. SymCC-AFL also consistently triggers this bug, demonstrating
how whitebox fuzzers can trivially solve constraints based on magic values.

6.3.5 Semantic Bug Detection. AAH003 (CVE-2015-8472) is a data inconsistency in libpng’s
API, where two references to the same piece of information (color-map size) can yield different
values. Such a semantic bug does not produce observable behavior that violates a known security
policy, and it cannot be detected by state-of-the-art sanitizers without a specification of expected
behavior.

Semantic bugs are not always benign. Privilege escalation and command injection are two of the
most security-critical logic bugs that are still found in modern systems, but they remain difficult
to detect with standard sanitization techniques. This observation highlights the shortcomings of
current fault detection mechanisms and the need for more fault-oriented bug-finding techniques
(e.g., NEZHA [45]).

6.3.6 Comparison to LAVA-M. In addition to our Magma evaluation, we also evaluate the same
seven fuzzers against LAVA-M, measuring (a) the overheads introduced by LAVA-M’s bug oracles,
and (b) the total number of bugs found by each fuzzer (across a 24 h campaign, repeated 10 times
per fuzzer). These results—presented in Table 3—show that LAVA-M’s most iconic target, who,
accounts for 94.3 % of the benchmark’s bugs. This high bug count reduces the amount of functional
code (compared to benchmark instrumentation) in the who binary to 5.3 %, impeding a fuzzer’s
exploration capabilities. Notably, we found that the evaluated fuzzers spent (on average) 42.9 % of
their time executing oracle code in who (this percentage is based on the final state of the fuzzing
queue, and may not represent the runtime overhead of all code paths). Finally, the bug counts
found by each fuzzer show a clear bias towards fuzzers with magic-value detection capabilities
(due to LAVA-M’s single, simple bug type, per Section 2.2.1).

6.4 Discussion
6.4.1 Ground Truth and Confidence. Ground truth enables us to determine a crash’s root cause.

Unlike many existing benchmarks, Magma provides straightforward access to ground truth. While
ground truth is available for all 118 bugs, only 45 % of these bugs have a PoV that demonstrate
triggerability. Importantly, only bugs with PoVs can be used to confidently measure a fuzzer’s
performance. Regardless, bugs without a PoV remain useful: any fuzzer evaluated against Magma
can produce a PoV, increasing the benchmark’s utility. Widespread adoption of Magma will increase
the number of bugs with PoVs. Notably, Table A3 shows that running the benchmark for longer
indeed yields more PoVs for previously-untriggered bugs. We leave it as an open challenge to
generate PoVs for these bugs.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

49:20 A. Hazimeh, et al.

6.4.2 Beyond Crashes. While Magma’s instrumentation does not collect information about
detected bugs (detection is a characteristic of the fuzzer, not the bug itself), it does enable the
evaluation of this metric through a post-processing step (supported by fatal canaries).
In particular, bugs should not be restricted to crash-triggering faults. For example, some bugs

result in resource starvation (e.g., unbounded loops or mallocs), privilege escalation, or unde-
sirable outputs. Importantly, fuzzer developers recognize the need for additional bug-detection
mechanisms: AFL has a hang timeout, and SlowFuzz searches for inputs that trigger worst-case
behavior. Excluding non-crashing bugs from an evaluation leads to an under-approximation of real
bugs. Their inclusion, however, enables better bug detection tools. Evaluating fuzzers based on
bugs reached, triggered, and detected allows us to classify fuzzers and compare different approaches
along multiple dimensions (e.g., bugs reached allows for an evaluation of path exploration, while
bugs triggered and detected allows for an evaluation of a fuzzer’s constraint generation/solving
capabilities). It also allows us to identify which bug classes continue to evade state-of-the-art
sanitization techniques (and to what degree).

6.4.3 Magma as a Lasting Benchmark. Magma leverages software with a long history of security
bugs to build an extensible framework with ground truth knowledge. Like most benchmarks, the
widespread adoption of Magma defines its utility. Benchmarks provide a common basis through
which systems are evaluated and compared. For instance, the community continues to use LAVA-M
to evaluate and compare fuzzers, despite the fact that most of its bugs have been found, and that
these bugs are of a single, synthetic type. Magma aims to provide an evaluation platform that
incorporates realistic bugs in real software.

7 CONCLUSIONS
Magma is an open ground-truth fuzzing benchmark that enables accurate and consistent fuzzer eval-
uation and performance comparison. We designed and implemented Magma to provide researchers
with a benchmark containing real targets with real bugs. We achieve this by forward-porting 118
bugs across seven diverse targets. However, this is only the beginning. Magma’s simple design
and implementation allows it to be easily improved, updated, and extended, making it ideal for
open-source collaborative development and contribution. Increased adoption will only strengthen
Magma’s value, and thus we encourage fuzzer developers to incorporate their fuzzers into Magma.

We evaluated Magma against seven popular open-source mutation-based fuzzers (AFL, AFLFast,
AFL++, FairFuzz, MOpt-AFL, honggfuzz, and SymCC-AFL). Our evaluation shows that ground
truth enables systematic comparison of fuzzer performance. Our evaluation provides tangible
insight into fuzzer performance, why crash counts are often misleading, and how randomness
affects fuzzer performance. It also brought to light the shortcomings of some existing fault detection
methods used by fuzzers.

Despite best practices, evaluating fuzz testing remains challenging. With the adoption of ground-
truth benchmarks like Magma, fuzzer evaluation will become reproducible, allowing researchers to
showcase the true contributions of new fuzzing approaches. Magma is open-source and available
at https://hexhive.epfl.ch/magma/.

REFERENCES
[1] Kayla Afanador and Cynthia Irvine. 2020. Representativeness in the Benchmark for Vulnerability Analysis Tools

(B-VAT). In 13th USENIX Workshop on Cyber Security Experimentation and Test (CSET 20). USENIX Association.
https://www.usenix.org/conference/cset20/presentation/afanador

[2] Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek Arya, and Meredith Whittaker. 2016. Announc-
ing OSS-Fuzz: Continuous fuzzing for open source software. https://opensource.googleblog.com/2016/12/
announcing-oss-fuzz-continuous-fuzzing.html. Accessed: 2019-09-09.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

https://hexhive.epfl.ch/magma/
https://www.usenix.org/conference/cset20/presentation/afanador
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html

Magma: A Ground-Truth Fuzzing Benchmark 49:21

[3] Branden Archer and Darkkey. [n.d.]. radamsa: A Black-box mutational fuzzer. https://gitlab.com/akihe/radamsa.
Accessed: 2019-09-09.

[4] Brad Arkin. 2009. Adobe Reader and Acrobat Security Initiative. http://blogs.adobe.com/security/2009/05/adobe_
reader_and_acrobat_secur.html. Accessed: 2019-09-09.

[5] Abhishek Arya and Cris Neckar. 2012. Fuzzing for security. https://blog.chromium.org/2012/04/fuzzing-for-security.
html. Accessed: 2019-09-09.

[6] Domagoj Babic, Stefan Bucur, Yaohui Chen, Franjo Ivancic, Tim King, Markus Kusano, Caroline Lemieux, László
Szekeres, and Wei Wang. 2019. FUDGE: Fuzz Driver Generation at Scale. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.

[7] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han
Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In Proceedings of
the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications
(Portland, Oregon, USA) (OOPSLA ’06). Association for Computing Machinery, New York, NY, USA, 169–190. https:
//doi.org/10.1145/1167473.1167488

[8] Tim Blazytko, Moritz Schlögel, Cornelius Aschermann, Ali Abbasi, Joel Frank, Simon Wörner, and Thorsten Holz.
2020. AURORA: Statistical Crash Analysis for Automated Root Cause Explanation. In 29th USENIX Security Sym-
posium (USENIX Security 20). USENIX Association, 235–252. https://www.usenix.org/conference/usenixsecurity20/
presentation/blazytko

[9] Marcel Böhme and Brandon Falk. 2020. Fuzzing: On the Exponential Cost of Vulnerability Discovery. In Proceedings of
the 2020 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE 2020). ACM, New York, NY, USA. https://doi.org/10.1145/3368089.3409729

[10] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-based Greybox Fuzzing As Markov Chain.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). ACM, New York, NY, USA, 1032–1043. https://doi.org/10.1145/2976749.2978428

[11] Brian Caswell. [n.d.]. Cyber Grand Challenge Corpus. http://www.lungetech.com/cgc-corpus/.
[12] P. Chen and H. Chen. 2018. Angora: Efficient Fuzzing by Principled Search. In 2018 IEEE Symposium on Security and

Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 711–725. https://doi.org/10.1109/SP.2018.00046
[13] N. Coppik, O. Schwahn, and N. Suri. 2019. MemFuzz: Using Memory Accesses to Guide Fuzzing. In 2019 12th IEEE

Conference on Software Testing, Validation and Verification (ICST). 48–58. https://doi.org/10.1109/ICST.2019.00015
[14] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich, and R. Whelan. 2016. LAVA:

Large-Scale Automated Vulnerability Addition. In 2016 IEEE Symposium on Security and Privacy (SP). 110–121. https:
//doi.org/10.1109/SP.2016.15

[15] T. Dullien. 2020. Weird Machines, Exploitability, and Provable Unexploitability. IEEE Transactions on Emerging Topics
in Computing 8, 2 (2020), 391–403.

[16] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++ : Combining Incremental Steps
of Fuzzing Research. In 14th USENIX Workshop on Offensive Technologies (WOOT 20). USENIX Association. https:
//www.usenix.org/conference/woot20/presentation/fioraldi Accessed: 2020-10-19.

[17] Vijay Ganesh, Tim Leek, and Martin C. Rinard. 2009. Taint-based directed whitebox fuzzing. In 31st International
Conference on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceedings. IEEE, 474–484.
https://doi.org/10.1109/ICSE.2009.5070546

[18] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based whitebox fuzzing. In Proceedings of the
ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13,
2008, Rajiv Gupta and Saman P. Amarasinghe (Eds.). ACM, 206–215. https://doi.org/10.1145/1375581.1375607

[19] Google. [n.d.]. FuzzBench. https://google.github.io/fuzzbench/. Accessed: 2020-05-02.
[20] Google. [n.d.]. Fuzzer Test Suite. https://github.com/google/fuzzer-test-suite. Accessed: 2019-09-06.
[21] Google. [n.d.]. honggfuzz. http://honggfuzz.com/. Accessed: 2019-10-19.
[22] Gustavo Grieco, Martín Ceresa, and Pablo Buiras. 2016. QuickFuzz: an automatic random fuzzer for common file

formats. In Proceedings of the 9th International Symposium on Haskell, Haskell 2016, Nara, Japan, September 22-23, 2016,
Geoffrey Mainland (Ed.). ACM, 13–20. https://doi.org/10.1145/2976002.2976017

[23] Sumit Gulwani. 2010. Dimensions in Program Synthesis. In Proceedings of the 12th International ACM SIGPLAN
Symposium on Principles and Practice of Declarative Programming (Hagenberg, Austria) (PPDP ’10). Association for
Computing Machinery, New York, NY, USA, 13–24. https://doi.org/10.1145/1836089.1836091

[24] John L. Henning. 2000. SPEC CPU2000: Measuring CPU Performance in the New Millennium. Computer 33, 7 (July
2000), 28–35. https://doi.org/10.1109/2.869367

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

https://gitlab.com/akihe/radamsa
http://blogs.adobe.com/security/2009/05/adobe_reader_and_acrobat_secur.html
http://blogs.adobe.com/security/2009/05/adobe_reader_and_acrobat_secur.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1167473.1167488
https://www.usenix.org/conference/usenixsecurity20/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity20/presentation/blazytko
https://doi.org/10.1145/3368089.3409729
https://doi.org/10.1145/2976749.2978428
http://www.lungetech.com/cgc-corpus/
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/ICST.2019.00015
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/SP.2016.15
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1145/1375581.1375607
https://google.github.io/fuzzbench/
https://github.com/google/fuzzer-test-suite
http://honggfuzz.com/
https://doi.org/10.1145/2976002.2976017
https://doi.org/10.1145/1836089.1836091
https://doi.org/10.1109/2.869367

49:22 A. Hazimeh, et al.

[25] Intel. [n.d.]. Intel Pin API Reference. https://software.intel.com/sites/landingpage/pintool/docs/71313/Pin/html/index.
html.

[26] Kyriakos K. Ispoglou. 2020. FuzzGen: Automatic Fuzzer Generation. In Proceedings of the USENIX Conference on Security
Symposium.

[27] Ajay Joshi, Aashish Phansalkar, L. Eeckhout, and L. K. John. 2006. Measuring benchmark similarity using inherent
program characteristics. IEEE Trans. Comput. 55, 6 (2006), 769–782.

[28] Edward L Kaplan and Paul Meier. 1958. Nonparametric estimation from incomplete observations. Journal of the
American statistical association 53, 282 (1958), 457–481.

[29] V. Kashyap, J. Ruchti, L. Kot, E. Turetsky, R. Swords, S. A. Pan, J. Henry, D. Melski, and E. Schulte. 2019. Automated
Customized Bug-Benchmark Generation. In 2019 19th International Working Conference on Source Code Analysis and
Manipulation (SCAM). 103–114.

[30] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018. Evaluating Fuzz Testing. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security (Toronto, Canada) (CCS ’18). ACM,
New York, NY, USA, 2123–2138. https://doi.org/10.1145/3243734.3243804

[31] Caroline Lemieux and Koushik Sen. 2018. FairFuzz: a targeted mutation strategy for increasing greybox fuzz testing
coverage. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE 2018,
Montpellier, France, September 3-7, 2018, Marianne Huchard, Christian Kästner, and Gordon Fraser (Eds.). ACM, 475–485.
https://doi.org/10.1145/3238147.3238176

[32] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu, and Alwen Tiu. 2017. Steelix: Program-
State Based Binary Fuzzing. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering
(Paderborn, Germany) (ESEC/FSE 2017). Association for Computing Machinery, New York, NY, USA, 627–637. https:
//doi.org/10.1145/3106237.3106295

[33] Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-Han Lee, Yueyao Chen, Chenyang Lyu, Chunming Wu, Raheem
Beyah, Peng Cheng, Kangjie Lu, and Ting Wang. 2021. UNIFUZZ: A Holistic and Pragmatic Metrics-Driven Platform
for Evaluating Fuzzers. In 30th USENIX Security Symposium (USENIX Security 21). USENIX Association.

[34] LLVM Foundation. [n.d.]. libFuzzer. https://llvm.org/docs/LibFuzzer.html. Accessed: 2019-09-06.
[35] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. 2005. Bugbench: Benchmarks for evaluating

bug detection tools. In In Workshop on the Evaluation of Software Defect Detection Tools.
[36] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa

Reddi, and Kim Hazelwood. 2005. Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation (Chicago,
IL, USA) (PLDI ’05). Association for Computing Machinery, New York, NY, USA, 190–200. https://doi.org/10.1145/
1065010.1065034

[37] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and Raheem Beyah. 2019. MOPT: Optimized
Mutation Scheduling for Fuzzers. In 28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA,
August 14-16, 2019., Nadia Heninger and Patrick Traynor (Eds.). USENIX Association, 1949–1966. https://www.usenix.
org/conference/usenixsecurity19/presentation/lyu

[38] Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele, Edward J. Schwartz, andMaverick
Woo. 2019. The Art, Science, and Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering (2019).
https://doi.org/10.1109/TSE.2019.2946563

[39] Valentin J. M. Manès, Soomin Kim, and Sang Kil Cha. 2020. Ankou: Guiding Grey-Box Fuzzing towards Combinatorial
Difference. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South Korea)
(ICSE ’20). Association for Computing Machinery, New York, NY, USA, 1024–1036. https://doi.org/10.1145/3377811.
3380421

[40] MITRE. 2007. Common Weakness Enumeration (CWE). https://cwe.mitre.org/.
[41] Timothy Nosco, Jared Ziegler, Zechariah Clark, Davy Marrero, Todd Finkler, Andrew Barbarello, and W. Michael

Petullo. 2020. The Industrial Age of Hacking. In 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, 1129–1146. https://www.usenix.org/conference/usenixsecurity20/presentation/nosco

[42] Peach Tech. [n.d.]. Peach Fuzzer Platform. https://www.peach.tech/products/peach-fuzzer/peach-platform/. Accessed:
2019-09-09.

[43] Karl Pearson. 1901. LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 2, 11 (1901), 559–572.

[44] H. Peng, Y. Shoshitaishvili, and M. Payer. 2018. T-Fuzz: Fuzzing by Program Transformation. In 2018 IEEE Symposium
on Security and Privacy (SP). 697–710. https://doi.org/10.1109/SP.2018.00056

[45] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana. 2017. NEZHA: Efficient Domain-Independent Differential
Testing. In 2017 IEEE Symposium on Security and Privacy (SP). 615–632. https://doi.org/10.1109/SP.2017.27

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

https://software.intel.com/sites/landingpage/pintool/docs/71313/Pin/html/index.html
https://software.intel.com/sites/landingpage/pintool/docs/71313/Pin/html/index.html
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1145/3106237.3106295
https://doi.org/10.1145/3106237.3106295
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1145/3377811.3380421
https://doi.org/10.1145/3377811.3380421
https://cwe.mitre.org/
https://www.usenix.org/conference/usenixsecurity20/presentation/nosco
https://www.peach.tech/products/peach-fuzzer/peach-platform/
https://doi.org/10.1109/SP.2018.00056
https://doi.org/10.1109/SP.2017.27

Magma: A Ground-Truth Fuzzing Benchmark 49:23

[46] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. 2017. SlowFuzz: Automated Domain-Independent
Detection of Algorithmic Complexity Vulnerabilities. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (Dallas, Texas, USA) (CCS ’17). ACM, New York, NY, USA, 2155–2168. https://doi.org/10.
1145/3133956.3134073

[47] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2016. Model-based whitebox fuzzing for program binaries.
In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, ASE 2016, Singapore,
September 3-7, 2016, David Lo, Sven Apel, and Sarfraz Khurshid (Eds.). ACM, 543–553. https://doi.org/10.1145/2970276.
2970316

[48] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John. 2005. Measuring Program Similarity: Experiments with SPEC CPU
Benchmark Suites. In IEEE International Symposium on Performance Analysis of Systems and Software, 2005. ISPASS
2005. 10–20.

[49] Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution with SymCC: Don’t interpret, compile!. In 29th
USENIX Security Symposium (USENIX Security 20). USENIX Association, 181–198. https://www.usenix.org/conference/
usenixsecurity20/presentation/poeplau

[50] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej,
Yudi Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019. Renaissance: Benchmarking
Suite for Parallel Applications on the JVM. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New
York, NY, USA, 31–47. https://doi.org/10.1145/3314221.3314637

[51] Tim Rains. 2012. Security Development Lifecycle: A Living Process. https://www.microsoft.com/security/blog/2012/
02/01/security-development-lifecycle-a-living-process/. Accessed: 2019-09-09.

[52] Subhajit Roy, Awanish Pandey, Brendan Dolan-Gavitt, and Yu Hu. 2018. Bug Synthesis: Challenging Bug-Finding
Tools with Deep Faults. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association
for Computing Machinery, New York, NY, USA, 224–234. https://doi.org/10.1145/3236024.3236084

[53] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. 2012. AddressSanitizer: A
Fast Address Sanity Checker. In 2012 USENIX Annual Technical Conference, Boston, MA, USA, June 13-15, 2012, Ger-
not Heiser and Wilson C. Hsieh (Eds.). USENIX Association, 309–318. https://www.usenix.org/conference/atc12/
technical-sessions/presentation/serebryany

[54] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Audrey Dutcher, John Grosen, Siji
Feng, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive
Techniques in Binary Analysis. In IEEE Symposium on Security and Privacy.

[55] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and M. Franz. 2019. SoK: Sanitizing for Security. In
2019 IEEE Symposium on Security and Privacy (SP). 1275–1295. https://doi.org/10.1109/SP.2019.00010

[56] Daan Sprenkels. [n.d.]. LLVM provides no side-channel resistance. https://dsprenkels.com/cmov-conversion.html.
Accessed: 2020-02-13.

[57] Standard Performance Evaluation Corporation. [n.d.]. SPEC Benchmark Suite. https://www.spec.org/. Accessed:
2020-02-12.

[58] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili,
Christopher Kruegel, and Giovanni Vigna. 2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.
In 23rd Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego, California, USA, February
21-24, 2016. The Internet Society. http://dx.doi.org/10.14722/ndss.2016.23368

[59] Trail of Bits. [n.d.]. DARPAChallenge Binaries on Linux, OS X, andWindows. https://github.com/trailofbits/cb-multios/.
Accessed: 2020-10-04.

[60] Jóakim v. Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-Dieter Lange, John L. Henning, and Paul Cao. 2015. How
to Build a Benchmark. In Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering (Austin,
Texas, USA) (ICPE ’15). Association for Computing Machinery, New York, NY, USA, 333–336. https://doi.org/10.1145/
2668930.2688819

[61] Jonas Benedict Wagner. 2017. Elastic Program Transformations Automatically Optimizing the Reliability/Performance
Trade-off in Systems Software. (2017), 149. https://doi.org/10.5075/epfl-thesis-7745

[62] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-Driven Seed Generation for Fuzzing. In 2017
IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society, 579–594.
https://doi.org/10.1109/SP.2017.23

[63] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: grammar-aware greybox fuzzing. In Proceedings of
the 41st International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, Joanne M.
Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 724–735. https://doi.org/10.1109/ICSE.2019.00081

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

https://doi.org/10.1145/3133956.3134073
https://doi.org/10.1145/3133956.3134073
https://doi.org/10.1145/2970276.2970316
https://doi.org/10.1145/2970276.2970316
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://doi.org/10.1145/3314221.3314637
https://www.microsoft.com/security/blog/2012/02/01/security-development-lifecycle-a-living-process/
https://www.microsoft.com/security/blog/2012/02/01/security-development-lifecycle-a-living-process/
https://doi.org/10.1145/3236024.3236084
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1109/SP.2019.00010
https://dsprenkels.com/cmov-conversion.html
https://www.spec.org/
http://dx.doi.org/10.14722/ndss.2016.23368
https://github.com/trailofbits/cb-multios/
https://doi.org/10.1145/2668930.2688819
https://doi.org/10.1145/2668930.2688819
https://doi.org/10.5075/epfl-thesis-7745
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.1109/ICSE.2019.00081

49:24 A. Hazimeh, et al.

[64] MaverickWoo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013. Scheduling black-box mutational fuzzing. In
2013 ACM SIGSAC Conference on Computer and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013,
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM, 511–522. https://doi.org/10.1145/2508859.2516736

[65] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM: A Practical Concolic Execution Engine
Tailored for Hybrid Fuzzing. In Proceedings of the 27th USENIX Conference on Security Symposium (Baltimore, MD,
USA) (SEC’18). USENIX Association, Berkeley, CA, USA, 745–761. http://dl.acm.org/citation.cfm?id=3277203.3277260

[66] Michal Zalewski. [n.d.]. American Fuzzy Lop (AFL) Technical Whitepaper. http://lcamtuf.coredump.cx/afl/technical_
details.txt. Accessed: 2019-09-06.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

https://doi.org/10.1145/2508859.2516736
http://dl.acm.org/citation.cfm?id=3277203.3277260
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

Magma: A Ground-Truth Fuzzing Benchmark 49:25

A BUGS AND REPORTS

Table A1. The bugs injected into Magma, and the original bug reports. Of the 118 bugs, 78 bugs (66%) have a
scope measure of one. Although most single-scope bugs can be ported with an automatic technique, relying
on such a technique would produce fewer and lower-quality canaries. PoVs of (∗)-marked bugs are sourced
from bug reports.

Bug ID Report Class PoV Scopes

lib
pn

g

AAH001 CVE-2018-13785 Integer overflow, divide by zero ✓ 1
AAH002∗ CVE-2019-7317 Use-after-free ✓ 4
AAH003 CVE-2015-8472 API inconsistency ✓ 2
AAH004 CVE-2015-0973 Integer overflow ✗ 1
AAH005∗ CVE-2014-9495 Integer overflow, Buffer overflow ✓ 1
AAH007 (Unspecified) Memory leak ✓ 2
AAH008 CVE-2013-6954 0-pointer dereference ✓ 2

lib
tiff

AAH009 CVE-2016-9535 Heap buffer overflow ✓ 1
AAH010 CVE-2016-5314 Heap buffer overflow ✓ 1
AAH011 CVE-2016-10266 Divide by zero ✗ 2
AAH012 CVE-2016-10267 Divide by zero ✗ 1
AAH013 CVE-2016-10269 OOB read ✓ 1
AAH014 CVE-2016-10269 OOB read ✓ 1
AAH015 CVE-2016-10270 OOB read ✓ 4
AAH016 CVE-2015-8784 Heap buffer overflow ✓ 1
AAH017 CVE-2019-7663 0-pointer dereference ✓ 1
AAH018∗ CVE-2018-8905 Heap buffer underflow ✓ 1
AAH019 CVE-2018-7456 OOB read ✗ 1
AAH020 CVE-2016-3658 Heap buffer overflow ✓ 2
AAH021 CVE-2018-18557 OOB write ✗ 2
AAH022 CVE-2017-11613 Resource Exhaustion ✓ 2

lib
xm

l2

AAH024 CVE-2017-9047 Stack buffer overflow ✓ 2
AAH025 CVE-2017-0663 Type confusion ✓ 1
AAH026 CVE-2017-7375 XML external entity ✓ 1
AAH027 CVE-2018-14567 Resource exhaustion ✗ 1
AAH028 CVE-2017-5130 Integer overflow, heap corruption ✗ 1
AAH029 CVE-2017-9048 Stack buffer overflow ✓ 2
AAH030 CVE-2017-8872 OOB read ✗ 2
AAH031 ISSUE #58 (gitlab) OOB read ✗ 1
AAH032 CVE-2015-8317 OOB read ✓ 2
AAH033 CVE-2016-4449 XML external entity ✗ 1
AAH034 CVE-2016-1834 Heap buffer overflow ✗ 2
AAH035 CVE-2016-1836 Use-after-free ✓ 2
AAH036 CVE-2016-1837 Use-after-free ✗ 1
AAH037 CVE-2016-1838 Heap buffer overread ✓ 2
AAH038 CVE-2016-1839 Heap buffer overread ✗ 1
AAH039 BUG 758518 Heap buffer overread ✗ 1
AAH040 CVE-2016-1840 Heap buffer overflow ✗ 1
AAH041 CVE-2016-1762 Heap buffer overread ✓ 1

po
pp

le
r

AAH042 CVE-2019-14494 Divide-by-zero ✓ 1
AAH043 CVE-2019-9959 Resource exhaustion (memory) ✓ 1
AAH045 CVE-2017-9865 Stack buffer overflow ✓ 4
AAH046 CVE-2019-10873 0-pointer dereference ✓ 2
AAH047∗ CVE-2019-12293 Heap buffer overread ✓ 1
AAH048 CVE-2019-10872 Heap buffer overflow ✓ 3
AAH049 CVE-2019-9200 Heap buffer underwrite ✓ 1
AAH050 Bug #106061 Divide-by-zero ✓ 1
AAH051∗ ossfuzz/8499 Integer overflow ✓ 1
AAH052 Bug #101366 0-pointer dereference ✓ 1
JCH201 CVE-2019-7310 Heap buffer overflow ✓ 1
JCH202 CVE-2018-21009 Integer overflow ✗ 1
JCH203 CVE-2018-20650 Type confusion ✗ 2
JCH204 CVE-2018-20481 0-pointer dereference ✗ 1
JCH206 CVE-2018-19058 Type confusion ✗ 2
JCH207 CVE-2018-13988 OOB read ✓ 1
JCH208 CVE-2019-12360 Stack buffer overflow ✗ 1
JCH209 CVE-2018-10768 0-pointer dereference ✓ 1
JCH210 CVE-2017-9776 Integer overflow ✓ 1
JCH211 CVE-2017-18267 Resource exhaustion (CPU) ✗ 1
JCH212 CVE-2017-14617 Divide-by-zero ✓ 1
JCH214 CVE-2019-12493 Stack buffer overread ✗ 3

Bug ID Report Class PoV Scopes

op
en
ss
l

AAH054 CVE-2016-2842 OOB write ✗ 5
AAH055 CVE-2016-2108 OOB read ✓ 5
AAH056 CVE-2016-6309 Use-after-free ✓ 1
AAH057 CVE-2016-2109 Resource exhaustion (memory) ✗ 2
AAH058 CVE-2016-2176 Stack buffer overread ✗ 2
AAH059 CVE-2016-6304 Resource exhaustion (memory) ✗ 3
MAE100 CVE-2016-2105 Integer overflow ✗ 1
MAE102 CVE-2016-6303 Integer overflow ✗ 1
MAE103 CVE-2017-3730 0-pointer dereference ✗ 1
MAE104 CVE-2017-3735 OOB read ✓ 1
MAE105 CVE-2016-0797 Integer overflow ✗ 2
MAE106 CVE-2015-1790 0-pointer dereference ✗ 2
MAE107 CVE-2015-0288 0-pointer dereference ✗ 1
MAE108 CVE-2015-0208 0-pointer dereference ✗ 1
MAE109 CVE-2015-0286 Type confusion ✗ 1
MAE110 CVE-2015-0289 0-pointer dereference ✗ 1
MAE111 CVE-2015-1788 Resource exhaustion (CPU) ✗ 1
MAE112 CVE-2016-7052 0-pointer dereference ✗ 1
MAE113 CVE-2016-6308 Resource exhaustion (memory) ✗ 2
MAE114 CVE-2016-6305 Resource exhaustion (CPU) ✗ 1
MAE115 CVE-2016-6302 OOB read ✓ 1

sq
lit
e3

JCH214 CVE-2019-9936 Heap buffer overflow ✗ 1
JCH215 CVE-2019-20218 Stack buffer overread ✓ 1
JCH216 CVE-2019-19923 0-pointer dereference ✓ 1
JCH217 CVE-2019-19959 OOB read ✗ 1
JCH218 CVE-2019-19925 0-pointer dereference ✗ 1
JCH219 CVE-2019-19244 OOB read ✗ 2
JCH220 CVE-2018-8740 0-pointer dereference ✗ 1
JCH221 CVE-2017-15286 0-pointer dereference ✗ 1
JCH222 CVE-2017-2520 Heap buffer overflow ✗ 2
JCH223 CVE-2017-2518 Use-after-free ✓ 1
JCH225 CVE-2017-10989 Heap buffer overflow ✗ 1
JCH226 CVE-2019-19646 Logical error ✓ 2
JCH227 CVE-2013-7443 Heap buffer overflow ✓ 1
JCH228 CVE-2019-19926 Logical error ✓ 1
JCH229 CVE-2019-19317 Resource exhaustion (memory) ✓ 1
JCH230 CVE-2015-3415 Double-free ✗ 1
JCH231 CVE-2020-9327 0-pointer dereference ✗ 3
JCH232 CVE-2015-3414 Uninitialized memory access ✓ 1
JCH233 CVE-2015-3416 Stack buffer overflow ✗ 1
JCH234 CVE-2019-19880 0-pointer dereference ✗ 1

ph
p

MAE002 CVE-2019-9021 Heap buffer overread ✗ 1
MAE004 CVE-2019-9641 Uninitialized memory access ✗ 1
MAE006 CVE-2019-11041 OOB read ✗ 1
MAE008 CVE-2019-11034 OOB read ✓ 1
MAE009 CVE-2019-11039 OOB read ✗ 1
MAE010 CVE-2019-11040 Heap buffer overflow ✗ 1
MAE011 CVE-2018-20783 OOB read ✗ 3
MAE012 CVE-2019-9022 OOB read ✗ 2
MAE014 CVE-2019-9638 Uninitialized memory access ✓ 1
MAE015 CVE-2019-9640 OOB read ✗ 2
MAE016 CVE-2018-14883 Heap buffer overread ✓ 2
MAE017 CVE-2018-7584 Stack buffer underread ✗ 1
MAE018 CVE-2017-11362 Stack buffer overflow ✗ 1
MAE019 CVE-2014-9912 OOB write ✗ 1
MAE020 CVE-2016-10159 Integer overflow ✗ 2
MAE021 CVE-2016-7414 OOB read ✗ 2

Received August 2020; revised September 2020; accepted October 2020

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

49:26 A. Hazimeh, et al.

Table A2. Mean bug survival times—both Reached and Triggered—over a 24-hour period, in seconds,minutes,
and hours. Bugs are sorted by “difficulty” (mean times). The best performing fuzzer is highlighted in green
(ties are not included).

moptafl honggfuzz afl++ afl aflfast fairfuzz symccafl Mean
Bug ID R T R T R T R T R T R T R T R T
AAH037 10.00s 20.00s 10.00s 10.00s 10.00s 45.50s 5.00s 15.00s 5.00s 15.00s 5.00s 15.00s 10.00s 25.50s 7.86s 20.86s
AAH041 15.00s 21.00s 10.00s 10.00s 15.00s 48.00s 10.00s 15.00s 10.00s 15.00s 10.00s 15.00s 15.00s 30.00s 12.14s 22.00s
AAH003 10.00s 16.00s 10.00s 11.00s 10.00s 15.00s 5.00s 10.00s 5.00s 10.00s 5.00s 10.00s 10.00s 1.58m 7.86s 23.86s
JCH207 10.00s 1.12m 5.00s 1.57m 10.00s 1.94m 5.00s 2.05m 5.00s 1.60m 5.00s 1.42m 10.00s 1.62m 7.14s 1.62m
AAH056 15.00s 14.57m 10.00s 14.43m 15.00s 19.49m 10.00s 13.07m 10.00s 11.27m 10.00s 8.17m 15.00s 17.80m 12.14s 14.11m
AAH015 32.50s 1.57m 10.00s 13.50s 27.00s 17.50m 1.18m 34.59m 52.00s 10.84m 1.07m 10.86m 15.07m 1.02h 2.76m 19.55m
AAH055 15.00s 40.86m 10.00s 2.71m 15.00s 3.62h 10.00s 25.01m 10.00s 2.24h 10.00s 6.36h 15.00s 2.44h 12.14s 2.26h
AAH020 5.00s 2.32h 5.00s 2.12h 5.00s 31.62m 5.00s 2.01h 5.00s 55.17m 5.00s 49.92m 5.00s 11.22h 5.00s 2.85h
MAE016 10.00s 1.57m 5.00s 10.00s 10.00s 5.79m 5.00s 3.97m 5.00s 4.93m 5.00s 2.21h 24.00h 24.00h 3.43h 3.78h
AAH052 15.00s 3.17m 15.00s 14.10m 15.00s 45.03m 10.00s 3.94h 10.00s 10.56h 10.00s 12.02h 15.00s 5.28m 12.86s 3.95h
AAH032 15.00s 3.38m 5.00s 2.06m 15.00s 1.65h 10.00s 3.22h 10.00s 34.19m 10.00s 9.67h 15.00s 12.95h 11.43s 4.02h
MAE008 15.00s 1.42h 10.00s 9.73h 15.00s 1.44m 10.00s 1.14m 10.00s 1.54m 10.00s 12.08h 24.00h 24.00h 3.43h 6.76h
AAH022 32.50s 54.98m 10.00s 34.86m 27.00s 3.47h 1.18m 9.38h 52.00s 5.66h 1.07m 14.04h 15.07m 15.25h 2.76m 7.04h
MAE014 15.00s 1.11h 10.00s 4.11h 15.00s 14.52m 10.00s 5.58m 10.00s 8.28m 10.00s 21.83h 24.00h 24.00h 3.43h 7.36h
JCH215 2.14m 3.24h 15.00s 40.97m 22.30m 11.97h 2.37h 15.67h 48.87m 11.51h 3.23h 9.86h 1.85h 18.08h 1.24h 10.15h
AAH017 5.19h 5.20h 22.32h 22.32h 13.97h 13.97h 19.84h 19.84h 8.67h 9.20h 5.92h 5.92h 9.92h 9.92h 12.26h 12.34h
JCH232 4.87h 4.87h 43.86m 1.66h 14.87h 20.02h 19.82h 19.82h 14.93h 17.21h 6.23h 10.31h 21.81h 21.81h 11.89h 13.67h
AAH014 12.48h 12.48h 24.00h 24.00h 13.06h 13.06h 6.34h 6.34h 24.00h 24.00h 18.46h 18.46h 10.68h 10.68h 15.57h 15.57h
JCH201 15.00s 14.65h 10.00s 24.00h 15.00s 19.48h 10.00s 16.82h 10.00s 12.98h 10.00s 14.02h 15.00s 14.27h 12.14s 16.60h
AAH007 15.00s 24.00h 5.00s 57.00s 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 23.12m 11.43s 17.20h
AAH008 15.00s 16.51h 10.00s 3.65h 15.00s 23.40h 10.00s 19.44h 10.00s 19.66h 10.00s 15.28h 15.00s 23.43h 12.14s 17.34h
AAH045 20.00s 3.33h 13.50s 1.13h 20.00s 24.00h 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h 20.00s 24.00h 16.93s 17.78h
AAH013 24.00h 24.00h 4.05h 4.05h 13.88h 13.88h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 19.70h 19.70h
AAH024 15.00s 9.05h 10.00s 9.27h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 19.76h
JCH209 14.40m 14.41m 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 20.61h 20.61h
MAE115 15.00s 22.64h 10.00s 20.96h 15.00s 24.00h 10.00s 21.32h 10.00s 23.33h 10.00s 21.97h 15.00s 10.13h 12.14s 20.62h
AAH026 15.00s 20.88h 10.00s 7.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 21.13h
AAH001 15.00s 22.57h 10.00s 17.70h 15.00s 24.00h 10.00s 22.60h 10.00s 24.00h 10.00s 24.00h 15.00s 14.58h 12.14s 21.35h
MAE104 15.00s 15.53h 10.00s 24.00h 15.00s 24.00h 10.00s 21.81h 10.00s 17.60h 10.00s 24.00h 24.00h 24.00h 3.43h 21.56h
AAH010 21.35h 21.97h 12.53h 16.40h 14.59m 20.34h 10.18m 24.00h 24.00h 24.00h 13.81h 21.79h 4.76h 24.00h 10.98h 21.79h
AAH016 18.68h 19.66h 24.00h 24.00h 22.59h 22.59h 24.00h 24.00h 17.61h 19.83h 19.89h 19.97h 24.00h 24.00h 21.54h 22.01h
JCH226 23.20h 23.72h 4.09h 10.93h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 21.04h 22.09h
JCH228 12.33h 18.10h 2.47h 20.05h 22.07h 24.00h 22.57h 22.60h 24.00h 24.00h 18.78h 24.00h 22.66h 23.80h 17.84h 22.36h
AAH035 15.00s 19.34h 10.00s 24.00h 21.50s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 19.00s 24.00h 13.64s 23.33h
JCH212 15.00s 24.00h 10.00s 20.42h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 23.49h
AAH025 22.22h 22.22h 22.48h 22.48h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 23.53h 23.53h
AAH053 24.00h 24.00h 35.00s 21.80h 24.00h 24.00h 30.00s 24.00h 29.50s 24.00h 26.00s 24.00h 24.00h 24.00h 10.29h 23.69h
AAH042 39.50s 21.93h 20.00s 24.00h 39.50s 24.00h 40.00s 24.00h 34.50s 24.00h 31.00s 24.00h 45.00s 24.00h 35.64s 23.70h
AAH048 15.00s 24.00h 10.00s 22.72h 16.50s 24.00h 15.00s 24.00h 10.50s 24.00h 10.00s 24.00h 20.00s 24.00h 13.86s 23.82h
AAH049 15.00s 22.82h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 23.83h
AAH043 25.00s 22.91h 16.80h 24.00h 2.41h 24.00h 25.00s 24.00h 20.00s 24.00h 20.00s 24.00h 25.00s 24.00h 2.75h 23.84h
JCH210 30.00s 23.07h 20.00s 24.00h 33.00s 24.00h 30.00s 24.00h 25.00s 24.00h 25.00s 24.00h 32.50s 24.00h 27.93s 23.87h
AAH050 25.00s 24.00h 16.80h 23.71h 29.00s 24.00h 24.00h 24.00h 20.00s 24.00h 20.00s 24.00h 29.00s 24.00h 5.83h 23.96h

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

Magma: A Ground-Truth Fuzzing Benchmark 49:27

Table A2. Mean bug survival times (cont.). None of these bugs were triggered by the seven evaluated fuzzers.

moptafl honggfuzz afl++ afl aflfast fairfuzz symccafl Mean
Bug ID R T R T R T R T R T R T R T R T
AAH054 10.00s 24.00h 5.00s 24.00h 10.00s 24.00h 5.00s 24.00h 5.00s 24.00h 5.00s 24.00h 10.00s 24.00h 7.14s 24.00h
MAE105 10.00s 24.00h 5.00s 24.00h 10.00s 24.00h 5.00s 24.00h 5.00s 24.00h 5.00s 24.00h 10.00s 24.00h 7.14s 24.00h
AAH011 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h
AAH005 15.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 24.00h
JCH202 15.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 24.00h
MAE114 15.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 24.00h
AAH029 15.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 24.00h
AAH034 15.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.14s 24.00h
AAH004 16.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 15.00s 24.00h 12.29s 24.00h
MAE111 15.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 20.00s 24.00h 12.86s 24.00h
AAH059 20.00s 24.00h 10.00s 24.00h 17.00s 24.00h 15.00s 24.00h 15.00s 24.00h 10.00s 24.00h 20.00s 24.00h 15.29s 24.00h
JCH204 18.00s 24.00h 20.00s 24.00h 15.50s 24.00h 15.00s 24.00h 15.00s 24.00h 10.00s 24.00h 20.00s 24.00h 16.21s 24.00h
AAH031 20.00s 24.00h 15.00s 24.00h 42.00s 24.00h 15.00s 24.00h 15.00s 24.00h 15.00s 24.00h 25.00s 24.00h 21.00s 24.00h
AAH051 25.00s 24.00h 10.00s 24.00h 42.50s 24.00h 20.00s 24.00h 20.00s 24.00h 20.00s 24.00h 30.00s 24.00h 23.93s 24.00h
MAE103 33.00s 24.00h 28.00s 24.00h 33.00s 24.00h 27.50s 24.00h 25.00s 24.00h 20.00s 24.00h 31.00s 24.00h 28.21s 24.00h
JCH214 33.50s 24.00h 45.00s 24.00h 36.00s 24.00h 31.00s 24.00h 26.50s 24.00h 25.00s 24.00h 35.00s 24.00h 33.14s 24.00h
JCH220 4.38m 24.00h 11.50s 24.00h 22.04m 24.00h 2.09h 24.00h 54.77m 24.00h 3.12h 24.00h 2.28h 24.00h 1.26h 24.00h
JCH229 4.53m 24.00h 16.00s 24.00h 24.62m 24.00h 2.80h 24.00h 1.07h 24.00h 3.23h 24.00h 2.32h 24.00h 1.42h 24.00h
AAH018 41.88m 24.00h 4.00m 24.00h 5.77h 24.00h 3.17h 24.00h 59.96m 24.00h 36.01m 24.00h 1.85h 24.00h 1.88h 24.00h
JCH230 4.02m 24.00h 22.50s 24.00h 1.07h 24.00h 3.31h 24.00h 1.36h 24.00h 3.56h 24.00h 5.57h 24.00h 2.13h 24.00h
AAH047 25.00s 24.00h 16.80h 24.00h 2.41h 24.00h 25.00s 24.00h 20.00s 24.00h 20.00s 24.00h 25.00s 24.00h 2.75h 24.00h
JCH233 8.31m 24.00h 12.02m 24.00h 6.16h 24.00h 3.87h 24.00h 1.98h 24.00h 3.59h 24.00h 5.17h 24.00h 3.02h 24.00h
JCH223 16.59m 24.00h 30.50s 24.00h 1.19h 24.00h 3.89h 24.00h 1.33h 24.00h 4.03h 24.00h 10.60h 24.00h 3.05h 24.00h
JCH231 21.88m 24.00h 36.00s 24.00h 2.44h 24.00h 3.96h 24.00h 1.41h 24.00h 4.05h 24.00h 10.62h 24.00h 3.27h 24.00h
MAE006 15.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 24.00h 24.00h 3.43h 24.00h
MAE004 15.00s 24.00h 10.00s 24.00h 15.00s 24.00h 10.00s 24.00h 10.00s 24.00h 10.00s 24.00h 24.00h 24.00h 3.43h 24.00h
JCH222 1.75h 24.00h 21.97m 24.00h 18.91h 24.00h 15.17h 24.00h 13.39h 24.00h 18.87h 24.00h 20.82h 24.00h 12.75h 24.00h
AAH009 14.61h 24.00h 20.62h 24.00h 24.00h 24.00h 5.67h 24.00h 19.45h 24.00h 17.62h 24.00h 23.42h 24.00h 17.91h 24.00h
JCH227 24.00h 24.00h 20.58h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 23.51h 24.00h
JCH219 23.41h 24.00h 23.22h 24.00h 24.00h 24.00h 24.00h 24.00h 23.79h 24.00h 24.00h 24.00h 24.00h 24.00h 23.77h 24.00h
JCH216 23.48h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 24.00h 23.93h 24.00h

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

49:28 A. Hazimeh, et al.

Table A3. Mean bug survival times over a 7-day period.

moptafl honggfuzz afl++ afl aflfast fairfuzz symccafl Mean
Bug ID R T R T R T R T R T R T R T R T
AAH037 10.00s 20.00s 15.00s 15.00s 10.00s 45.50s 10.00s 20.00s 10.00s 20.00s 10.00s 21.00s 10.00s 25.50s 10.71s 23.86s
AAH041 15.00s 21.00s 15.00s 15.00s 15.00s 48.00s 15.00s 20.50s 15.00s 20.00s 15.00s 21.00s 15.00s 30.00s 15.00s 25.07s
AAH003 10.00s 16.00s 15.00s 17.00s 10.00s 15.00s 10.00s 15.00s 10.00s 15.00s 10.00s 15.00s 10.00s 1.58m 10.71s 26.86s
JCH207 10.00s 1.12m 10.00s 2.16m 10.00s 1.94m 10.00s 2.02m 10.00s 3.73m 10.00s 2.96m 10.00s 1.62m 10.00s 2.22m
AAH056 15.00s 14.57m 15.00s 19.65m 15.00s 19.49m 15.00s 16.75m 15.00s 14.69m 15.00s 11.16m 15.00s 17.80m 15.00s 16.30m
AAH015 32.50s 1.57m 15.00s 21.50s 27.00s 17.50m 1.40m 59.27m 1.12m 8.00m 1.23m 13.34m 15.07m 1.02h 2.87m 23.04m
AAH020 5.00s 2.32h 5.00s 2.37h 5.00s 31.62m 5.00s 2.40h 5.00s 49.68m 5.00s 49.06m 5.00s 11.22h 5.00s 2.93h
AAH052 15.00s 3.17m 18.00s 15.09m 15.00s 45.03m 15.00s 3.83h 15.00s 6.17h 15.00s 13.78h 15.00s 5.28m 15.43s 3.56h
AAH022 32.50s 54.98m 15.00s 19.83m 27.00s 3.47h 1.40m 19.31h 1.12m 3.54h 1.23m 11.50h 15.07m 15.63h 2.87m 7.81h
AAH055 15.00s 40.86m 15.00s 4.07m 15.00s 3.62h 15.00s 4.17h 15.00s 1.74h 15.00s 71.84h 15.00s 2.44h 15.00s 12.08h
AAH017 13.22h 13.23h 66.80h 66.84h 13.97h 13.97h 13.88h 14.38h 6.78h 6.78h 3.50h 3.53h 9.92h 9.92h 18.30h 18.38h
AAH032 15.00s 3.38m 10.00s 2.70m 15.00s 1.65h 15.00s 51.23h 15.00s 15.81m 15.00s 67.23h 15.00s 36.05h 14.29s 22.36h
MAE016 10.00s 1.57m 10.00s 15.00s 10.00s 5.79m 10.00s 2.38m 10.00s 6.25m 10.00s 3.13h 168.00h 168.00h 24.00h 24.49h
JCH215 2.14m 3.24h 23.50s 2.42h 22.30m 13.00h 1.87h 45.83h 21.33m 15.91h 48.42m 38.01h 1.85h 85.15h 45.45m 29.08h
MAE008 15.00s 1.42h 15.00s 14.11h 15.00s 1.44m 15.00s 3.87m 15.00s 2.25m 15.00s 33.70h 168.00h 168.00h 24.00h 31.05h
JCH201 15.00s 17.54h 15.00s 140.14h 15.00s 20.53h 15.00s 11.25h 15.00s 13.41h 15.00s 13.95h 15.00s 14.27h 15.00s 33.01h
MAE014 15.00s 1.11h 15.00s 55.08m 15.00s 14.52m 15.00s 4.37m 15.00s 10.03m 15.00s 154.13h 168.00h 168.00h 24.00h 46.38h
AAH014 14.52h 14.52h 122.24h 122.24h 13.06h 13.06h 18.54h 18.54h 143.74h 143.74h 75.78h 75.78h 38.20h 38.20h 60.87h 60.87h
JCH232 4.87h 4.87h 44.67m 2.35h 26.08h 48.03h 83.73h 117.35h 31.74h 50.30h 34.90h 101.98h 105.04h 117.65h 41.01h 63.22h
MAE115 15.00s 61.48h 15.00s 109.18h 15.00s 133.93h 15.00s 47.46h 15.00s 32.83h 15.00s 94.71h 15.00s 10.13h 15.00s 69.96h
AAH008 15.00s 32.45h 15.00s 3.39h 15.00s 141.24h 15.00s 25.27h 15.00s 126.02h 15.00s 117.94h 15.00s 55.21h 15.00s 71.65h
JCH209 14.40m 14.41m 168.00h 168.00h 63.14h 63.14h 62.32h 62.33h 44.40h 44.41h 154.76h 154.76h 49.70h 49.72h 77.51h 77.51h
MAE104 15.00s 57.64h 15.00s 168.00h 15.00s 109.74h 15.00s 114.85h 15.00s 51.48h 15.00s 40.27h 168.00h 168.00h 24.00h 101.43h
AAH010 41.60h 44.03h 22.39h 42.87h 14.59m 121.14h 14.80m 168.00h 139.00h 150.52h 39.15h 136.06h 19.16h 65.62h 37.40h 104.04h
JCH228 16.37h 35.61h 6.97h 60.72h 94.73h 117.15h 128.84h 153.74h 58.00h 111.25h 104.22h 126.98h 129.87h 146.81h 77.00h 107.47h
AAH007 15.00s 168.00h 10.00s 1.56m 15.00s 167.02h 15.00s 163.55h 15.00s 168.00h 15.00s 168.00h 15.00s 23.12m 14.29s 119.28h
AAH045 20.00s 3.33h 20.00s 21.44m 20.00s 168.00h 20.00s 168.00h 20.00s 164.38h 20.00s 168.00h 20.00s 164.86h 20.00s 119.56h
AAH013 168.00h 168.00h 2.40h 2.40h 13.88h 13.88h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 122.33h 122.33h
AAH016 49.04h 50.76h 140.25h 141.75h 44.30h 137.79h 81.63h 146.06h 110.77h 125.20h 120.45h 120.48h 154.66h 155.00h 100.16h 125.29h
AAH001 15.00s 152.17h 15.00s 12.17h 15.00s 168.00h 15.00s 144.94h 15.00s 168.00h 15.00s 168.00h 15.00s 76.79h 15.00s 127.15h
AAH024 15.00s 9.05h 15.00s 52.37h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 128.77h
AAH026 15.00s 77.04h 15.00s 15.91h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 133.28h
JCH226 54.49h 87.37h 3.58h 19.05h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 152.61h 168.00h 168.00h 168.00h 126.10h 135.20h
AAH049 15.00s 45.24h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 150.46h
JCH210 30.00s 63.56h 25.00s 155.54h 33.00s 168.00h 35.00s 168.00h 30.00s 168.00h 33.50s 168.00h 32.50s 168.00h 31.29s 151.30h
AAH035 15.00s 83.58h 15.00s 168.00h 21.50s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 19.00s 168.00h 16.50s 155.94h
JCH212 15.00s 168.00h 15.00s 94.40h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 157.49h
JCH227 68.10h 121.28h 110.51h 158.09h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 145.52h 159.91h
AAH025 139.13h 139.13h 155.04h 155.04h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 162.02h 162.02h
AAH043 25.00s 126.83h 168.00h 168.00h 16.81h 168.00h 26.50s 168.00h 25.00s 168.00h 25.00s 168.00h 25.00s 168.00h 26.41h 162.12h
AAH048 15.00s 168.00h 15.00s 128.38h 16.50s 168.00h 20.00s 168.00h 15.00s 168.00h 15.00s 168.00h 20.00s 168.00h 16.64s 162.34h
AAH050 25.00s 143.70h 151.20h 159.73h 29.00s 168.00h 33.61h 168.00h 28.00s 168.00h 29.00s 168.00h 29.00s 168.00h 26.41h 163.35h
JCH216 69.76h 142.55h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 153.97h 164.36h
AAH046 75.34h 149.74h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 154.76h 165.39h
AAH042 39.50s 151.53h 24.00s 168.00h 39.50s 168.00h 45.00s 168.00h 40.00s 168.00h 39.50s 168.00h 45.00s 168.00h 38.93s 165.65h
AAH009 21.86h 157.44h 104.71h 168.00h 125.76h 168.00h 6.48h 168.00h 56.27h 168.00h 29.35h 168.00h 24.07h 168.00h 52.64h 166.49h
JCH223 16.59m 158.18h 31.50s 168.00h 1.19h 168.00h 5.90h 168.00h 2.57h 168.00h 1.47h 168.00h 11.94h 168.00h 3.34h 166.60h
AAH029 15.00s 166.95h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 167.85h
JCH229 4.53m 167.67h 24.00s 168.00h 24.62m 168.00h 2.09h 168.00h 49.24m 168.00h 49.67m 168.00h 2.32h 168.00h 56.19m 167.95h

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

Magma: A Ground-Truth Fuzzing Benchmark 49:29

Table A3. Mean bug survival times (cont.).

moptafl honggfuzz afl++ afl aflfast fairfuzz symccafl Mean
Bug ID R T R T R T R T R T R T R T R T
AAH054 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h
AAH011 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h
MAE105 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 10.00s 168.00h 15.00s 168.00h 10.00s 168.00h 10.71s 168.00h
AAH005 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h
JCH202 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h
MAE114 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h
AAH034 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h
AAH004 16.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.14s 168.00h
MAE111 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 20.00s 168.00h 15.71s 168.00h
AAH059 20.00s 168.00h 15.00s 168.00h 17.00s 168.00h 20.00s 168.00h 20.00s 168.00h 20.00s 168.00h 20.00s 168.00h 18.86s 168.00h
JCH204 18.00s 168.00h 24.00s 168.00h 15.50s 168.00h 20.00s 168.00h 20.00s 168.00h 19.00s 168.00h 20.00s 168.00h 19.50s 168.00h
AAH031 20.00s 168.00h 22.50s 168.00h 42.00s 168.00h 20.00s 168.00h 20.00s 168.00h 20.00s 168.00h 25.00s 168.00h 24.21s 168.00h
AAH051 25.00s 168.00h 15.00s 168.00h 42.50s 168.00h 25.00s 168.00h 25.00s 168.00h 15.00s 168.00h 30.00s 168.00h 25.36s 168.00h
JCH214 33.50s 168.00h 53.50s 168.00h 36.00s 168.00h 35.00s 168.00h 31.00s 168.00h 30.00s 168.00h 35.00s 168.00h 36.29s 168.00h
MAE103 33.00s 168.00h 1.05m 168.00h 33.00s 168.00h 40.00s 168.00h 33.50s 168.00h 30.00s 168.00h 31.00s 168.00h 37.64s 168.00h
JCH220 4.38m 168.00h 19.50s 168.00h 22.04m 168.00h 1.78h 168.00h 46.76m 168.00h 49.27m 168.00h 2.28h 168.00h 52.36m 168.00h
AAH018 41.88m 168.00h 5.81m 168.00h 5.77h 168.00h 1.72h 168.00h 1.60h 168.00h 1.40h 168.00h 1.85h 168.00h 1.88h 168.00h
JCH230 4.02m 168.00h 41.00s 168.00h 1.07h 168.00h 5.67h 168.00h 1.16h 168.00h 1.14h 168.00h 5.57h 168.00h 2.10h 168.00h
JCH233 8.31m 168.00h 23.55m 168.00h 6.16h 168.00h 11.84h 168.00h 1.44h 168.00h 2.41h 168.00h 5.17h 168.00h 3.93h 168.00h
JCH231 21.88m 168.00h 35.00s 168.00h 2.44h 168.00h 5.99h 168.00h 5.22h 168.00h 1.69h 168.00h 11.96h 168.00h 3.95h 168.00h
MAE006 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 168.00h 168.00h 24.00h 168.00h
MAE004 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 15.00s 168.00h 168.00h 168.00h 24.00h 168.00h
AAH047 25.00s 168.00h 168.00h 168.00h 16.81h 168.00h 26.50s 168.00h 25.00s 168.00h 25.00s 168.00h 25.00s 168.00h 26.41h 168.00h
JCH222 1.75h 168.00h 39.17m 168.00h 113.15h 168.00h 151.50h 168.00h 57.91h 168.00h 71.58h 168.00h 136.02h 168.00h 76.08h 168.00h
JCH219 72.02h 168.00h 168.00h 168.00h 162.32h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 168.00h 153.48h 168.00h

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 3, Article 49. Publication date: December 2020.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Fuzz testing (fuzzing)
	2.2 The Current State of Fuzzer Evaluation

	3 Desired Benchmark Properties
	3.1 Diversity (P1)
	3.2 Verifiability (P2)
	3.3 Usability (P3)

	4 Magma: Approach
	4.1 Target Selection
	4.2 Bug Selection and Insertion
	4.3 Performance Metrics
	4.4 Runtime Monitoring

	5 Design and Implementation Decisions
	5.1 Forward-Porting
	5.2 Weird States
	5.3 A Static Benchmark
	5.4 Leaky Oracles
	5.5 Proofs of Vulnerability
	5.6 Unknown Bugs
	5.7 Fuzzer Compatibility

	6 Evaluation
	6.1 Methodology
	6.2 Time to Bug
	6.3 Experimental Results
	6.4 Discussion

	7 Conclusions
	References
	A Bugs and Reports

