
Report from Dagstuhl Seminar 21481

Secure Compilation
Edited by
David Chisnall1, Deepak Garg2, Catalin Hritcu3, Mathias Payer4

1 Microsoft Research – Cambridge, UK, david.chisnall@microsoft.com
2 MPI-SWS – Saarbrücken, DE, dg@mpi-sws.org
3 MPI-SP – Bochum, DE, catalin.hritcu@mpi-sp.org
4 EPFL – Lausanne, CH, mathias.payer@nebelwelt.net

Abstract
Secure compilation is an emerging field that puts together advances in security, programming
languages, compilers, verification, systems, and hardware architectures in order to devise more
secure compilation chains that eliminate many of today’s security vulnerabilities and that allow
sound reasoning about security properties in the source language. For a concrete example,
all modern languages provide a notion of structured control flow and an invoked procedure is
expected to return to the right place. However, today’s compilation chains (compilers, linkers,
loaders, runtime systems, hardware) cannot efficiently enforce this abstraction against linked
low-level code, which can call and return to arbitrary instructions or smash the stack, blatantly
violating the high-level abstraction. Other problems arise because today’s languages fail to specify
security policies, such as data confidentiality, and the compilation chains thus fail to enforce them,
especially against powerful side-channel attacks. The emerging secure compilation community
aims to address such problems by identifying precise security goals and attacker models, designing
more secure languages, devising efficient enforcement and mitigation mechanisms, and developing
effective verification techniques for secure compilation chains.

This seminar strived to take a broad and inclusive view of secure compilation and to provide
a forum for discussion on the topic. The goal was to identify interesting research directions and
open challenges by bringing together people working on building secure compilation chains, on
designing security enforcement and attack-mitigation mechanisms in both software and hardware,
and on developing formal verification techniques for secure compilation.

Seminar November 28–December 3, 2021 – http://www.dagstuhl.de/21481
2012 ACM Subject Classification Security and privacy → Formal security models
Keywords and phrases secure compilation, low-level attacks, source-level reasoning, attacker

models, full abstraction, hyperproperties, enforcement mechanisms, compartmentalization,
security architectures, side-channels

Digital Object Identifier 10.4230/DagRep.11.10.173
Edited in cooperation with Roberto Blanco (MPI-SP – Bochum, DE)

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Secure Compilation, Dagstuhl Reports, Vol. 11, Issue 10, pp. 173–204
Editors: David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/21481
https://doi.org/10.4230/DagRep.11.10.173
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de


174 21481 – Secure Compilation

1 Executive Summary

David Chisnall (Microsoft Research – Cambridge, UK)
Deepak Garg (MPI-SWS – Saarbrücken, DE)
Catalin Hritcu (MPI-SP – Bochum, DE)
Mathias Payer (EPFL – Lausanne, CH)

License Creative Commons BY 4.0 International license
© David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer

Secure compilation is an emerging field that puts together advances in security, pro-
gramming languages, compilers, systems, verification, and hardware architectures to devise
compilation chains that eliminate security vulnerabilities, and allow sound reasoning about
security properties in the source language. For example, all modern languages define valid
control flows, e.g., calls must always return to the instruction after the calling point, and
many security-critical analyses such as data flow analysis rely on programs adhering to
these valid control flows. However, today’s compilation chains (compilers, linkers, loaders,
runtime systems, hardware) cannot efficiently prevent violations of source-level control flows
by co-linked low-level code, which can call and return to arbitrary instructions or smash the
stack, blatantly violating the high-level abstraction. Other problems arise because languages
fail to specify security policies, such as data confidentiality, and the compilation chains thus
fail to enforce them, especially against powerful attacks such as those based on side channels.
Yet other problems arise because enforcing source-level abstractions requires runtime checks
with noticeable overhead, so compilation chains often forego security properties in favor of
efficient code. The emerging field of secure compilation aims to address such problems by:

1. Identifying precise security goals and attacker models.
Since there are many interesting security goals and many different kind of attacks to
defend against, secure compilation is very diverse. Secure compilation chains may focus
on providing (some degree of) type and memory safety for unsafe low-level languages like
C and C++, or on providing mitigations that make exploiting security vulnerabilities
more difficult. Other secure compilation chains use compartmentalization to limit the
damage of an attack to only those components that encounter undefined behavior, or
to enforce secure interoperability between code written in a safer language (like Java,
C#, ML, Haskell, or Rust) and the malicious or compromised code it links against. Yet
another kind of secure compilation tries to ensure that compilation and execution on a
real machine does not introduce side-channel attacks.

2. Designing secure languages.
Better designed programming languages and new language features can enable secure
compilation in various ways. New languages can provide safer semantics, and updates
to the semantics of old unsafe languages can turn some undefined behaviors into guar-
anteed errors. Components or modules in the source language can be used as units of
compartmentalization in the compilation chain. The source language can also make it
easier to specify the intended security properties. For instance, explicitly annotating
secret data that external observers or other components should not be able to obtain
(maybe indirectly through side channels) may give the compilation chain the freedom to
more efficiently handle any data that it can deduce is not influenced by secrets.

3. Devising efficient enforcement and mitigation mechanisms.
An important reason for the insecurity of today’s compilation chains is that enforcing
security can incur prohibitive overhead or significant compatibility issues. To overcome
these problems, the secure compilation community is investigating various efficient security

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer 175

enforcement mechanisms such as statically checking low-level code, compiler optimizations,
software rewriting (e.g. software fault isolation), dynamic monitoring, and randomization.
Another key enabler is the emergence of new hardware features that enable efficient
security enforcement: access checks on pointer dereferencing (e.g. Intel MPX, Hardbound,
WatchdogLite, Oracle SSM, SPARC ADI, or HWASAN), protected enclaves (e.g. Intel
SGX, ARM TrustZone, Sanctum, or Sancus), capability machines (e.g. CHERI, Arm
Morello), or micro-policy machines (e.g. Draper PUMP, Dover CoreGuard). The question
is how such features can enable various security features in source languages efficiently,
i.e., how hardware extensions can provide enforcement mechanisms for security properties.

4. Developing effective verification techniques for secure compilation chains.
Criteria for secure compilation are generally harder to prove than compiler correctness. As
an example, showing full abstraction, a common criterion for secure compilation, requires
translating any low-level context attacking the compiled code to an equivalent high-level
context that can attack the original source code. Another example is preservation of secret
independent timing even in the presence of side-channels, as required for “constant-time”
cryptographic implementations, which can require more complex simulation proofs than
for compiler correctness. Finally, scaling such proofs up to even a simple compilation
chain for a realistic language is a serious challenge that requires serious proof engineering
in a proof assistant.

The Secure Compilation Dagstuhl Seminar 21481 attracted a large number of
excellent researchers with diverse backgrounds. The 42 participants (12 on site, 30 remote)
represented the programming languages, formal verification, compilers, security, systems,
and hardware communities, which led to many interesting points of view and enriching
discussions. Due to COVID-19 pandemic-related travel restrictions and uncertainties, many
of the participants had to participate remotely using a combination of video conferencing,
instant messaging, and ad-hoc gatherings. Despite this mixed environment, discussions
thrived. Some of these conversations were ignited by the 5 plenary discussions and the 28
talks contributed by the participants. The contributed talks spanned a very broad range
of topics: formalizing ISA security guarantees, hardware-software contracts, detection and
mitigation of (micro-architectural) side-channel attacks, securing trusted execution environ-
ments, memory safety, hardware-assisted testing, sampled bug detection, formal verification
techniques for low-level languages and secure compilation chains, machine-checked proofs,
stack safety, integrating hardware-safety guarantees, effective compartmentalization and its
enforcement, cross-language attacks, security challenges of software supply chains, capability
machines, (over-)aggressive compiler optimizations, concurrency, new programming language
abstractions, compositional correct/secure compilation, component safety, compositional
verification, contextual and secure refinement, hardening WebAssembly, secure interoper-
ability, (not) forking compilers, interrupts, hardware design, and many more. Talks were
interspersed with lively discussions since, by default, each speaker could only use half of
the time for presenting and had to use the other half for answering questions and engaging
with the audience. Given the high interest spurred by this second edition and the positive
feedback received afterwards, we believe that this Dagstuhl Seminar should be repeated in
the future, when hopefully all the participants will be able to attend onsite. One important
aspect that could still be improved in future editions is spurring more participation from the
systems and hardware communities, especially people working at the intersection of these
areas and security or formal verification.

21481



176 21481 – Secure Compilation

2 Table of Contents

Executive Summary
David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer . . . . . . . . . . 174

Plenary Discussions
Real-world deployment and remaining frontiers for secure compilation research
Mathias Payer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Microarchitectural and side-channel attacks
Marco Guarnieri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Designing New Security Architectures and Verifying their Properties
Shweta Shinde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Verification techniques for secure compilation
Dominique Devriese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Secure interoperability and compartmentalization
David Chisnall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Overview of Talks
Enforcement and compiler preservation of fine-grained constant-time policies
Gilles Barthe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Formalizing Stack Safety as a Security Property
Roberto Blanco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Are Compiler Optimizations Doing it Wrong? An Investigation of Array Bounds
Checking Elimination
Stefan Brunthaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Cross-Language Attacks
Nathan Burow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Securing Interruptible Enclaved Execution on Small Microprocessors
Matteo Busi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Project Verona: An abstract machine allowing partial verification
David Chisnall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

On information flow preserving refinement
Mads Dam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Formalizing ISA security guarantees in the form of universal contracts
Dominique Devriese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Proof techniques for secure compilation with memory sharing
Akram El-Korashy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Preserving Memory Safety from C to MSWasm
Anitha Gollamudi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Contract-aware secure compilation: a foundation for side-channel resistant compilers
– Challenges and open questions
Marco Guarnieri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195



David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer 177

Formally verifying a secure compilation chain for unsafe C components
Catalin Hritcu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Conditional Contextual Refinement
Chung-Kil Hur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

CompCertO: Compiling Certified Open C Components
Jérémie Koenig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Changing Compilation without Changing the Compiler
Per Larsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

WebAssembly as an intermediate language for safe interoperability
Zoe Paraskevopoulou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Compositional Secure Compilation against Spectre
Marco Patrignani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Automatic inference of effective compartmentalization policies
Mathias Payer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Hardware-Software Contracts and Secure Programming
Jan Reineke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Hardware-assisted testing in production
Kostya Serebriany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Morello status and verification
Peter Sewell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

A Wishlist for the Next Generation of Trusted Execution Environments
Shweta Shinde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Swivel: Hardening WebAssembly against Spectre
Deian Stefan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Compiler-based Side Channel Detection and Mitigation
Gang Tan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted
Code
Thomas Van Strydonck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Software Supply Chains: Challenges and Opportunities
Nikos Vasilakis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

How we design hardware and what is costs?
Ingrid Verbauwhede . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Verifying Speculation Security of Processor Implementations
Drew Zagieboylo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Remote Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

21481



178 21481 – Secure Compilation

3 Plenary Discussions

3.1 Real-world deployment and remaining frontiers for secure
compilation research

Discussion led by Mathias Payer (EPFL – Lausanne, CH)

License Creative Commons BY 4.0 International license
© Mathias Payer

In this session we focused on two key topics: real-world deployment and remaining frontiers
for secure compilation research. Both topics are challenging, the former focusing on how we
can introduce formal methods into the compilation toolchain, making developers more aware
of the different advantages, lowering the barrier to entry for using our tools, and addressing
practical deployment concerns. The latter focuses on where to go next such as targeting
different compilers, better SAT/SMT solving, scalability issues, targeting large code bases,
as well as combining formal methods with other techniques.

3.1.1 Topic 1: deployment

We started the discussion by focusing on issues that keep secure compilation techniques from
being applied in practice. The discussion focused around software testing but mostly focused
on mitigations. Mitigations are defenses that make exploitation of remaining bugs harder.
There is an inherent trade-off between the incurred overhead and the effectiveness of the
mitigations. Generally speaking, today it is extremely challenging to deploy new mitigations
in practice.

Maintaining mitigations comes inherently at higher overheads on engineering and per-
formance. Any mitigation that is added becomes part of the TCB. After being deployed,
mitigations will have to be maintained and will increase engineering complexity by, e.g.,
making debugging and development more challenging. We don’t understand the process of
how mitigations transition into practice fully yet but they are often implemented by major
players such as Linux kernel developers and companies like Microsoft and Google. A recent
example of a mitigation that was changed (apart from CFI being deployed broadly) are stack
canaries slowly being deprecated in favor of shadow stacks on the Android operating system.
This process is showing how challenging sunsetting mitigations actually is.

The true cost of security is not just the overhead of mitigations or the cost of patching
but the real cost is the downtime of important systems. For confidentiality (in addition to
integrity), this is a big issue, so improvements will be extremely important. Confidentiality
attacks can be passive, making them harder and slower to find. The Heartbleed bug was
one such confidentiality attack. On one hand, we looked at network captures from the past
and did not find any exploitation that happened. On the other hand, people did not update
their keys after compromise or updated them wrongly (with weaker keys).

As a community, we need to go beyond either or approaches and work on finding metrics
to evaluate the benefits of a mitigation along with coming up with models on how to maintain
them as well as deploying them in a hybrid manner to anticipate how they will be sunsetted
whenever a stronger and better mitigation comes around (or a bug class disappears).

3.1.2 Topic 2: research frontiers

After extensively talking about deployment problems we started discussing research frontiers
on where and how secure compilation can help. The first seminar on secure compilation was

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer 179

right after the disclosure of Spectre and Meltdown. This resulted in speculative execution
being a major ad-hoc topic and, three years later it has evolved into a key focus of secure
compilation, with a large number of researchers.

The underlying issue is that hardware may not always do what it is supposed to do and
even though it gives us guarantees, these guarantees may not hold. One option is to move
towards fault tolerant computation where we adjust our assumptions in our models that
the hardware may fail. Including this assumption will allow us to give guarantees despite
hardware failures. When looking at the different stacks, so far security is dependent on each
individual layer without cross-cutting concerns. As a way forward, we need to drive the
argument across the different layers and handle security between layers of abstractions.

In addition to side channels, we also looked at integrity violations such as RowHammer.
In the past, hardware was modeled for performance. Architects exclusively optimized for
performance at lower cost. Without clear benefits, users are unwilling to pay for security, we
need to justify why and how this is necessary. Focusing on fault tolerance, redundancy could
solve the issue at some constant cost factor. The underlying challenge is what the cost of
mitigating the issue would be at the hardware level – is it really 2x or could it be lower? As
a follow up question, we wondered if and how we can add security to our performance model
(i.e., not just focusing on throughput, latency, power). So far security is neither present nor
added and this needs to change.

Another research frontier is specifications at all levels of abstractions. While ARM released
some specifications, they can only partially be turned into guarantees and not all of them
are in a directly usable state. Evidently, people are not very good at writing specifications
(or even writing functional tests). We wondered if we need weaker specifications that
nevertheless remain useful for verification or better composition techniques. Deriving better
and tighter/more precise specifications will be an interesting research frontier, especially
when moving towards side channels and hardware faults.

3.2 Microarchitectural and side-channel attacks
Discussion led by Marco Guarnieri (IMDEA Software – Madrid, ES)

License Creative Commons BY 4.0 International license
© Marco Guarnieri

In this session, we focused on microarchitectural and side-channel attacks. We started by
discussing “How can we design principled countermeasures and mitigations against these
attacks?” The discussion on this point highlighted that a clear attacker model and a
precise description of the security-relevant hardware/software interface are needed to design
principled mitigations. Next, we discussed the hardware/software interface for security and,
in particular, the security guarantees that hardware should provide to software and how
to express them. We concluded by discussing whether secure compilation techniques can
help in securing the hardware/software interface. We now present a short summary of each
discussion point.

3.2.1 How can we design principled countermeasures and mitigations?

We started the discussion by observing that software has only limited control on microarchi-
tectural aspects and side-effects (e.g., using memory fences to limit the scope of speculation
or dedicated commands to flush internal caches and buffers). Even with these commands,
however, it is often difficult to build principled mitigations due to a lack of detailed microar-
chitectural models.

21481

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


180 21481 – Secure Compilation

One possible way forward consists in extending the ISA with dedicated commands for
controlling part of the microarchitectural state. The hardware implementation, then, will be
in charge of correctly implementing these commands in a secure manner. We discussed two
alternative approaches for this:

A coarse-grained approach where the processor provides two execution modes: a secure
execution mode and an insecure execution mode. The former provides strong security
against side-channel and microarchitectural attacks (e.g., by disabling several processor
optimizations and reducing resource sharing) at the price of a performance overhead,
whereas the latter provides no security guarantees. In this case, programmers need to
precisely identify how to partition programs into a secure and insecure parts.
A fine-grained approach where programmers can specify isolation programmatically down
to the microarchitectural level. In principle, with more control on the microarchitectural
state, programmers could implement secure code with better performance. Secure compil-
ers could also help in correctly enforcing the desired security properties. Programmatic
partitioning at microarchitectural level might also have performance benefits. However,
properly using microarchitectural partitioning at software-level might be very challenging
(opening the door to potential vulnerabilities).
Another important aspect in mitigating microarchitectural attacks is that countermeasures

often come with some performance overhead. As a result, designers need to consider the
trade-off between security and performance. For this, we need quantitative measures for
security. For instance, in hardware power-based side-channel attacks, security is quantified
using the the number of samples needed to obtain some information, with higher numbers
being better for security. Work on quantitative information flow can provide the theoretical
foundations for building these microarchitectural quantitative measures.

3.2.2 What security guarantees should hardware provide to software?

Most of the recent microarchitectural attacks break the intuitive assumptions about the
security guarantees that hardware should provide to software. For instance, Spectre attacks
break the assumption that code is executed following a program’s control flow, whereas
Rowhammer attacks break assumptions about memory integrity.

A precise specification about the security guarantees that hardware provides to software
is needed as a starting point for building secure systems. Such a specification establishes a
contract between hardware and software.

Recently, there have been several proposals for formalizing such hardware/software
contracts. We discussed several aspects of these specifications:

Existing proposals are rather narrow and they mostly focus on timing-based attacks. It
is unclear whether and how these proposals can be extended to other classes of attacks
such as power-based side-channel attacks.
A key point in defining such a specification is identifying the right level of abstraction for
microarchiectural components and side-effects. A contract that comes with a detailed
microarchitectural model imposes more constraints on hardware designers. At the same
time, a more detailed contract can provide information, e.g., a specific cache replacement
policy, that programmers can use to build systems with better performance.
Such specifications need to be easy to use by software-level tools like program analyses
and compilers.
These hardware/software security specifications need to distribute “security obligations”
between hardware and software. Additionally, we need ways to change such specifications
as hardware and software systems evolve.



David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer 181

3.2.3 How can secure compilation help to secure the hardware/software interface?

We discussed several ways in which secure compilation could help in securing the hardware/-
software interface.

From a foundational perspective, secure compilation criteria like full abstraction and
preservation of specific properties (such as non-interference) can provide inspiration for the
formalization of hardware/software contracts for microarchitectural security.

From a practical perspective, compilers can assist in building secure systems since they
can inform the hardware about which information is sensitive and should be protected. For
instance, in the coarse-grained model mentioned before compilers can help in partitioning the
code, whereas in the fine-grained model compilers can help in correctly inserting instructions
for partitioning the microarchitectural state.

3.3 Designing New Security Architectures and Verifying their Properties
Discussion led by Shweta Shinde (ETH Zürich, CH)

License Creative Commons BY 4.0 International license
© Shweta Shinde

We have seen a rise in academic and industry-led efforts for building new architectures.
These advances were motivated by several reasons such as diminishing returns of Moore’s
law, emphasis on energy-efficient designs, and opportunities presented by unified memory
architectures. In addition to performance improvements, this shift has led to an opening
where security-centric thinking can either be tightly coupled or orthogonality added to these
new architectures. In this session, we discussed the ramifications of this shift, particularly
to assess the possibility of building secure designs with strong security guarantees that are
amenable to formal verification.

3.3.1 Are security architectures actually on the rise, and why?

The discussion started by questioning the veracity of the claim that security architectures
are on the rise and within the scope of real-world deployments. The hardware design and
verification flows have adopted agile deployment pipelines. This allows researchers to come
up with new designs and prototype them quickly. First, there are extensions (e.g., CHERI)
that can be tested out quickly because they do not disrupt the rest of the flow (e.g., perform
operations only while accessing memory). Second, several primitives can be applied by raising
the ISA abstraction and adding new instructions without changing the critical parts of the
architecture. Such proposals offer easy adoption paths for manufacturers, who are willing to
enable security features.

When it comes to deciding if some primitives are inherently suited for hardware or
software, there is a risk of pushing the responsibility. In this case, an extreme example, can
be viewing the hardware only as a way to achieve high performance; whereas functional
security and isolation are solely a responsibility of software. A counter view is to treat
hardware as a component that provides a common abstraction such that the functionality
can be appropriately leveraged in software. If the software layer has to simulate a different
abstraction because the underlying hardware does not natively support it, this can imply
that there is indeed a semantic gap that needs to be bridged with better abstractions. The
speculative side-channel attacks are a good example of such a mismatch.

21481

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


182 21481 – Secure Compilation

3.3.2 Need for First-class Security Primitives

There are two aspects when it comes to designing robust and effective security primitives.
First, one can be ambitious and provide elaborate primitives that are indeed useful to solve
large classes of attacks. However, if they are not easy to use, adapt, and apply then such
primitives are not immediately practical (e.g., homomorphic encryption, oblivious RAM).
Second, given an intuitive and useful primitive, should it be implemented and enforced
in hardware or software. This is a question of optimizing non-security aspects such as
performance and compatibility. So, the answer usually depends on the specific primitive. For
example, doing physical memory isolation can be easier at the hardware level because it is
simple enough. However, ensuring non-interference might be challenging to achieve purely in
hardware.

3.3.3 Risks and Benefits of Adding New Hardware Primitives

It is crucial to be selective with the hardware primitives. Otherwise, we run a risk of having
too many primitives in hardware. Such a proliferation in the best case causes fragmentation
and in the worst case can lead to poor security of the overall system. Even if a primitive
can be implemented in hardware, practical limitations impose several constraints (e.g.,
power, area, memory latency). Further, hardware development cycles are much longer. A
rough estimate is 5 years for prototyping one generation; at least 2-3 generations before
the performance characteristics of a new primitive are acceptable and up to the designers’
expectations. Lastly, removing features from hardware is non-trivial and expensive. It breaks
compatibility, incurs large changes to software and tools, and may severely annoy customers
who are vested in using the hardware features. On the upside, hardware has relatively fewer
complex interactions and is a good vantage point for certain enforcement. Thus, at least
for simple primitives, implementing them in hardware gives one a better chance of getting
it right with a high potential impact. To bring in the best of both worlds, the optimal
strategy might be to let the hardware provide only bare minimum security functionality. The
software can handle the complex aspects with the potential of several cheap design iterations.
The only downside of this approach is that one has to then trust the software to use the
primitives correctly and guarantee the overall security without leaving gaps that the attacker
can exploit. Perhaps, this is where secure compilation can be vital.

3.3.4 Secure Compilation

In the case of secure compilation, one always considers that the attacker operates at the
lowest level. But is this a realistic assumption, and if so, is it practical to protect against
such an adversary? For example, researchers have demonstrated the practicality of severe
attacks (e.g., cache side-channels, fault injection) that are not addressable purely in software.
Unfortunately, the layers at which fixes and mitigations could be introduced (i.e., hardware
design) are very removed from the layers that suffer directly from poor security (i.e., software).
Moreover, in practice, one has to consider what threats are important to the end-user. If the
customers express a strong desire for a given feature, then designers can carve a way forward
to an industrial evaluation.

3.3.5 Practical Roadblocks for Hardware-enforced Security

Besides the economic incentive, there are several reasons for investigating hardware features
for strengthening security. If a small slowdown in hardware could result in speedups in
software, such a slowdown would still be beneficial. However, there are several barriers



David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer 183

to making these strides. First, quantifying and associating performance gains to design
decisions is not straightforward, especially in complex architectures. Quantifying the costs of
a given overhead, not only directly, but how they propagate across pipelines and scale to
large numbers of computers is non-trivial. Without concrete and clear root-cause analysis,
it is difficult to convince the importance of such changes to the stakeholders. There is no
immediate clear path forward from these challenges.

Many performance studies traditionally start with simulations. For example, academic
researchers might first build and prototype the smallest steps to validate their ideas and then
rely on industry partners to build complete products. Despite the appeal of this approach,
the error margin of simulator studies is large enough that statistical noise is in the same
order of magnitude, or bigger, than the effects that one intends to measure. Conversely,
reasonably accurate simulators are woefully slow. Thus, meaningfully extrapolating insights
from prototypes is challenging. In this, as in many other matters, it is clear that early
collaborations between academia and industry is crucial.

There are a few lessons that we have learned by building multiple hardware primitives.
First, incentives play an important role in the practical adoption of hardware. A clear
and drastic reduction in security risks is still a good incentive. However, OS and mobile
systems developers do not wish to take responsibility for hardware problems. If we identify
a security mechanism or part thereof, that needs to be implemented in hardware, we have
to consider several constraints. These include performance, throughput, area, power, and
energy. Estimating the exact impact of a mechanism of these factors is an open problem.
However, collaborations can help identify non-negotiable constraints early on.

3.3.6 Role of Formal Verification

Formal verification has been traditionally used in security settings to strengthen reasoning.
However, verification is also useful for the functional validation of hardware features and
reliably projecting costs such as area and timing delays. If one applies rigorous formal
modeling, it can open up avenues for simplifying the designs and to make them easy for
verification. In addition, such efforts pay off even in the hardware verification phase. There
have been several success stories of such a cycle, including virtual memory, protection bits,
capability machines, and more recently CHERI. A lot of these success stories have roots in
early hardware abstractions for scalability. However, in the last decade or so, there has been
a steady rise in the number of purely security-centric hardware extensions. Other than the
publicly available extensions that have seen adoption, manufacturers are more receptive to
such ideas. It is worth noting that recent extensions are driven by software – techniques
that have stood the test of time in software and compiler enforced security are now being
moved to hardware for efficiency (e.g., pointer authentication). Moving forward, there are
a few key principles that can help accelerate such adoption success. Designers can start
with clear specifications and then build the primitives. This opens up an easy path for
ISA-level verification at a later stage. It further allows us to cross-check if the hardware
implementation indeed adheres to the specification.

3.3.7 Potential Avenues for New Security Primitives

Given the wide-scale hardware support for trusted execution environments (e.g., Intel SGX)
and the success of non-TEE primitives such as CHERI, is there any scope for building on
these wins? For example, could one re-purpose CHERI to support TEE primitives? If so,
would it address problems beyond the scope of TEEs (e.g., side channels)? One has to

21481



184 21481 – Secure Compilation

be careful when it comes to confidentiality, since it requires addressing all possible side-
channel attacks. Tangentially, modern cloud deployments use virtual machine and container
abstractions. Is there potential for new primitives that are closer to and well-tailored for
these abstractions? We have seen that hardware designers are keen on supporting fast
virtualization (e.g., Intel VT, ARM CCA) as well as language-specific extensions (e.g., for
JavaScript). Are there low-hanging fruits that are within the scope of hardware adoption
either based on programming models (e.g., secure language virtual machines) or system
abstractions (e.g., library/object isolation)? This requires considerations about developer
efforts and ease of using the abstractions correctly. The interface exposed to the developers
should not be drastically in contrast to the traditional programming model and should be
easy to infer and/or encapsulate at the programming abstraction level (e.g., libraries).

3.3.8 Ramifications for Verification Efforts

Intuitively, adding clean abstractions in hardware does help in overall reasoning. For example,
introducing explicit hardware-software contracts allows one to reason about specific types
of speculative side-channel attacks. On the other hand, the added complexity of the ISA
may impact the proof efforts. For example, in proofs of compartmentalization, the attacker
model is arbitrary assembly code. Thus, the security proof has to reason about all possible
instructions and their side effects. There are well-known mechanisms to circumvent these
challenges. To scale security proofs, designers use simplified models (e.g., infinite memory,
unbound number of enclaves). However, one has to be cautious in assessing and closing
any gaps between model and reality. One way to do this is by improving the model and
checking the assumptions. We have seen that these efforts do pay off (e.g., static analyses are
now applied to increasingly larger systems). On the other extreme, it has been shown that
substantive formalization and sufficient efforts of end-to-end systems are feasible (e.g., the
verified light bulb). With regards to prospects of hardware primitives, free and open-source
models (e.g., RISC-V) gives researchers an advantage to easily explore design options without
the need to circumvent complex legacy systems or wait for hardware manufacturers to adopt
the designs. One opportunity is to build secure compilers from the ground up, in a similar
spirit to CompCert, but now for hardware.

3.3.9 Summary

There have been several success stories of introducing new hardware primitives that either
indirectly aid or are directly beneficial for improving security. Although this requires
substantial efforts from both industry and academia, the overall barrier to entry has and
continues to be reduced. The next step toward sustainable security is to make formal
verification an integral part of the process. Looking at the evolution of adopting security as
a first-class concern, we anticipate a similar journey for formal verification.



David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer 185

3.4 Verification techniques for secure compilation
Discussion led by Dominique Devriese (KU Leuven, BE)

License Creative Commons BY 4.0 International license
© Dominique Devriese

The discussion was centered on three major themes:
(1) what to prove about a secure compiler,
(2) how to prove secure compilation properties, and
(3) machine-checked proofs of secure compilation.

3.4.1 What to prove about a secure compiler?

There are generally two types of properties that one can formally prove about a secure
compiler. First: robust preservation of contextual equivalence (full abstraction) or the
generalization to robust preservation of hyperproperties on traces of interaction with the
outside world. These are robust in the sense that they consider security properties that hold
in the presence of an active attacker represented by a program context. Second: in some
settings, secure compilation is proven in a non-robust form as preservation of properties
on a trace. In such properties, a passive attacker is considered that only interacts with a
program through observing or providing inputs on the trace. This is the case, for example, for
constant-time preservation in constant-time compcert and the Jasmin compiler. Generally,
there is a consensus that it is good that many properties have been proposed so that we can
choose the best suited property for a particular system.

It was pointed out that some properties take a kind of hybrid perspective, combining both
a passive and active attacker. This is the case, for example, for the typical interpretation of
robust non-interference preservation, where the attacker is present as a context, but his/her
goal is to learn secrets from the trace of interactions with the outside world. It is not clear
whether the attacker should be able to manipulate traces in this model and how secrets may
enter a system. Some people think only the context should represent the active attacker and
traces and hyperproperties should represent only a success criterion for the attacker. It is
not generally clear how contexts (active attackers) can be given all the capabilities of traces.

3.4.2 How to prove secure compilation properties?

We have talked about the fact that weaker secure compilation properties can be easier to
prove. For example, back-translations may depend on more information, when proving
robust preservation of more restricted classes of hyperproperties. This has been used in
some results, but how large the advantage is, can depend on the compiler at hand. For
preservation of non-robust properties, one can do without a back-translation. For example,
constant-time preservation can be proven using specific forms of simulation cubes and related
techniques. Overapproximating an intended security property can also help to simplify proofs
(for example a policy on accessing information as an overapproximation for information flow).

A general challenge is the reuse of existing proofs when proving secure compilation.
We would like to be able to construct secure compilation proofs in such a way that they
can be reused in compiler chains. However, there is also interest in reusing a compiler
correctness proof when reasoning about a secure compiler. Some people point out that it can
be beneficial to decompose secure compiler (passes) into several smaller secure compiler passes.
Combining the results of secure compilation passes may not be obvious when they prove
(robust) preservation of different (hyper)properties. A framework like that of CompCertM

21481

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


186 21481 – Secure Compilation

may help to formulate intended secure compilation results in the presence of different calling
conventions. In addition to vertical composability, horizontal composability is an important
challenge, where it is not yet entirely clear how this should work.

3.4.3 Machine-checked secure compilation proofs

The final topic of discussion was the machine verification of secure compilation proofs. There
are very few papers that go all the way through this. These proofs are inherently hard and
it simply follows that mechanizing them is difficult.

It was asked whether sufficient value is attached to machine-verified proofs. Generally,
machine verification is regarded as an important extra quality for a paper (or an extra
contribution in a journal version), but not a result in itself, even though the amount of effort
can be similar to the amount of effort for the paper itself. A mechanization can sometimes
simply increase confidence in a result without adding much extra insights, but in some cases,
they have been known to uncover important problems that require additional insights to
solve.

Given the difficulty of machine-verified secure compilation proofs, some people suggest
that we should attempt to build libraries of reusable components and proofs. In the verified
compilation community, we have recently started seeing many results building on and
improving existing large formalizations (particularly CompCert) rather than starting from
scratch. It is not clear whether the field of secure compilation is already sufficiently mature
for a similar evolution to take place. To facilitate this further, it would be good if we have
reusable proofs of security primitives, common languages to express properties and traces,
shared languages for interacting with the outside world, contracts for side-channel leakage
etc.

3.5 Secure interoperability and compartmentalization
Discussion led by David Chisnall (Microsoft Research – Cambridge, UK)

License Creative Commons BY 4.0 International license
© David Chisnall

Modern programs are typically written in more than one language. There is a growing
trend towards writing as much as possible in safe languages to benefit from their extra
language-enforced guarantees. These guarantees hold only for code that enforces them. For
example, a C♯ or Java program linking to a C library must trust that the C code does not
contain any memory-safety bugs because a single memory-safety error can invalidate the
invariants in the safe part of the program.

Rewriting all of the existing code in a safe language is usually not economically feasible
even in the cases where it is technically possible. Waiting until everything in a program is
written in a safe language before being able to claim security properties arising from the
safe language is therefore not a valid option. Instead, we would like to explore options for
using unsafe code in safe ways. This problem requires exploring multiple levels of the stack,
including the safe languages’ abstract machines and the OS and hardware mechanisms used
for isolation.

This discussion was driven by several high-level questions, covered in the following
subsections.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer 187

3.5.1 What would you like to see in the abstract machines of new languages to
facilitate interoperability?

This discussion was partly related to previous discussion on verification techniques. Linear
memory and linear capabilities provide a clear transfer-of-ownership model that is easy
to reason about. Once memory has been transferred to an untrusted domain, the trusted
portion of a system does not have to enforce any guarantees for it. Transferring memory
back is more complicated and requires enforcement mechanisms to prevent the untrusted
code being able to access it.

Garbage collection poses some challenges for interoperability. Unsafe code must not be
able to materialise pointers to garbage-collected memory and the garbage collector must be
able to see and invalidate all pointers in untrusted memory. In the context of a model like
that of WebAssembly, is it possible to provide garbage collector as a service and prove (and
then rely on) properties of it?

Within the context of language abstractions there is a large open question: what properties
should be statically or dynamically enforced and in which contexts? For example, a common
compilation target (along the lines of Java or CLR bytecode) that has a strong type system
can guarantee a lot of properties (at the expense of requiring that these properties hold for
every source language) without the need for dynamic checks. Some dynamic checks can
be offloaded to hardware, for example CHERI can dynamically enforce spatial safety even
on uncooperative and untrusted machine code. Statically typed assembly languages have
a long history and allow interoperating code to make stronger assumptions, should we be
advocating for their use in all compilation chains, including those for unsafe languages?

A purely static approach to memory safety would require a very sophisticated type system,
which might not even be feasible in the general case. A strong type system might be useful
for optimization, where a language that statically guarantees certain properties can elide
dynamic checks. For example, a language without linear types would need indirection and
dynamic checks to guarantee that it enforced linearity at the boundary. There are still open
questions, even assuming the existence of such a type system, that existing code could have
dynamic checks inserted to be able to enforce useful properties at the interfaces.

WebAssembly, for example is typed (but its type system is simple) and therefore still
needs dynamic checks. This provides some evidence for the amount of typing that compilers
from C-like languages are willing to insert. Even simple properties, such as existential types,
are probably difficult to drive to universal adoption. Implementing a garbage collector on
top of WebAssembly is almost impossible because the type system does not differentiate
between pointers and integers. This would become feasible with something like MSWasm,
though some experiments implementing garbage collectors on top of CHERI suggest that
most C/C++ code is not correct in the presence of copying garbage collection and so one
would be restricted to non-moving collectors.

3.5.2 What guarantees in existing languages and abstract machines would you like
to be able to protect when composing languages?

For safe composition, the source language needs some kind of many-worlds abstraction.
Java has this at the abstract-machine level. The JNI defines an interface that allows Java
code to call native code and for the native code to interact with the JVM, but in typical
implementations there is no isolation enforced at the boundary. CHERI can be used to
retrofit strong enforcement at this kind of boundary but a two-world abstraction doesn’t
provide any useful fault isolation in the unsafe world: any native code can compromise any
other native code.

21481



188 21481 – Secure Compilation

Memory safety was identified as the key building block for safe composition. Even in the
absence of stronger guarantees, ensuring that a C module cannot access any memory that
is not explicitly passed to it allows a safe language to make strong guarantees about the
damage that a bug in the C code can do. Linearity, though not essential, was the top of the
nice-to-have list, giving a simple mechanism for ensuring temporal non-interference between
safe and unsafe components.

3.5.3 What features of existing languages would you like to be able to expose in
other languages?

As before in this discussion, linearity was top of the list for many participants. Stepping back
to think less specifically about source-language properties, there was one high-level guarantee
that the participants agreed was critical, the Vegas Principle: What happens in an unsafe
language, stays in the unsafe language. More specifically no sequence of operations in
one language may alter state shared between multiple languages in a way that is
not possible in all of the sharing languages.

Implementing secure interoperability is difficult if the abstraction is a Foreign Function
Interface (FFI), because there is no associated notion of state ownership with a function-call
abstraction. Ideally, we would have Foreign Library Interface (FLI) where one language
could instantiate components in another language and then invoke functions within the scope
of that instantiation. This is the model that the picoprocess abstraction, from the Bytecode
Alliance, and Project Verona, from Microsoft Research, are attempting to adopt.

A shared-nothing design, such as that used by Erlang’s to provide actors written in
other languages, is the simplest to secure. All communication requires a copy (at least
at the abstract-machine level) and so provides an explicit interception point. This also
makes it plausible to compose memory-management policies. Some components can have
garbage-collected private memory, others can have manual memory management, reference
counting, or linear types. There is no need for a global garbage collector unless a language
with automatic memory management can observe all memory.

The CHERI project has done a number of experiments on compartmentalization overheads.
In many cases on existing systems, the overhead comes from defensive copies. Hardware
acceleration for read-only sharing or ownership transfer would eliminate a lot of these.

3.5.4 What would language designers and implementers like hardware designers to
provide?

The participants at this seminar spanned hardware and software and so this discussion
provided an opportunity for software-facing researchers and practitioners to present a wishlist
of features and for those on the hardware side to provide feedback on their feasibility.

As before, linear types were a popular request. There have been several proposals for
linear capabilities on top of CHERI since around 2013. At the hardware level, these are
not very difficult. The hardware would clear the tag if a linear capability were loaded, zero
the source register on store, and require atomic exchange operations to load a usable linear
capability. The problems typically arise in the operating system and compiler. Even in
languages with linear types, compilers assume that they can duplicate register values, for
example spilling a pointer of a linear type to the stack, using it, and then clobbering it in
a subsequent instruction. Similarly, context-switch code, signal, and similar abstractions
in the operating system assume that it’s safe to load and store register values. Supporting
hardware-enforced linear capabilities would require invasive changes to the entire software
stack.



David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer 189

There have also been various proposals for restricting information flow in CHERI. The
current proposal has a 2-bit information-flow policy, with a local/global split and a store-local
permission such that local capabilities can be stored only through a capability with store-local
permission. C has thread-local, stack, heap, and global objects with different lifetimes and
so this policy is not sufficient for enforcing even this ordering (assuming C code that doesn’t
store stack pointers on the heap and so on). Capabilities for uninitialized memory that
require every memory location to be stored through would help with some categories of
vulnerability. These would allow a post-increment store on the address, but not loads until
the address reached the end of the object.

There has also been a proposal for store-once capabilities. These contain a one-bit counter
that is decremented on store. Attempting to store with the counter cleared would lose the
tag bit. This scheme would prevent some exploit techniques. For example, a spilled return
capability would be loadable multiple times but could not be stored to overwrite another
spilled return capability with a valid capability.

WebAssembly was designed to be efficient to implement on current commodity hardware.
The 32-bit memory model is partly accidental: it is easy to enforce on current hardware.
Proposals to extend WebAssembly to support a 64-bit address space have suffered from a
lack of efficient implementation techniques. Using multiple WebAssembly linear memories
has suffered similarly.

In general, it is important to remember one fundamental rule for safe interoperability:
Isolation is easy, (safe) sharing is hard. Full isolation can be achieved by complete
physical partitioning of resources, but useful interoperability requires close communication,
which typically implies data sharing (at least at the implementation level, even if the
abstract machine describes copies). WebAssembly with WASI, for example, could be trivially
implemented with native compilation and running the result in a process using Capsicum
sandboxing. This would result in very fast WebAssembly execution but would require a full
IPC and context switch for communication with the embedding environment, which would
be too slow.

3.5.5 What do people see as the biggest open problems in language
interoperability today?

From the formal side of the question, there are still a lot of open areas. If we want to
define a formal model and proof of safe interoperability between two languages, is there
a general understanding of what the proof structure should look like? Is there anything
beyond multi-language semantics, for example capturing properties of the mechanisms used
to enforce isolation?

On the practical side, there are very few examples of safe interoperability and most of
them are research prototypes. For example, Robusta, Arabica, and CHERI-JNI all provided
safe interoperability between Java and native code, but did not escape the lab. The examples
that do exist are effectively different syntaxes on the same language. For example, Java
and Kotlin both expose the JVM abstract machine, C♯ and F♯ the .NET abstract machine,
and TypeScript compiles directly to JavaScript and so supports all of the target’s semantics.
Are there core abstractions that are both efficient to implement in hardware and provide
useful guarantees for software engineering? Are sandboxing solutions part of this problem,
providing coarse-grained isolation with explicit sharing?

The whole problem domain of secure compilation can be seen as an extreme case of
safe interoperability, between a high-level language and a restricted subset of the target’s
functionality such that nothing in the output of a compiled program can violate the invariants
of the source semantics.

21481



190 21481 – Secure Compilation

4 Overview of Talks

4.1 Enforcement and compiler preservation of fine-grained
constant-time policies

Gilles Barthe (MPI-SP – Bochum, DE)

License Creative Commons BY 4.0 International license
© Gilles Barthe

Joint work of Gilles Barthe, Basavesh Ammanaghatta Shivakumar, Benjamin Gregoire, Vincent Laport, Swarn
Priya

The constant-time (CT) policy is an information flow policy used by crypto libraries as a
protection against cache-based side-channel attacks. At the core of the CT policy is a baseline
leakage model, which assumes that only memory accesses and control flow are leaked. While
this leakage model is adequate for analyzing many attacks from the literature: (a) it does
not account for time-variable instructions, whose execution time depends on its operands; (b)
it excludes real-world code, which uses a weaker leakage model and consequently achieves
higher performance. We introduce a general class of fine-grained constant-time policies
that supports both weaker and stronger leakage models and their combination. Then, we
propose a two-step approach for enforcing fine-grained constant-time policies: first, prove
that source programs are constant-time w.r.t. a fine-grained policy using relational Hoare
logic, and then prove that compilation preserves constant-time w.r.t. a fine-grained policy.
We implement the approach in the Jasmin framework for high-assurance cryptography. We
use the framework to verify real-world cryptographic code that was out of the scope of
previous approaches.

4.2 Formalizing Stack Safety as a Security Property
Roberto Blanco (MPI-SP – Bochum, DE)

License Creative Commons BY 4.0 International license
© Roberto Blanco

Joint work of Roberto Blanco, Sean Anderson, Leonidas Lampropoulos, Benjamin Pierce, Andrew Tolmach
Main reference Sean Noble Anderson, Leonidas Lampropoulos, Roberto Blanco, Benjamin C. Pierce, Andrew

Tolmach: “Security Properties for Stack Safety”, CoRR, Vol. abs/2105.00417, 2021.
URL https://arxiv.org/abs/2105.00417

What does “stack safety” mean, exactly? The phrase is associated with a variety of compiler,
run-time, and hardware mechanisms for protecting stack memory, but these mechanisms
typically lack precise specifications, relying instead on informal descriptions and examples of
the bad behaviors that they prevent.

We propose a generic, formal characterization of stack safety based on concepts from
language-based security: a combination of an integrity property (“the private state in each
caller’s stack frame is held invariant by the callee”), and a confidentiality property (“the
callee’s behavior is insensitive to the caller’s private state”), which can optionally be extended
with a control flow property.

We use these properties to validate the stack-safety micro-policies proposed by Roessler
and DeHon. Specifically, we check (with property-based random testing) that their “eager”
micro-policy, which catches violations as early as possible, enforces a simple “stepwise” variant
of our properties, and that (a repaired version of) their more performant “lazy” micro-policy
enforces a slightly weaker and more extensional observational property. Meanwhile our
testing successfully detects violations in several broken variants, including Roessler and
DeHon’s original lazy policy.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2105.00417
https://arxiv.org/abs/2105.00417
https://arxiv.org/abs/2105.00417


David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer 191

4.3 Are Compiler Optimizations Doing it Wrong? An Investigation of
Array Bounds Checking Elimination

Stefan Brunthaler (Universität der Bundeswehr – München, DE)

License Creative Commons BY 4.0 International license
© Stefan Brunthaler

At the 2018 Secure Compilation meeting, I had several interesting discussions, which eventu-
ally lead to the realization that compiler optimizations usually have no stated threat model
and are thus assuming overly benign operating conditions that do not withstand scrutiny at
a closer look. In this talk, I present my preliminary analysis of a popular array bounds check
elimination algorithm, ABCD.

4.4 Cross-Language Attacks
Nathan Burow (MIT Lincoln Laboratory – Lexington, US)

License Creative Commons BY 4.0 International license
© Nathan Burow

Joint work of Nathan Burow, Hamed Okhravi, Samuel Mergendahl
Main reference Samuel Mergendahl, Nathan Burow, Hamed Okhravi: “Cross-Language Attacks”, Proceedings of the

Network and Distributed System Security Symposium (NDSS’22), San Diego, CA, 2022

Memory corruption attacks against unsafe pro- gramming languages like C/C++ have been
a major threat to computer systems for multiple decades. Various sanitizers and runtime
exploit mitigation techniques have been shown to only provide partial protection at best.
Recently developed “safe” programming languages such as Rust and Go hold the promise to
change this paradigm by preventing memory corruption bugs using a strong type system and
proper compile-time and runtime checks. Gradual deployment of these languages has been
touted as a way of improving the security of existing applications before entire applications
can be developed in safe languages. This is notable in popular applications such as Firefox
and Tor. In this paper, we systematically analyze the security of multi-language applications.
We show that because language safety checks in safe languages and exploit mitigation
techniques applied to unsafe languages (e.g., Control-Flow Integrity) break different stages of
an exploit to prevent control hijacking attacks, an attacker can carefully maneuver between
the languages to mount a successful attack. In essence, we illustrate that the incompatible
set of assumptions made in various languages enables attacks that are not possible in each
language alone. We study different variants of these attacks and analyze Firefox to illustrate
the feasibility and extent of this problem. Our findings show that gradual deployment of
safe programming languages, if not done with extreme care, can indeed be detrimental to
security.

21481

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
Samuel Mergendahl, Nathan Burow, Hamed Okhravi: ``Cross-Language Attacks'', Proceedings of the Network and Distributed System Security Symposium (NDSS'22), San Diego, CA, 2022
Samuel Mergendahl, Nathan Burow, Hamed Okhravi: ``Cross-Language Attacks'', Proceedings of the Network and Distributed System Security Symposium (NDSS'22), San Diego, CA, 2022


192 21481 – Secure Compilation

4.5 Securing Interruptible Enclaved Execution on Small Microprocessors
Matteo Busi (University of Pisa, IT)

License Creative Commons BY 4.0 International license
© Matteo Busi

Joint work of Matteo Busi, Job Noorman, Jo Van Bulck, Letterio Galletta, Pierpaolo Degano, Jan Tobias
Mühlberg, Frank Piessens

Main reference Matteo Busi, Job Noorman, Jo Van Bulck, Letterio Galletta, Pierpaolo Degano, Jan Tobias
Mühlberg, Frank Piessens: “Securing Interruptible Enclaved Execution on Small Microprocessors”,
ACM Trans. Program. Lang. Syst., Vol. 43(3), pp. 12:1–12:77, 2021.

URL https://doi.org/10.1145/3470534

Computer systems often provide hardware support for isolation mechanisms like privilege
levels, virtual memory, or enclaved execution. Over the past years, several successful software-
based side-channel attacks have been developed that break, or at least significantly weaken
the isolation that these mechanisms offer. Extending a processor with new architectural or
micro-architectural features brings a risk of introducing new software-based side-channel
attacks.

In this talk we show how we extended a processor with new features without weakening the
security of the isolation mechanisms that the processor offers. Our solution is heavily based
on techniques from research on programming languages. More specifically, we propose to use
the programming language concept of full abstraction as a general formal criterion for the
security of a processor extension. We instantiate the proposed criterion to the concrete case
of extending a microprocessor that supports enclaved execution with secure interruptibility.
This is a very relevant instantiation as several recent papers have shown that interruptibility
of enclaves leads to a variety of software-based side-channel attacks. We propose a design
for interruptible enclaves, prove that it satisfies our security criterion and explain how such
design drove the actual implementation of an enclave-enabled microprocessor.

4.6 Project Verona: An abstract machine allowing partial verification
David Chisnall (Microsoft Research – Cambridge, UK)

License Creative Commons BY 4.0 International license
© David Chisnall

URL https://github.com/Microsoft/Verona

Project Verona is a project by MSR in collaboration with various academic partners to build
a new secure programming language for large-scale infrastructure. Verona aims to eliminate
any “unsafe” escape hatches so that the type safety and concurrency safety guarantees exist
even in the presence of existing C/C++ libraries.

Verona has a “many worlds” abstract machine, providing isolation at the type-system
level for units of concurrent execution and for data structures that can be transferred between
units of execution. For pure Verona code, we aim to enforce all of these guarantees statically
in the compiler, rejecting programs that would violate them. For programs using foreign
libraries, we aim to use the type system to define where we must add dynamic checks.

Verona intends to expose instances of foreign libraries as regions, with an isolated memory
space (containing the library’s heap, stack, globals, and so on) for each instance. This can
be enforced with various techniques, such as processes, other MMU-based isolation, SFI,
CHERI. The guarantees exposed from Verona to the foreign code are similarly strong: No
concurrent access, no out-of-bounds memory accesses. Verona is currently an early-stage
research project, this talk aims to provide a taste of the guarantees that we expect to be able
to provide to people who will be able to use them as a building block for partially verified
systems.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3470534
https://doi.org/10.1145/3470534
https://doi.org/10.1145/3470534
https://doi.org/10.1145/3470534
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/Microsoft/Verona


David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer 193

4.7 On information flow preserving refinement
Mads Dam (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 4.0 International license
© Mads Dam

Joint work of Mads Dam, Christoph Baumann, Hamed nemati, Roberto Guanciale
Main reference Christoph Baumann, Mads Dam, Roberto Guanciale, Hamed Nemati: “On Compositional

Information Flow Aware Refinement”, in Proc. of the 34th IEEE Computer Security Foundations
Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021, pp. 1–16, IEEE, 2021.

URL https://doi.org/10.1109/CSF51468.2021.00010

Information flow security and refinement have had a troublesome relationship since many
years. Refinement injects implementation decisions that in general will cause information
content to increase and, as a consequence, can cause information flow properties to be violated.
How to address this in a way that supports the many use cases of refinement (changes in data
representation, reduction of nondeterminism/underspecification, addition of new observation
variables, for instance to reflect low-level features such as caches) has remained open for many
years. Building on initial work by Morgan we propose a new approach based on ignorance
preservation: A refinement step should be viewed as information flow preserving, if it does
not cause observers ignorance to be reduced, for instance by revealing some secret bit of
information. In the talk we present the basic epistemic set-up, give some examples, and
discuss different proof methods and complications related, in particular, to compositionality.

4.8 Formalizing ISA security guarantees in the form of universal
contracts

Dominique Devriese (KU Leuven, BE)

License Creative Commons BY 4.0 International license
© Dominique Devriese

Joint work of Dominique Devriese, Sander Huyghebaert, Steven Keuchel

Where ISA specifications used to be defined in long prose documents, we have recently seen
progress on formal and executable ISA specifications. However, for now, formal specifications
provide only a functional specification of the ISA, without specifying the ISA’s security
guarantees. In this paper, we present a novel, general approach to specify an ISA’s security
guarantee in a way that (1) can be semi-automatically validated against the ISA semantics,
producing a mechanically verifiable proof, (2) supports informal and formal reasoning about
security-critical software in the presence of adversarial code. Our approach is based on the use
of universal contracts: software contracts that express bounds on the authority of arbitrary
untrusted code on the ISA. We semi-automatically verify these contracts against existing
ISA semantics implemented in Sail using our Katamaran tool: a verified, semi-automatic
separation logic verifier for Sail. For now, in this paper, we will illustrate our approach for
MinimalCaps: a simplified custom-built capability machine ISA. However, we believe our
approach has the potential to redefine the formalization of ISA security guarantees and we
will sketch our vision and plans.

21481

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/CSF51468.2021.00010
https://doi.org/10.1109/CSF51468.2021.00010
https://doi.org/10.1109/CSF51468.2021.00010
https://doi.org/10.1109/CSF51468.2021.00010
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


194 21481 – Secure Compilation

4.9 Proof techniques for secure compilation with memory sharing
Akram El-Korashy (MPI-SWS – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Akram El-Korashy

Joint work of Akram El-Korashy, Adrien Durier, Roberto Blanco, Deepak Garg, Catalin Hritcu, Jeremy Thibault
Main reference Akram El-Korashy, Roberto Blanco, Jérémy Thibault, Adrien Durier, Deepak Garg, Catalin Hritcu:

“SecurePtrs: Proving Secure Compilation with Data-Flow Back-Translation and Turn-Taking
Simulation”, CoRR, Vol. abs/2110.01439, 2021.

URL https://arxiv.org/abs/2110.01439

In two recent pieces of work, we studied techniques for proving two theorems about secure
compilation of partial programs (namely, a compiler full abstraction and a preservation
of robust safety theorem). Secure compilation of partial programs aims to defend against
adversarial contexts (e.g. untrusted libraries). We focus on settings in which the compiled
partial program is allowed to share – at run-time – parts of its memory with the context by
pointer passing (and the context is also allowed the same).

Proving secure compilation of partial programs typically requires back-translating a target
attack against the compiled program to an attack against the source program. To prove this
back-translation step, we propose a new technique called data-flow back-translation that is
simple, handles unstructured control flow and memory sharing well, and we have proved it
correct in Coq.

Our proof techniques work without relying on any assumption about the behavior of the
context, but they do rely on target-language support that enforces spatial memory safety. I
will present the proof techniques and explain how they allow reusing whole-program compiler
correctness proofs. Such reuse is novel, especially for settings with memory sharing, and it is
practically desirable in order to avoid redoing laborious proofs should a compiler correctness
theorem already exist.

4.10 Preserving Memory Safety from C to MSWasm
Anitha Gollamudi (Yale University – New Haven, US)

License Creative Commons BY 4.0 International license
© Anitha Gollamudi

Joint work of Anitha Gollamudi, Marco Vassena, Marco Patrignani, Deian Stefan, Craig Disselkoen, Alexandra
Michael, Aidan Denlinger, Bryan Parno, Jay Bosamiya, Conrad Watt

WebAssembly (Wasm) has gained traction as the new portable compilation target language
for deploying on the web applications written in high-level source languages like C, C++,
and Rust. Memory safety is key to the isolation mechanism of the sandboxed execution
environment: well-typed programs cannot corrupt the memory outside the sandbox (e.g.,
the Javascript virtual machine). Unfortunately, Wasm is still insecure: buffer overflows and
use-after-free can still corrupt the memory of a program within the sandbox, opening the
door to attacks like cross-site scripting and remote code execution.

In this talk we present Memory-Safe WebAssembly (MSWasm), an extension of Wasm
with built-in spatial memory safety. That is, any well-typed program in MSWasm is proven
to attain spatial memory safety robustly, i.e., even in the presence of arbitrary code the
program links against. Additionally, we show that MSWasm can be used as a compilation
target for C programs.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2110.01439
https://arxiv.org/abs/2110.01439
https://arxiv.org/abs/2110.01439
https://arxiv.org/abs/2110.01439
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer 195

Our MSWasm development is built with solid formal foundations: we provide a formal
model of MSWasm which we use to prove robust spatial memory safety; we formalise our
compiler from (a subset of) C to MSWasm and prove that the compiler is not just correct,
but it preserves memory safety of C programs into their MSWasm counterparts; and provide
an implementation for C to MSWasm as well as benchmark its efficiency.

4.11 Contract-aware secure compilation: a foundation for side-channel
resistant compilers – Challenges and open questions

Marco Guarnieri (IMDEA Software – Madrid, ES)

License Creative Commons BY 4.0 International license
© Marco Guarnieri

In the talk, I discussed how compilers can help in building systems that are secure against
side-channel and microarchitectural attacks. For this, I presented an overview of hardware-
software contracts: an abstraction that captures a processor’s security guarantees in a simple,
mechanism-independent manner by specifying which program executions a microarchitectural
attacker can distinguish. Next, I introduced the idea of contract-aware secure compilation
(CASCO). Contract-aware compilers leverage the guarantees expressed in a given contract to
generate code that is free from microarchitectural leaks. This enables decoupling program-
level security (e.g., ensuring that a password is not leaked under the program semantics),
which is the programmer’s responsibility, from microarchitectural security (e.g., ensuring
that a password is not leaked due to microarchitectural side-effects), which is automatically
enforced by compilers. I concluded by discussing challenges and open questions that needs
to be solved for building CASCO compilers.

4.12 Formally verifying a secure compilation chain for unsafe C
components

Catalin Hritcu (MPI-SP – Bochum, DE)

License Creative Commons BY 4.0 International license
© Catalin Hritcu

Joint work of Catalin Hritcu, Arthur Azevedo de Amorim, Roberto Blanco, Akram El-Korashy, Deepak Garg,
Marco Patrignani, Jeremy Thibault, Carmine Abate, Ştefan Ciobâcǎ, Adrien Durier, Boris Eng, Ana
Nora Evans, Guglielmo Fachini, Théo Laurent, Benjamin C. Pierce, Marco Stronati, Éric Tanter,
Andrew Tolmach

Main reference Guglielmo Fachini, Catalin Hritcu, Marco Stronati, Arthur Azevedo de Amorim, Ana Nora Evans,
Carmine Abate, Roberto Blanco, Théo Laurent, Benjamin C. Pierce, Andrew Tolmach: “When
Good Components Go Bad: Formally Secure Compilation Despite Dynamic Compromise”, CoRR,
Vol. abs/1802.00588, 2018.

URL http://arxiv.org/abs/1802.00588

Undefined behavior is widespread in the C language and leads to devastating security
vulnerabilities. We study how compartmentalization can mitigate this problem by restricting
the scope of undefined behavior both (1) spatially to just the components that encounter
undefined behavior and (2) temporally by still providing protection to each component up
to the point in time when it encounters undefined behavior and becomes compromised.
In this talk, we report on a project that has been ongoing for over 5 years on building a
formally verified secure compilation chain for unsafe C components based on a variant of the
CompCert compiler and various low-level enforcement mechanisms.

21481

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1802.00588
http://arxiv.org/abs/1802.00588
http://arxiv.org/abs/1802.00588
http://arxiv.org/abs/1802.00588
http://arxiv.org/abs/1802.00588


196 21481 – Secure Compilation

We discuss how far did we get and what were the main challenges we had to overcome:
from defining formally what it means for a compilation chain to be secure in this setting,
to devising more scalable proof techniques that also allow sharing memory dynamically
by passing pointers between components, from mechanizing our proofs in the Coq proof
assistant, to supporting multiple enforcement mechanisms such as SFI and a programmable
tagged architecture. We conclude with future work specific to our project as well as more
general open challenges.

4.13 Conditional Contextual Refinement
Chung-Kil Hur (Seoul National University – Seoul, KR)

License Creative Commons BY 4.0 International license
© Chung-Kil Hur

Joint work of Chung-Kil Hur, Youngju Song, Minki Cho, Dongjae Lee

Contextual refinement (CR) is one of the standard notions of specifying open programs.
CR has two main advantages: (i) (horizontal and vertical) compositionality that allows us
to decompose a large contextual refinement into many smaller ones enabling modular and
incremental verification, and (ii) no restriction on programming features thereby allowing,
e.g., mutual recursive, pointer-value passing, and higher-order functions. However, CR has a
downside that it cannot impose conditions on the context since it quantifies over all contexts,
which indeed plays a key role in support of full compositionality and programming features.

In this work, we address the problem of finding a notion of refinement that satisfies all
three requirements: support of full compositionality, full (sequential) programming features,
and rich conditions on the context. As a solution, we propose a new theory of refinement,
called CCR (Conditional Contextual Refinement), and develop a verification framework
based on it, which allows us to modularly and incrementally verify a concrete module against
an abstract module under separation-logic-style pre and post conditions about external
modules. It is fully formalized in Coq and provides a proof mode that combines (i) simulation
reasoning about preservation of side effects such as IO events and termination and (ii)
propositional reasoning about pre and post conditions. Also, the verification results are
combined with CompCert, so that we formally establish behavioral refinement from top-level
abstract programs, all the way down to their assembly code.

4.14 CompCertO: Compiling Certified Open C Components
Jérémie Koenig (Yale University – New Haven, US)

License Creative Commons BY 4.0 International license
© Jérémie Koenig

Joint work of Jérémie Koenig, Zhong Shao
Main reference Jérémie Koenig, Zhong Shao: “CompCertO: compiling certified open C components”, in Proc. of the

PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 2021, pp. 1095–1109, ACM, 2021.

URL https://doi.org/10.1145/3453483.3454097

Since the introduction of CompCert, researchers have been refining its language semantics
and correctness theorem, and used them as components in software verification efforts.
Meanwhile, artifacts ranging from CPU designs to network protocols have been successfully
verified, and there is interest in making them interoperable to tackle end-to-end verification at

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1145/3453483.3454097


David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer 197

an even larger scale. Recent work shows that a synthesis of game semantics, refinement-based
methods, and abstraction layers has the potential to serve as a common theory of certified
components. Integrating certified compilers to such a theory is a critical goal. However, none
of the existing variants of CompCert meets the requirements we have identified for this task.
CompCertO extends the correctness theorem of CompCert to characterize compiled program
components directly in terms of their interaction with each other. Through a careful and
compositional treatment of calling conventions, this is achieved with minimal effort.

4.15 Changing Compilation without Changing the Compiler
Per Larsen (Immunant – Irvine, US)

License Creative Commons BY 4.0 International license
© Per Larsen

Joint work of Per Larsen, Andrei Homescu, Stephen Crane

Lots of security research requires changing how compilation is done. For prototyping purposes,
this is usually done by downloading the source code of the compiler, etc. If the underlying
techniques were ever to be put into practice, we run into the problem that different folks use
different compilers. This talk covers a few projects that ran into this challenge and what
one can do to avoid the need to customize the compiler. Specifically, I will cover a code
randomization project that wraps the linker to rewrite the output of the compiler and a
compartmentalization project that rewrites C/C++ headers to avoid modifying the compiler.

4.16 WebAssembly as an intermediate language for safe interoperability
Zoe Paraskevopoulou (Northeastern University – Boston, US)

License Creative Commons BY 4.0 International license
© Zoe Paraskevopoulou

Joint work of Zoe Paraskevopoulou, Amal Ahmed, Michael Fitzgibbons

In this talk I discussed ongoing work on WebAssembly that focuses on enhancing WebAssembly
with capabilities (static and dynamic) in order to facilitate interoperability between languages
with different features.

4.17 Compositional Secure Compilation against Spectre
Marco Patrignani (CISPA – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Marco Patrignani

Joint work of Marco Patrignani, Marco Guarnieri, Xaver Fabian, Matthis Kruse
Main reference Marco Guarnieri, Marco Patrignani: “Exorcising Spectres with Secure Compilers”, CoRR,

Vol. abs/1910.08607, 2019.
URL http://arxiv.org/abs/1910.08607

I reported on the CCS’21 paper on the secure compilation against spectre v1 and then talk
about how we want to scale these results to v2, v4, v5 and their compositions (e.g., proving
that a compiler is secure against v1+v4 simultaneously). Doing this requires reasoning
compositionally about robust compilation and what properties we want to preserve, which

21481

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1910.08607
http://arxiv.org/abs/1910.08607
http://arxiv.org/abs/1910.08607


198 21481 – Secure Compilation

is an interesting extension of the robust compilation line of work. I also spoke about this
compositionality issue in more general terms, trying to generalise these results beyond
preservation of Spectre security to the preservation of other security properties.

4.18 Automatic inference of effective compartmentalization policies
Mathias Payer (EPFL – Lausanne, CH)

License Creative Commons BY 4.0 International license
© Mathias Payer

Severe vulnerabilities are continuously discovered in low level code. Those vulnerabilities
threaten the confidentiality and integrity of our systems. Compartmentalization enforces
isolation between components and allows breaking up large complex systems into small trust
compartments that contain any faults.

While different efficient compartmentalization mechanisms exist, developing effective
policies is challenging and generally remains a manual process. In a study on the Linux
kernel, we evaluate the feasibility of simple directory-based policies and develop a framework
for reasoning about memory accesses during program execution [1].

Shifting towards generating policies, we propose two approaches that leverage the language
environment to implement effective compartmentalization. First, HAKCs [2] targets the
Linux kernel and allows developers to specify ownership for data along with passing said
data between strictly enforced compartments. This explicit ownership model enables efficient
checks but revoking privileges for aliased pointers remains challenging. In a prototype
targeting the IPv6 module, we demonstrate how such compartmentalization is feasible.
Second, in programming environments that heavily rely on third-party libraries, trusting
said libraries remains challenging and this trust may be broken by arbitrary updates that
are outside of the control of the software developer. With Enclosures [3], we enable flexible
closures that bind calls across library boundaries to dynamically created compartments with
access to limited system calls. The address space of the process is shared, in part, with the
compartment so that data exchange effectively functions.

Finally, we discuss extensions to existing architectures that enable efficient sharing
between compartments. Our RISC V prototype leverages a metadata table that defines
compartments inside an address space (similar, at a high level, to flexible segments with an
inter-segment switching policy), introducing unprivileged instructions that securely switch
between compartments.

The discussion centered around effective implementations, creation of strict policies, and
limitations of different hardware extensions. Compartmentalization is an active research
area that profits from advances in secure compilation in several ways, namely through policy
generation, inference of compartment boundaries, and integration as well as activation of
the different hardware extensions. Many challenging open questions remain in this active
research area.

References
1 uSCOPE: A Methodology for Analyzing Least-Privilege Compartmentalization in Large

Software Artifacts. Nick Roessler, Lucas Atayde, Imani Palmer, Derrick McKee, Jai Pandey,
Vasileios P. Kemerlis, Mathias Payer, Adam Bates, Andre DeHon, Jonathan M. Smith, and
Nathan Dautenhahn. In RAID’21: Recent Advances in Intrusion Detection, 2021

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer 199

2 Preventing Kernel Hacks with HAKCs. Derrick McKee, Yianni Giannaris, Carolina Ortega,
Howard Shrobe, Mathias Payer, Hamed Okhravi, and Nathan Burow. In NDSS’22: Network
and Distributed System Security Symposium, 2022

3 Enclosure: language-based restriction of untrusted libraries. Adrien Ghosn, Marios Kogias,
Mathias Payer, James R. Larus, and Edouard Bugnion. In ASPLOS’21: International
Conference on Architectural Support for Programming Languages and Operating Systems,
2021

4.19 Hardware-Software Contracts and Secure Programming
Jan Reineke (Universität des Saarlandes – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Jan Reineke

Joint work of Jan Reineke, Marco Guarnieri, Boris Köpf, Pepe Vila
Main reference Marco Guarnieri, Boris Köpf, Jan Reineke, Pepe Vila: “Hardware-Software Contracts for Secure

Speculation”, in Proc. of the 2021 IEEE Symposium on Security and Privacy (SP), pp. 1868–1883,
2021.

URL https://doi.org/10.1109/SP40001.2021.00036

Cache attacks and more recently transient-execution attacks demonstrate that microar-
chitectural components may leak information in unintended and surprising ways. I will
discuss recent work on formally capturing microarchitectural leakage using hardware-software
contracts with the goal of enabling secure programming.

4.20 Hardware-assisted testing in production
Kostya Serebriany (Google – Mountain View, US)

License Creative Commons BY 4.0 International license
© Kostya Serebriany

Every software vendor is trying to “shift left”, i.e. to move bug detection to earlier stages
of software development. This is an important goal, which we are unlikely to ever achieve
100%, and thus we need to keep finding bugs when the software is already released. In this
talk we will discuss three testing mechanisms that use special hardware features to enable
sampled bug detection with near-zero overhead in production:

GWP-ASan, detects heap corruption with hardware page protection.
Per-allocation sampling with Arm Memory Tagging Extension.
GWP-TSan, detects data races using hardware watchpoints.

21481

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1109/SP40001.2021.00036
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


200 21481 – Secure Compilation

4.21 Morello status and verification
Peter Sewell (University of Cambridge, UK)

License Creative Commons BY 4.0 International license
© Peter Sewell

Main reference Thomas Bauereiss, Brian Campbell, Thomas Sewell, Alasdair Armstrong, Lawrence Esswood, Ian
Stark, Graeme Barnes, Robert N. M. Watson, Peter Sewell: “Verified security for the Morello
capability-enhanced prototype Arm architecture”, 2021.

URL https://doi.org/10.48456/tr-959

I gave an update on the state of Morello, the Arm prototype architecture and processor
incorporating CHERI hardware capability support, and on our work to verify fundamental
properties of the full 62k LoS architecture specification.

4.22 A Wishlist for the Next Generation of Trusted Execution
Environments

Shweta Shinde (ETH Zürich, CH)

License Creative Commons BY 4.0 International license
© Shweta Shinde

I highlighted the ongoing initiatives and research directions for building the next generation of
trusted execution environments with the primary goal of supporting verified secure software.

4.23 Swivel: Hardening WebAssembly against Spectre
Deian Stefan (University of California – San Diego, US)

License Creative Commons BY 4.0 International license
© Deian Stefan

Joint work of Deian Stefan, Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan Johnson,
Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham, Dean Tullsen

Main reference Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan Johnson, Zhao Gang,
Anjo Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham, Dean Tullsen, Deian Stefan: “Swivel:
Hardening WebAssembly against Spectre”, in Proc. of the 30th USENIX Security Symposium
(USENIX Security 21), pp. 1433–1450, USENIX Association, 2021.

URL https://www.usenix.org/conference/usenixsecurity21/presentation/narayan

We describe Swivel, a new compiler framework for hardening WebAssembly (Wasm) against
Spectre attacks. Outside the browser, Wasm has become a popular lightweight, in-process
sandbox and is, for example, used in production to isolate different clients on edge clouds and
function-as-a-service platforms. Unfortunately, Spectre attacks can bypass Wasm’s isolation
guarantees. Swivel hardens Wasm against this class of attacks by ensuring that potentially
malicious code can neither use Spectre attacks to break out of the Wasm sandbox nor coerce
victim code-another Wasm client or the embedding process-to leak secret data. We describe
two Swivel designs, a software-only approach that can be used on existing CPUs, and a
hardware-assisted approach that uses extension available in Intel 11th generation CPUs.
For both, we evaluate a randomized approach that mitigates Spectre and a deterministic
approach that eliminates Spectre altogether. Our randomized implementations impose under
10.3% overhead on the Wasm-compatible subset of SPEC 2006, while our deterministic imple-
mentations impose overheads between 3.3% and 240.2%. Though high on some benchmarks,
Swivel’s overhead is still between 9x and 36.3x smaller than existing defenses that rely on
pipeline fences.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48456/tr-959
https://doi.org/10.48456/tr-959
https://doi.org/10.48456/tr-959
https://doi.org/10.48456/tr-959
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan


David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer 201

4.24 Compiler-based Side Channel Detection and Mitigation
Gang Tan (Pennsylvania State University – University Park, US)

License Creative Commons BY 4.0 International license
© Gang Tan

Main reference Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan, Mahmut Kandemir: “CaSym: Cache Aware
Symbolic Execution for Side Channel Detection and Mitigation”, in Proc. of the 2019 IEEE
Symposium on Security and Privacy (SP), pp. 505–521, 2019.

URL https://doi.org/10.1109/SP.2019.00022
Main reference Robert Brotzman, Danfeng Zhang, Mahmut Taylan Kandemir, Gang Tan: “SpecSafe: detecting

cache side channels in a speculative world”, Proc. ACM Program. Lang., Vol. 5(OOPSLA), pp. 1–28,
2021.

URL https://doi.org/10.1145/3485506

We describe two systems (CaSym and SpecSafe), which use symbolic execution to detect and
mitigate cache-based side channels in software or verify their absence. We will also discuss
what components are needed to achieve secure compilation in the presence of side channels
caused by conventional or speculative execution.

4.25 Cerise: Program Verification on a Capability Machine in the
Presence of Untrusted Code

Thomas Van Strydonck (KU Leuven, BE)

License Creative Commons BY 4.0 International license
© Thomas Van Strydonck

Joint work of Thomas Van Strydonck, Lars Birkedal, Dominique Devriese, Armaël Guéneau, Aïna Linn Georges,
Amin Timany, Alix Trieu

URL https://github.com/logsem/cerise

A capability machine is a type of CPU allowing fine-grained privilege separation using
capabilities, machine words that represent certain kinds of authority. We present Cerise, a
mathematical model and accompanying proof methods that can be used for formal verification
of functional correctness of programs running on a capability machine, even when they
invoke and are invoked by unknown (and possibly malicious) code. Our work has been
entirely mechanized in the Coq proof assistant using the Iris program logic framework. The
methodology we present underlies recent work of the authors on formal reasoning about
capability machines, but was left somewhat implicit in those publications. This presentation
exposes in further details a pedagogical introduction to the methodology, in a simple setting
(no exotic capabilities), and starting from minimal examples.

4.26 Software Supply Chains: Challenges and Opportunities
Nikos Vasilakis (MIT – Cambridge, US)

License Creative Commons BY 4.0 International license
© Nikos Vasilakis

To lower the time and cost of engineering software, developers today use software supply
chains of unprecedented scale: It is not uncommon for a modern application to use hundreds
or even thousands of third-party dependencies developed by many developers with varying
needs, skill levels, care, and intentions. In this talk, I will outline some of the security
challenges associated with third-party dependencies, and show how key characteristics of
these dependencies enable program-transformation techniques to overcome these challenges
while keeping developer burden manageable.

21481

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/SP.2019.00022
https://doi.org/10.1109/SP.2019.00022
https://doi.org/10.1109/SP.2019.00022
https://doi.org/10.1109/SP.2019.00022
https://doi.org/10.1145/3485506
https://doi.org/10.1145/3485506
https://doi.org/10.1145/3485506
https://doi.org/10.1145/3485506
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/logsem/cerise
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


202 21481 – Secure Compilation

4.27 How we design hardware and what is costs?
Ingrid Verbauwhede (KU Leuven, BE)

License Creative Commons BY 4.0 International license
© Ingrid Verbauwhede

I gave basics on what are the hardware design constraints: how we measure performance,
throughput, latency.

4.28 Verifying Speculation Security of Processor Implementations
Drew Zagieboylo (Cornell University – Ithaca, US)

License Creative Commons BY 4.0 International license
© Drew Zagieboylo

Joint work of Drew Zagieboylo, Edward Suh, Andrew Myers

We discuss existing tools for verifying security properties in RTL designs and their applica-
bility to speculation-aware contracts. In particular, we highlight the difficulty of verifying
speculation security since it is often dependent upon verifying functional correctness. Exist-
ing tools either require significant manual input which cannot easily be re-purposed across
designs, or they involve assumptions which are difficult to trust or reason about in complex
designs.

We propose integrating domain knowledge of speculative processor design directly into a
higher-level hardware description language to simplify correctness and speculative-security
reasoning. We hope to limit difficult RTL verification tasks to modularized components
that abstract common microarchitectural optimizations such as bypassing, speculation, and
instruction re-ordering.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer 203

Participants

Roberto Blanco
MPI-SP – Bochum, DE

Stefan Brunthaler
Universität der Bundeswehr –
München, DE

Matteo Busi
University of Pisa, IT

Dominique Devriese
KU Leuven, BE

Akram El-Korashy
MPI-SWS – Saarbrücken, DE

Deepak Garg
MPI-SWS – Saarbrücken, DE

Anitha Gollamudi
Yale University – New Haven, US

Marco Guarnieri
IMDEA Software – Madrid, ES

Catalin Hritcu
MPI-SP – Bochum, DE

Marco Patrignani
CISPA – Saarbrücken, DE

Jan Reineke
Universität des Saarlandes –
Saarbrücken, DE

Shweta Shinde
ETH Zürich, CH

Jeremy Thibault
MPI-SP – Bochum, DE

Thomas Van Strydonck
KU Leuven, BE

Ingrid Verbauwhede
KU Leuven, BE

Remote Participants

Amal Ahmed
Northeastern University –
Boston, US

Arthur Azevedo de Amorim
Boston University, US

Gilles Barthe
MPI-SP – Bochum, DE

Joseph Bialek
Microsoft – Redmond, US

Sandrine Blazy
University & IRISA –
Rennes, FR

Nathan Burow
MIT Lincoln Laboratory –
Lexington, US

David Chisnall
Microsoft Research –
Cambridge, GB

Mads Dam
KTH Royal Institute of
Technology – Stockholm, SE

Ergys Dona
EPFL Lausanne, CH

Cédric Fournet
Microsoft Research –
Cambridge, GB

Tal Garfinkel
Corepoint Systems –
Penn Valley, US

Chung-Kil Hur
Seoul National University, KR

Jérémie Koenig
Yale University – New Haven, US

Per Larsen
Immunant – Irvine, US

Amit Levy
Princeton University, US

Toby Murray
The University of Melbourne, AU

Andrew Myers
Cornell University – Ithaca, US

Santosh Nagarakatte
Rutgers University –
Piscataway, US

Elisabeth Oswald
Alpen-Adria-Universität
Klagenfurt, AT

Zoe Paraskevopoulou
Northeastern University –
Boston, US

Mathias Payer
EPFL – Lausanne, CH

21481



204 21481 – Secure Compilation

Andreas Rossberg
Dfinity – Zürich, CH

Kostya Serebryany
Google – Mountain View, US

Peter Sewell
University of Cambridge, GB

Zhong Shao
Yale University – New Haven, US

Deian Stefan
University of California –
San Diego, US

Gang Tan
Pennsylvania State University –
University Park, US

Nikos Vasilakis
MIT – Cambridge, US

Marco Vassena
CISPA – Saarbrücken, DE

Drew Zagieboylo
Cornell University – Ithaca, US


	Executive Summary David Chisnall, Deepak Garg, Catalin Hritcu, and Mathias Payer
	Table of Contents
	Plenary Discussions
	Real-world deployment and remaining frontiers for secure compilation research Mathias Payer
	Microarchitectural and side-channel attacks Marco Guarnieri
	Designing New Security Architectures and Verifying their Properties Shweta Shinde
	Verification techniques for secure compilation Dominique Devriese
	Secure interoperability and compartmentalization David Chisnall

	Overview of Talks
	Enforcement and compiler preservation of fine-grained constant-time policies Gilles Barthe
	Formalizing Stack Safety as a Security Property Roberto Blanco
	Are Compiler Optimizations Doing it Wrong? An Investigation of Array Bounds Checking Elimination Stefan Brunthaler
	Cross-Language Attacks Nathan Burow
	Securing Interruptible Enclaved Execution on Small Microprocessors Matteo Busi
	Project Verona: An abstract machine allowing partial verification David Chisnall
	On information flow preserving refinement Mads Dam
	Formalizing ISA security guarantees in the form of universal contracts Dominique Devriese
	Proof techniques for secure compilation with memory sharing Akram El-Korashy
	Preserving Memory Safety from C to MSWasm Anitha Gollamudi
	Contract-aware secure compilation: a foundation for side-channel resistant compilers – Challenges and open questions Marco Guarnieri
	Formally verifying a secure compilation chain for unsafe C components Catalin Hritcu
	Conditional Contextual Refinement Chung-Kil Hur
	CompCertO: Compiling Certified Open C Components Jérémie Koenig
	Changing Compilation without Changing the Compiler Per Larsen
	WebAssembly as an intermediate language for safe interoperability Zoe Paraskevopoulou
	Compositional Secure Compilation against Spectre Marco Patrignani
	Automatic inference of effective compartmentalization policies Mathias Payer
	Hardware-Software Contracts and Secure Programming Jan Reineke
	Hardware-assisted testing in production Kostya Serebriany
	Morello status and verification Peter Sewell
	A Wishlist for the Next Generation of Trusted Execution Environments  Shweta Shinde
	Swivel: Hardening WebAssembly against Spectre Deian Stefan
	Compiler-based Side Channel Detection and Mitigation Gang Tan
	Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code Thomas Van Strydonck
	Software Supply Chains: Challenges and Opportunities Nikos Vasilakis
	How we design hardware and what is costs? Ingrid Verbauwhede
	Verifying Speculation Security of Processor Implementations Drew Zagieboylo

	Participants
	Remote Participants

