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Abstract
Given the increasing ubiquity of online embedded devices,

analyzing their firmware is important to security, privacy, and
safety. The tight coupling between hardware and firmware
and the diversity found in embedded systems makes it hard to
perform dynamic analysis on firmware. However, firmware
developers regularly develop code using abstractions, such as
Hardware Abstraction Layers (HALs), to simplify their job.
We leverage such abstractions as the basis for the re-hosting
and analysis of firmware. By providing high-level replace-
ments for HAL functions (a process termed High-Level Emu-
lation – HLE), we decouple the hardware from the firmware.
This approach works by first locating the library functions in a
firmware sample, through binary analysis, and then providing
generic implementations of these functions in a full-system
emulator.

We present these ideas in a prototype system, HALucinator,
able to re-host firmware, and allow the virtual device to be
used normally. First, we introduce extensions to existing
library matching techniques that are needed to identify library
functions in binary firmware, to reduce collisions, and for
inferring additional function names. Next, we demonstrate
the re-hosting process, through the use of simplified handlers
and peripheral models, which make the process fast, flexible,
and portable between firmware samples and chip vendors.
Finally, we demonstrate the practicality of HLE for security
analysis, by supplementing HALucinator with the American
Fuzzy Lop fuzzer, to locate multiple previously-unknown
vulnerabilities in firmware middleware libraries.

1 Introduction

Embedded systems are pervasive in modern life: vehicles,
communication systems, home automation systems, and
even pet toys are all controlled through embedded CPUs.
Increasingly, these devices are connected to the Internet for
extra functionality. This connectivity introduces new security,
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privacy, and reliability concerns. Unfortunately, auditing the
firmware of these systems is a cumbersome, time-consuming,
per-device effort.

Today, developers create and test firmware almost entirely
on physical testbeds, typically consisting of development
versions of the target devices. However, modern software-
engineering practices that benefit from scale, such as
test-driven development, continuous integration, or fuzzing,
are challenging or impractical due to this hardware depen-
dency. In addition, embedded hardware provides limited
introspection capabilities, including extremely limited num-
bers of breakpoints and watchpoints, significantly restricting
the ability to perform dynamic analysis on firmware. The
situation for third-party auditors and analysts is even more
complex. Manufacturing best-practices dictate stripping out
or disabling debugging ports (e.g., JTAG) [26, 40], meaning
that many off-the-shelf devices remain entirely opaque.
Even if the firmware can be obtained through other means,
dynamic analysis remains challenging due to the complex
environmental dependencies of the code.

Emulation, also known as firmware re-hosting, provides
a means of addressing many of these challenges, by offering
the ability to execute firmware at scale through the use of
commodity computers, and providing more insight into the
execution than is possible on a physical device [44]. Yet,
heterogeneity in embedded hardware poses a significant
barrier to the useful emulation of firmware. The rise of
intellectual-property-based, highly-integrated chip designs
(e.g., ARM based Systems on Chip – SoC) has resulted in
an explosion of available embedded CPUs, whose various on-
chip peripherals and memory layouts must be supported in a
specialized manner by emulators. However, the popular open-
source QEMU emulator supports fewer than 30 ARM devices.
Intel’s SIMICS [38, 57] supports many CPUs and peripherals,
but requires the analyst to manually construct a full model of
the system at the hardware level. Worse yet, most embedded
systems have other components on their circuit boards that
must exist for the firmware to operate, such as sensors, storage
devices, or networking components. Emulation support for



these peripherals is virtually nonexistent. Therefore, it is
nearly impossible to take an embedded firmware sample and
emulate it without significant engineering effort.

Current solutions allowing for the emulation of diverse
hardware rely on a real specimen of the device, where the
emulator forwards interactions with unsupported peripherals
to the hardware [36, 43, 58]. Such a “hardware-in-the-loop”
approach limits the ability to scale testing to the availability
of the original hardware, and offers restricted instrumentation
and analysis possibilities compared to what is possible in
software. Other techniques [22, 32, 54] focus on recording
and subsequently replaying or modeling data from hardware,
which allows these executions to be scaled and shared, but
necessarily requires trace recording from within the device
itself, limiting faithful execution in the emulator to just the
recorded paths in the program.

The immense diversity of hardware also affects firmware
developers. To mitigate some of the challenges of developing
firmware, chip vendors and various third parties provide
Hardware Abstraction Layers (HALs). HALs are software
libraries that provide high-level hardware operations to the
programmer, while hiding details of the particular chip or
system on which the firmware executes. This makes porting
code between the many similar models from a given vendor,
or even between chip vendors, much simpler. Firmware
written with HALs are therefore, by design, less tightly
coupled to the hardware.

This observation inspired us to design and implement a
novel technique to enable scalable emulation of embedded
systems through the use of high-level abstraction layers and
reusable replacement functionality, known as High-Level
Emulation (HLE). Our approach works by first identifying
the HAL functions responsible for hardware interactions in
a firmware image. Then, it provides simple, analyst-created,
high-level replacements, which perform the same conceptual
task from the firmware’s perspective (e.g., sending an Ethernet
packet and acknowledging the action to the firmware).

The first crucial step to enabling high-level emulation
is the precise identification of HAL functions within the
firmware image. While a developer can re-host their own
code by skipping this step, as they have debugging symbols,
third-party analysts must untangle library and application
code from the stripped binary firmware image. We observe
that, to ease development, most HALs are open-source, and
are packaged with a particular compiler toolchain in mind.
We leverage the availability of source code for HALs to
drastically simplify this task.

After HAL function identification, we next substitute our
high-level replacements for the HAL functions. While each re-
placement function (which we term a handler) is created man-
ually, this minimal effort scales across chips from the same
vendor, and even across firmware using the same middleware
libraries. For example, ARM’s open-source mBed OS [39]
contains support for over 140 boards and their associated hard-
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Figure 1: Overview of HALucinator, with our contribution
shown in gray.

ware from 16 different manufacturers. By identifying and
intercepting the mBed functions in the emulator, we replace
the low-level input/output (I/O) interactions—that a generic
emulator such as QEMU does not support—with high level
implementations that provide external interaction, and enable
emulation of firmware that uses mBed OS. As an additional
effort-saving step, these handlers can make use of peripheral
models, which serve as the abstraction for generic classes of
hardware peripherals (e.g., serial ports, or bus controllers) and
serve as the point of interaction between the emulated environ-
ment and the host environment, without needing complicated
logic of their own. This allows the creation of handlers to also
extend across these classes of peripherals, as handlers for any
HAL can use the same peripheral models as-is.

Handlers may perform a task as complicated as sending
an Ethernet frame through a Direct Memory Access (DMA)
peripheral, but their implementation remains straightforward.
Most handlers that interact with the outside world merely
need to translate the arguments of the HAL function (for
example, the Ethernet device to use, a pointer to the data to
send, and its length), into the data a peripheral model can
use to actually perform a task (e.g., the raw data to be sent).
In many cases, the handler does not need to perform any
action at all, as some hardware concepts do not even exist
in emulation, such as power and clocking.

We assemble these ideas into a prototype system, HALu-
cinator, as shown in Figure 1, which provides a high-level
emulation environment on top of the QEMU emulator. HALu-
cinator supports “blob” firmware, (i.e., a firmware sample in
which all code is statically linked into one binary executable)
from multiple chip vendors for the ARM Cortex-M architec-
ture. It handles complex peripherals, such as Ethernet, WiFi,
and an IEEE 802.15.4 radio (the physical and media access
control layers used in ZigBee and 6LoWPAN i.e., IPv6 over
Low Power Wireless Personal Area Networks). The system



is capable of emulating the firmware and its interactions with
the outside world. We present case studies focused on hybrid
emulated environments, wireless networks, and app-enabled
devices. HALucinator emulates these systems sufficiently to
allow interactive emulation, such that the device can be used
for its original intended purpose without its hardware. We
additionally show the applicability of HALucinator to secu-
rity analyses by pairing it with the popular AFL fuzzer, and
demonstrate its use in the discovery of security vulnerabilities,
without any use of the original hardware. Additionally, the
Shellphish CTF team used HALucinator to win the 2019
CSAW Embedded Security Challenge, by leveraging its
unique re-hosting, debugging, and fuzzing capabilities [5, 11].
In summary, our contributions are as follows:
1. We enable emulation of binary firmware using a generic

system emulator (QEMU for us) without relying on the
presence of the actual hardware. We achieve this through
the novel use of abstraction libraries called HALs, which
are already provided by vendors for embedded platforms.

2. We improve upon existing library matching techniques,
to better locate functions for interception in the firmware.

3. We present HALucinator, a high-level emulation system
capable of interactive emulation and fuzzing firmware
through the use of a library of abstract handlers and
peripheral models.

4. We show the practicality of our approach through case
studies modeled on 16 real-world firmware samples, and
demonstrate that HALucinator successfully emulates
complex functionality with minimal effort. Through
fuzzing the firmware, we find use-after-free, memory dis-
closure, and exploitable buffer overflow bugs resulting in
CVE-2019-9183 and CVE-2019-8359 in Contiki OS [25].

2 Motivation

Virtually every complex electronic device has a CPU exe-
cuting firmware. The increasing complexity of these CPUs
and the introduction of ubiquitous connectivity has increased
the complexity of firmware. To reduce the burden of creating
these devices’ firmware, various libraries (i.e., HALs) have
been created to abstract away direct hardware interactions.

To make their product portfolios more attractive to develop-
ers, microcontroller manufactures are developing HALs and
licensing them under permissive terms (e.g., BSD) to gain
a market advantage [16, 42, 53]. HALs provide a common ab-
straction for families of microcontrollers, thus a single HAL
covers many different microcontrollers. For example, STMi-
croelectronic’s STM32Cube HAL covers all their Cortex-M
based microcontrollers. As evidence of the investment put
into HALs, consider that NXP acquired Freescale in 2015
and currently provides the MCUExpresso HAL—a unified
HAL that covers their Cortex-M microcontrollers. Many of
these microcontrollers were originally designed by separate
companies. It is unlikely NXP would have invested into
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Figure 2: (a) Software and hardware stack for an illustrative
HTTP Server. (b) Conceptual illustration of HTTP Server
when executing using HALucinator.

unifying these HALs if availability of easy to use HALs was
not a priority to developers. In addition, the manufacturer’s
HALs are integrated in their own IDEs [2, 4, 10, 41] and
third party development tools (e.g., Keil, IAR). These same
HALs are included in embedded OSes (e.g., in FreeRTOS [1],
mBed OS [8], RIOT OS [17], and Arduino [9]). These OSes
are currently used in commercially available devices [3]. We
believe that market pressures to reduce time to market will in-
crease the adoption of HAL’s. While we cannot automatically
measure the population of devices using HALs today without
a large dataset of microcontroller firmware (which does un-
fortunately not exist), given all of this information, we expect
HALs to become ubiquitous in firmware going forward.

Understanding how firmware is built using these HALs
is foundational to how HALucinator enables emulation of
these firmware samples. Figure 2a depicts the software and
hardware components used in a representative embedded
system that HALucinator is designed to emulate. When
emulating the system, the on-chip peripherals and off-chip
hardware are not present, yet much of the system functionality
depends on interactions with these components. For example,
in Section 5 we find that QEMU halts when accessing
unsupported (and therefore unmapped) peripherals. The
result is all 16 test cases execute less than 39 basic blocks
halting on hardware setup, typically clocks, at power up.

2.1 Emulating Hardware and Peripherals

To achieve our goal of scalably re-hosting embedded
firmware, we must emulate the environment it runs in. This
environment consists of, first and foremost, the main CPU of
the device with its instruction set and basic memory features.
Modern CPUs, even low-power, low-cost microcontrollers,
include a full complement of on-chip peripherals, including



timers, bus controllers, networking components, and display
devices. Code executing on the CPU controls these features
via Memory-Mapped I/O (MMIO), where various control and
data registers of peripherals are accessed as normal memory
locations in a pre-determined region. The exact layout and
semantics of each peripheral’s MMIO regions vary, but are
described in the chip’s documentation.

Further complicating re-hosting is the interaction of a
firmware with off-chip devices (e.g., sensors, actuators,
external storage devices, or communications hardware). As
each product usually contains custom-designed circuit boards,
the complete execution environment of each firmware sample
is largely unique. Existing emulation tools (e.g., QEMU [18]
and SIMICS [57]) support a relatively limited number of
CPU’s, and even fewer on-chip and off-chip devices. To
use these tools, the on-chip and off-chip devices must be
implemented to conform to the MMIO register interface
used by the firmware. This requires understanding and
implementing the state machines and logic of each device,
a time consuming and challenging task.

2.2 The Firmware Stack

The software and hardware stack for an illustrative HTTP
server is shown in Figure 2a. Consider an example where the
HTTP server provides the temperature via a webpage. The
application gets the temperature using an API from the library
provided by the temperature sensor’s manufacturer, which
in turn uses the I2C HAL provided by the microcontroller
manufacturer, to communicate with the off-chip temperature
sensor over the I2C bus. When the page containing the
temperature is requested, the HTTP server uses the OS
library’s API to send and receive TCP messages. The OS,
in turn, uses a TCP stack provided via another library, e.g.,
Lightweight IP (lwIP) [37]. lwIP translates the TCP messages
to Ethernet frames and uses the Ethernet HAL to send the
frames using the physical Ethernet port.

While this is an illustrative example, the complexity of
modern devices and pressure to reduce development time is
increasingly making it so that functionality in firmware is
built on top of a collection of middleware libraries and HALs.
Many of these libraries are available from chip manufacturers
in their software development kits (SDKs) to attract develop-
ers to use their hardware. These SDKs incorporate example
applications and middleware libraries including: OS libraries
(e.g., mBed OS [39], FreeRTOS [30], and Contiki [25]), pro-
tocol stacks (e.g., TCP/IP, 6LoWPAN, and Bluetooth), file
systems, and HALs for on-chip peripherals. Each of these
libraries abstracts lower-level functionality, decoupling the
application from its physical hardware. In order for HALuci-
nator to break the coupling between firmware and hardware, it
must intercept one of these layers, middleware/library or HAL,
and interpose its replacement functionality instead, as shown
in Figure 2b. Which layer we choose, however, provides trade-

offs in terms of generality and reusability of the high-level
function replacements, the amount of actual code that we can
execute and test, as well as the likelihood of finding a given li-
brary in a target device’s firmware. While it is more likely that
the author of a given firmware is using the chip vendor’s HAL,
this bottom-most layer has the largest number of functions,
which often have very specific semantics, and often have com-
plex interactions with hardware features, such as interrupts
and DMA. At a higher level, such as the network stack or
middleware, we may not be able to predict which libraries are
in use, but handlers built around these layers can be simpler,
and more portable between devices. The chosen layer can also
affect the efficacy of some analyses, as we demonstrate in Sec-
tion 5. In short, the right answer depends largely on the ana-
lyst’s goals, and what libraries the firmware uses. In this work,
we focus primarily on re-hosting at the HAL level, but also ex-
plore high-level emulation approaches targeting other layers,
such as the middleware, in our evaluation of HALucinator.

2.3 High-Level Emulation

Before discussing the design of HALucinator, we first
highlight the ways in which high-level emulation enables
scalable emulation of firmware.

First, our approach reduces the emulation effort—instead
of manual effort that increases with the number of unique
devices, emulation effort increases much more slowly with
the number of HALs or middleware libraries, depending on
the level where we interpose the function calls. Large groups
of devices, from the same manufacturer or device family,
share the same programmer-facing library abstractions. For
example, STMicroelectronics provides a unified HAL inter-
face for all its Cortex-M devices [53]. Similar higher-level
libraries, such as mBed, provide abstractions for devices from
multiple manufacturers, and commonly used protocol stacks
(e.g., lwIP) abstract details of communication protocols.
Intercepting these libraries enables emulating devices from
many different manufacturers.

Since HALs abstract away hardware from the programmer,
our handlers inherit this simplicity as well. High-level
emulation removes the requirement of understanding
low-level details of the hardware. Thus, handlers do not need
to implement low-level MMIO manipulations, but simply
need to intercept the corresponding HAL function, pass
desired parameters on to an appropriate peripheral model and
return a value that the firmware expects.

Finally, our approach allows flexibility in the fidelity of
handlers that we have to develop. For peripherals that the an-
alyst is not concerned with, or which are not necessary in the
emulator, simple low-fidelity handlers that bypass the func-
tion and return a value indicating successful execution can
be used. In cases where external input and output is needed,
higher-fidelity handlers enabling communication with the
host environment are needed. For example, the function



HAL_TIM_OscConfig from the STM32Cube HAL configures
and calibrates various timer and clock parameters; if not han-
dled, the firmware will enter an infinite loop inside this func-
tion. As the emulator has no concept of a configurable clock
or oscillator, this function’s handler merely needs to return
zero, to indicate it executed successfully. On the other hand, a
higher-fidelity handler for the HAL_Ethernet_RX_Frame and
HAL_Ethernet_TX_Frame functions that enables sending
and receiving Ethernet frames emulates network functionality.
Our approach allows for handlers at multiple fidelity levels
to co-exist in the same emulation.

3 Design

For our design to capitalize on the advantages of high-level
emulation, we need to (1) locate the HAL library functions
in the firmware (e.g., via library matching), (2) provide
high-level replacements for HAL functions, and (3) enable
external interaction with the emulated firmware.

HALucinator employs a modular design to facilitate its
use with a variety of firmware and analysis situations, as seen
in Figure 1. To introduce the various phases and components
of HALucinator, let us consider a simple example firmware
which uses a serial port to echo characters sent from an
attached computer. Aside from hardware initialization code,
this firmware needs only the ability to send and receive
serial data. The analyst notices the CPU of the device is an
STM32F4 microcontroller, and uses the LibMatch analysis
presented in Section 3.2, with a database built for STMicro-
electrics’ HAL libraries for this chip series. This identifies
HAL_UART_Receive and HAL_UART_Transmit in the binary.
The analyst then creates a configuration for HALucinator,
indicating that a set of handlers (i.e., the high-level function
replacements), for the included HAL, should be used. If
the handlers do not already exist, the analyst creates them.
These two HAL functions take as arguments a reference to
a serial port, buffer pointer, and a length. To save effort, these
handlers simply translete these arguments to and from a form
usable by the peripheral model for a serial port (e.g., the raw
data to be sent or received). Finally, the I/O Server transfers
the data between the serial port peripheral model and host
machine’s terminal. Now, when the firmware executes in
HALucinator, the firmware is usable through a terminal like
any other console program. This represents only a small
fraction of the capabilities of HALucinator, which we will
explore in detail in the following sections.

3.1 Prerequisites
While HALucinator offers a significant amount of flexibility,
there are a few requirements and assumptions regarding the
target firmware. First, the analyst must obtain the complete
firmware for the device. HALucinator focuses on OS-less
“blob” firmware images typically found in microcontrollers.

While no hardware is needed during emulation with HALu-
cinator, some details about the original device are needed
to know what exactly to emulate. HALucinator requires
the basic parameters needed to load the firmware into any
emulator, such as architecture, and generic memory layout
(e.g., where the Flash and RAM reside within memory).

We assume the analyst can also obtain the libraries, such
as HALs, OS library, middleware, or networking stacks they
want to emulate, and the toolchain typically used by that
chip vendor to compile them. Most chip vendors provide a
development environment, or at least a prescribed compiler
and basic set of libraries, to avoid complications from
customers using a variety of different compiler versions. As
such, the set of possible HAL and compiler combinations is
assumed to be somewhat small. While firmware developers
are free to use whatever toolchain they wish, we expect
that the conveniences provided by these libraries and
toolchains, and the potential for support from the chip
vendor, has convinced a significant number of developers to
take advantage of the vendor’s toolchain. In Section 7, we
discuss the possibility of using high-level emulation, even
in firmware without an automatically identifiable HAL.

HALucinator naturally requires an underlying emulator
able to faithfully execute the firmware’s code, and able to
support HALucinator’s instrumentation. This includes a
configurable memory layout, the ability to “hook” a specific
address in the code to trigger a high-level handler, and the
ability to access the emulator’s registers and memory to
perform the handler’s function.

While this may appear to be a long list of requirements,
in practice, obtaining them is straightforward. For the
ARM Cortex-M devices that we focus on in this work,
the general memory map is standardized and available
readily from the vendor-provided manual, the location of
the firmware in memory can be read from the firmware
blob itself, and common emulators such as QEMU [18]
faithfully emulate instructions. Each Cortex-M vendor
provides open-source HAL(s) for their chips, with compilers
and configurations [16, 34, 42, 53]. All that is needed for
HALucinator to be applied to a particular device is to obtain
the firmware, know the CPU’s vendor, and obtain their SDK.

3.2 LibMatch

A critical component of high-level emulation is the ability
to locate an abstraction in the program which can be used
as the basis for emulation. While those developers who wish
to re-host their own code, or those interested in open-source
firmware projects, can already obtain this information during
compilation, analysis of closed-source binary firmware by
third parties requires the ability to locate these libraries before
emulation can proceed. Existing approaches that address the
problem of finding functions in stripped binaries [24, 33, 35]
lack support for embedded CPU architectures, particularly the



ARM Cortex-M architecture commonly used in many con-
sumer devices and used in this work. While much work has
also been done in comparing two binary programs [21, 28],
these schemes are not applicable out-of-the-box for
comparing a binary with its component libraries.

The nature of firmware itself further complicates library
matching. Firmware library functions are typically optimized
for size, and two functions with nearly identical code can
serve dramatically different purposes. Many smaller HAL
functions may simply be a series of preprocessor definitions
resolved at compile-time relating to I/O operations, which of
course serve different purposes depending on the peripheral
being used. One unusual feature of firmware library functions
is that they often call functions in the non-library part of
the code. With desktop libraries, it is typically expected that
library functions are monolithic, i.e., they execute, perform
their task, and return to the caller. This is often not true in
firmware; common patterns found in HALs include overrides,
where the developer overrides a weak symbol in the HAL
during compilation, or explicit callbacks, where code pointers
are passed in as function arguments. Therefore in order to
provide fully-working handlers, we must not only recover
the library functions’ names and addresses, but those of the
application code they call as well.

To address these problems, we create LibMatch, which
leverages the context of functions within a program to aid
in binary-to-library matching. LibMatch creates a database of
HAL functions to match by extracting the control-flow graph
of the unlinked binary object files of the libraries, plus an In-
termediate Representation (IR) of their code. It then performs
the following steps to successively refine possible matches:
1: Statistical comparison. We compare three basic metrics—
number of basic blocks, control flow graph (CFG) edges,
and function calls—for each pair of function in the target
program and library functions in the database. If functions
differ on these three metrics, they are unlikely to be a match,
and removing these non-matches early provides a significant
performance improvement.
2: Basic Block Comparison. For those pairs of functions
that match based on the previous step, we further compare
the content of their basic blocks, in terms of an intermediate
representation. We consider two functions a match if each
of their basic blocks’ IR content matches exactly. We
do, however, discard known pointers and relative offsets
used as pointers, and relocation targets, as these will differ
between the library and the binary’s IR code. Additionally,
unresolvable jump and call targets, even when they are
resolvable in the library but not in the binary, are ignored.

While our comparison metric is somewhat naive (i.e., some
environmental changes such as compiler, compiler flags, or
source code may cause missing matches), and many more
complex matching schemes exist (as noted in Section 6), we
make the trade-off that any match is a true, high-confidence
match. This trade-off is necessary, as inaccuracies in these

direct matches could have cascading effects when used to
derrive other matches via context. Even in the ideal scenario
of matching against the exact compiler and library versions,
collisions are still expected to occur, as we show in Section 5.
3: Contextual Matching. The previous step will produce a
set of matches, but also a set of collisions, those functions
that could not be distinguished from others. We therefore
leverage the function’s context within the target program to
disambiguate these cases, by locating places in the program
with matches to infer what other functions could be. While
many program diffing tools [21, 28] use two programs’ call
graphs to refine their matching, we cannot, as our ‘second pro-
gram’, is a database of libraries. The libraries in the database
are entirely un-linked and have no call graph. We cannot even
infer the call graph of a function within a particular library, as
HALs may contain many identically-named functions chosen
via link-time options. Therefore, we use both caller context
and callee context, to effectively approximate the real call
graph of the library functions, disambiguate collisions, and
try to provide names for functions that may differ between
the library database and the target (e.g., names overridden by
the application code, or names outside the libraries entirely).

We first leverage caller context to resolve collisions. For
each of the possible collided matches, we use the libraries’
debugging information to extract the set of called function
names. We obtain the same set of called function names from
the ambiguous function in the target binary, by using the
exact matches for each of the called functions. If the sets
of function names in the target and the collided match are
identical, the match continues to be valid, and others are
discarded. For callee context, we gather the set of functions
called by any function we were able to match exactly in
step two, and name them based on the debug symbols in the
library objects. If the function is a collision, it can then be
resolved. If the function is not in the database, such as due
to overrides by the application, it can then be named. Both
of these processes occur recursively, as resolving conflicts
in one function may lead to additional matches.
The Final Match. A valid match is identified if a unique
name is assigned to a given function in the target binary.

3.3 High-level Emulation

After function identification, the emulator must replace
the execution of selected functions to ensure the re-hosted
firmware executes correctly. These intercepted functions
relate to the on-chip or off-chip peripherals of the device,
and are implemented manually. To simplify implementation,
our design breaks the needed implementation per library
into handlers, which encode each HAL function’s semantics,
and peripheral models which reflect aspects common to a
peripheral type. Under this scenario, each peripheral model
only has to be written once, requiring only a small specialized
handler for each matched HAL function.



Handlers. We refer to high-level replacements for the HAL’s
code within the firmware as handlers. Creating handlers is
done manually, but only needs to be done once for each HAL
or library, and is independent of the firmware being analyzed.
Each HAL function, even those with the same purpose, will
likely vary in terms of function arguments, return value, and
exact internal semantics. However, as we will show in Sec-
tion 5, almost all handlers are simple, falling into a few basic
categories, such as performing trivial actions on a peripheral
model, returning a constant value, or doing nothing at all.

Some HALs can be quite large, but most firmware samples
only utilize a small fraction of the available functions. In
this case, the analyst can follow an iterative process to build
handlers. First, the analyst runs the binary in HALucinator,
which will report all I/O accesses that are not currently re-
placed by a handler, and where they occurred. If the firmware
gets stuck, or is missing desired behavior, the analyst can
evaluate which functions contain the I/O operations, and
consider implementing a handler. The process repeats, and
successive handlers produce greater coverage and more
accurate functionality. This process can even be performed
when the results of library matching are unavailable, or is
missing function names required for emulation.
Peripheral Models. Peripheral models intend to handle
common intrinsic aspects of what a certain class or type
of peripheral must do. They contain little actual logic, but
play an important role in creating a common interface
between the emulator and the outside world. For example,
the peripheral model for a serial port simply has data buffers
for transmission and reception of data. When a HAL’s serial
transmit and receive functions are called, the associated
handler can use the peripheral model to trivially perform
most, if not all, of its duties in an abstract way.
I/O Server. In order for the re-hosted firmware to meaning-
fully execute, it must interact with external devices located
outside of the CPU. Therefore, in addition to exchanging
data with the firmware, each peripheral model also defines
an interface for the host system to send data, receive data,
and trigger interrupts. These interfaces are then exposed
through an I/O server. The I/O server uses a publish/subscribe
design pattern, to which peripheral models publish and/or
subscribe to specific topics that they handle. For example,
an Ethernet model will send and receive messages on the
‘Ethernet.Frame’ topic, enabling it to connect with other
devices that can receive Ethernet frames.

Using the I/O server centralizes external communication
with the emulated system, by facilitating multiple use
cases without changing the emulator’s configuration. For
example, the Ethernet model can be connected to: the host
Ethernet interface, other emulated systems, or both, by
appropriately routing the messages published by the I/O
server. In addition, centralizing all I/O enables a program to
coordinate all external interactions of an emulated firmware.
For example, this program could coordinate pushing buttons,

sending/receiving Ethernet frames, and monitoring LED
status lights. This enables powerful multiple interface
instrumentation completely in software, and enables dynamic
analysis to explore complex internal states of the firmware.
Peripheral Accesses Outside a HAL. Replacing the HAL
with handlers and peripheral models simplifies emulating
firmware, but occasionally, direct MMIO accesses from the
firmware will still occur. These can happen when a developer
deliberately breaks the HAL’s abstraction and interacts
with hardware directly, or when the compiler inlines a HAL
function. HALucinator will report all I/O outside handlers to
the user. Additionally, all read operations to these areas will
return zero, and all writes will be ignored, allowing code that
naively interacts with this hardware directly to execute with-
out crashing. We find many MMIO operations, particularly
write operations setting peripheral flags and configurations,
can be safely ignored as the emulator configures its resources
independent of the firmware. We discuss more severe cases,
such as firmware not using a HAL, in Section 7.

3.4 Fuzzing with HALucinator

The use of high-level emulation enables the firmware to
be used interactively, and also explored through automated
dynamic analyses, such as fuzzing. However, fuzzing—
especially coverage-guided fuzzing through, e.g., AFL [13]—
has different constraints than interactive emulation:
Fuzzed Input. First, the analyst needs to decide how the
mutated input should be provided to the target. HALucinator
provides a special fuzz peripheral model, which when used
in a handler, will dispense data from the fuzzer’s input stream
to the handler. Embedded systems may have multiple sources
of input, and this flexibility allows the analyst to chose one
or more of them to fuzz.
Termination. Beyond providing input from the fuzzer, the
fuzzed firmware must terminate. Current fuzzers generally
target desktop programs, and expect them to terminate when
input is exhausted; however, firmware never terminates. Thus,
we design the fuzz model to gracefully exit the program,
sending a signal to the fuzzer that the program did not crash
during that execution.
Non-determinism. Firmware has significant non-
deterministic behavior, which must be removed to allow the
fuzzer to gather coverage metrics correctly. This is typically
removed from programs via instrumentation, and HALucina-
tor’s high-level emulation enables this as well. HALucinator
provides static handlers for randomness-producing functions
when they are identified, such as rand(), time(), or
vendor-specific functions providing these functionalities.
Timers. One special case of non-determinism are timers,
which often appear in microcontrollers as special peripherals
that trigger interrupts and other events at a specified
interval. Because we cannot guarantee any clock rate for our
execution, implementing timers based on real time would



lead to non-deterministic behavior, as these timer events
can occur at any point in the program. We provide a Timer
peripheral model, which ties the timer’s rate to the number of
executed blocks, creating deterministic timer behavior, and
fair execution of the timer’s interrupt handlers and the main
program, regardless of emulation speed.
Crash Detection. Crash detection in embedded systems
remains a challenge [44]. A system based on high-level
emulation gains a significant amount of crash detection ca-
pability from the visibility provided by the emulator, making
many generated faults much less silent. Just as with desktop
programs, we can instrument firmware to add additional
checks. High-level emulation handlers can perform their own
checks, such as checking pre-conditions of their arguments
(e.g., pointer validity, or positive buffer lengths). High-level
emulation can also be used to easily add instrumentation
usually handled at compile-time. For example, HALuci-
nator provides a heap-checking implementation similar to
ASAN [49], if the malloc and free symbols are available.
Input Generation. Finally, fuzzing requires representative
inputs to seed its mutation algorithms. HALucinator’s
fully-interactive mode can be used to interact with the device
and log the return values of library calls of interest, which
can be used to seed fuzzing. This removes the need for any
hardware, even while generating test inputs.

4 Implementation

We implement the concept of high-level emulation by creating
prototypes of LibMatch and HALucinator targeting the
widely-used and highly-diverse Cortex-M microcontrollers.
LibMatch Implementation. LibMatch uses the angr [50]
binary analysis platform. More specifically, it uses angr’s
VEX-based IR, control-flow graph recovery, and flexible
architecture support enables function labeling without any
dependence on specific program types or architecture features.
Statistics needed for matching are gathered using angr’s
CFG recovery analysis. This includes the basic block content
comparisons, which operate on top of the VEX IR statements
and their content. Implementing LibMatch for the Cortex-M
architecture required extending angr. We added support
for Cortex-M’s calling conventions, missing instructions,
function start detection and indirect jump resolution to
angr. After these extensions, angr was able to recover the
CFG. When run, LibMatch uses unlinked object files with
symbols, obtained by compiling the HAL and middleware
libraries to create a database of known functions. It then uses
this database to locate functions inside a firmware without
symbols. When LibMatch is then run against a firmware
sample, it outputs a list of identified functions and their
addresses, and makes note of collisions, in the event that a
human analyst wishes to resolve them manually.
HALucinator Implementation. HALucinator is imple-
mented in Python, and uses Avatar2 to set up a full-system

QEMU emulation target and instrument its execution.
HALucinator takes as inputs: the memory layout (i.e.,
size and location of Flash and RAM), a list of functions
to intercept with their associated handlers, and the list of
functions and addresses from LibMatch. It uses the addresses
of the functions to place a breakpoint on the first instruction
of each function to be intercepted, and registers the handler to
execute when the breakpoint is hit. Note that, while Avatar2

is typically deployed as a hardware-in-the-loop orchestration
scheme, we use it here exclusively for its flexible control of
QEMU, and not for any hardware-related purpose.

Handlers are implemented as Python classes, with each
function covering one or more functions in the firmware’s
HAL or libraries. The handlers can read and write the emula-
tor’s registers or memory, call functions in the firmware itself,
and interact with the peripheral models. Examples of simple
and more complex handlers can be found in [7] and [6].

Peripheral models are implemented as Python classes,
and can make full use of system libraries or the I/O server
to implement the desired functionalities. For example, calls
to get the time from a hardware real-time clock can simply
invoke the host system’s time() function. Most models,
however, merely act as a store or queue of events, such as
queuing received data for the serial port or Ethernet interface.

The I/O server is implemented as a publish-subscribe
system using the ZeroMQ [59] messaging library. In addition
to serving events to peripheral models from the host system,
the I/O server can also connect emulators’ peripheral models
together, allowing the emulation of multiple interconnected
systems. This is particularly useful when the host system
has no concept of the interface being shared, such as in the
6LoWPAN examples in Section 5.

Fuzzing with HALucinator. We created the ability to fuzz
firmware using HALucinator by replacing the full-system
QEMU engine at the center of HALucinator with AFL-
Unicorn [14]. AFL-Unicorn combines the ISA emulation
features of QEMU with a flexible API, and provides the
coverage instrumentation and fork-server capabilities used
by AFL. It lacks any peripheral hardware support, making
it unable to fuzz firmware. Adding HALucinator’s high-level
emulation provides the needed peripheral hardware support.
Unicorn and AFL-Unicorn also deliberately remove the
concept of interrupts, which are necessary for emulating
firmware. Thus, we add a generalized interrupt controller
model, that supports ARM’s Cortex-M interrupt semantics.

AFL-Unicorn detects crashes by translating various execu-
tion errors (e.g., invalid memory accesses, invalid instructions,
etc.) into the equivalent process signal fired upon the fuzzed
process (e.g., SIGSEGV), providing the appropriate signals
to AFL. Models and handlers can also explicitly send these
signals to AFL if their assumptions are violated.



Mfg. Application HAL
Syms

LibMatch Without Context Matching LibMatch With Context Matching
Correct Collision Incorrect Missing Correct Collision Incorrect Missing External

Atmel SD FatFS 107 76 (71.0%) 22 0 9 98 (91.6%) 2 0 7 3
Atmel lwIP HTTP 160 128 (80.0%) 20 0 12 144 (90.0%) 9 0 7 8
Atmel UART 28 24 (85.7%) 2 0 2 26 (92.7%) 1 0 1 1
Atmel 6LoWPAN Receiver 299 224 (74.9%) 63 2 10 273 (91.3%) 17 4 5 24
Atmel 6LoWPAN Sender 300 225 (75.0%) 63 2 10 275 (91.7%) 17 4 4 25
STM UART 33 15 (45.5%) 17 1 1 23 (69.7%) 9 1 4 6
STM UDP Echo Server 235 188 (80.0%) 43 0 4 207 (88.1%) 24 0 0 6
STM UDP Echo Client 235 186 (79.1%) 43 0 4 205 (87.2%) 24 0 0 8
STM TCP Echo Server 239 192 (80.3%) 43 0 4 211 (88.3%) 24 0 0 5
STM TCP Echo Client 237 190 (80.2%) 43 0 4 209 (88.2%) 24 0 4 8
STM SD FatFS 160 111 (69.4%) 47 0 2 140 (87.5%) 20 0 8 5
STM PLC 495 358 (72.3%)) 126 0 11 407 (82.2%) 79 1 8 36
NXP UART 35 21 (60.0%) 13 0 1 21 (60.0%) 13 0 1 8
NXP UDP Echo Server 170 133 (78.2%) 25 0 12 141 (83.0%) 16 8 5 22
NXP TCP Echo Server 176 133 (75.5%) 26 0 17 142(80.7%) 16 8 10 20
NXP HTTP Server 177 133 (75.1%) 26 0 18 145(82.0%) 16 6 6 20

Table 1: LibMatch performance, with and without contextual matching.

5 Evaluation

For HALucinator to meet its goal of enabling scalable emu-
lation, it must accurately identify HAL functions in firmware,
and enable replacement of those functions with handlers. In
addition, the handlers must be created with reasonable effort,
and the emulation must be accurate to enable meaningful
dynamic analysis of the firmware. In this section, we show
that HALucinator meets these goals by evaluating LibMatch’s
ability to identify HALs in binaries, demonstrating interactive
emulation of 16 applications, and then utilizing HALucinator
to fuzz network-connected applications.

In our experiments, we use 16 firmware samples provided
with different development boards (STM32F479I-Eval [52],
STM32-Nucleo F401RE [51], SAM R21 Xplained Pro [48],
NXP FRDM-K64F [29]) from Atmel, NXP, and STM.
These samples were chosen for their diverse and complex
hardware interactions, including serial communication,
file systems on SD cards, Ethernet, 6LoWPAN, and WiFi.
They also contain a range of sophisticated application logic,
including wireless messaging over 6LoWPAN, a Ladder
Logic interpreter, and an HTTP Server with a Common
Gateway Interface (CGI). The set of included libraries is
also diverse, featuring STMicroelectronics’ STM32-Cube
HAL [53], NXP’s MCUXpresso [42], Atmel’s Advanced
Software Framework (ASF) [16], lwIP [37], FatFS [27],
and Contiki-OS [25], a commonly used OS for low-power
wireless sensors, with its networking stack µIP .
Experiment Setup. All STMicroelectronics firmware
was compiled using gcc -Os targeting a Cortex-M3. The
STMicroelectronics boards use Cortex-M4 microcontrollers,
however QEMU lacks support for some Cortex-M4 instruc-
tions (resulting in a runtime fault), thus these examples
were compiled using the Cortex-M3 instruction set. Atmel’s
example applications were compiled using Atmel Studio
7, using its release build configuration that uses the -Os
optimization level and targets the Cortex-M0 ISA (a strict
subset of the Cortex-M3 ISA) as intended for their target
board. All NXP samples were compiled using the SDK’s
“release” configuration, save for using the Cortex-M3 platform

instead of M4. All symbols were stripped from the binaries.

5.1 Library Identification in Binaries
We first explore the effectiveness of LibMatch in recovering
the addresses of functions in a binary firmware program.
As there are multiple locations within a firmware that may
be hooked, with various trade-offs in the complexity of
emulation, here we try to match the entire set of functions
provided by the HAL and its associated middleware. We
use symbol information in each target firmware sample to
provide the ground-truth address of each function. LibMatch
then tries to determine the address of each function in its
HAL database using a stripped version of this binary.

A comparison of the 16 firmware samples using LibMatch
with and without context matching is shown in Table 1.
LibMatch without context matching is comparable to what
is achievable with current matching algorithms (e.g., Bin-
Diff [28], or Diaphora [21]). However, a direct comparison is
not possible because these tools only perform a linked-binary
to linked-binary comparison and LibMatch must match
a linked binary to a collection of unlinked library objects
obtained from the HALs and middleware.

In Table 1, the number of HAL symbols is the number of
library functions present in the firmware, while the ‘Correct’
column shows the number of those functions correctly
identified. The ‘Collision’, ‘Incorrect’, and ‘Missing’
columns delineate reasons LibMatch was unable to correctly
identify the unmatched functions. The last column, ‘External’
is the number of functions external to the HAL libraries that
LibMatch with context matching labels correctly. Overall,
LibMatch without context matching averaged over the 16
applications matches 74.5% of the library functions, and
LibMatch with context matching increases this to an average
of 87.4%. Thus, nearly all of the HAL and middleware
libraries are accurately located within the binary.

Context matching identifies many of the functions needed
for re-hosting firmware. The most dramatic example of
this is STMicroelectronics’s PLC application; it includes
STMicroelectronic’s WiFi library, which communicates



with the application using a series of callbacks called via
overridden symbols. In order to re-host this binary, the
handlers for this library must fulfill its contract with the
application, by calling these callbacks. Thus, recovering their
names, even when they are not part of the library database,
is necessary to enable their use during re-hosting. Resolved
collisions include various packet handling, timer, and external
interrupt functions of the Atmel 6LoWPAN stack, as well
as functions needed to enable fuzzing, such as lwIP’s IP
checksum calculation. One other important category of
functions resolved via context includes those that are neither
part of the vendor’s HAL, nor the application code, but come
from the compiling system’s standard C libraries, such as
malloc, free, and even the location of the program’s main.

Collisions are the most common causes of unlabeled
functions. Other common causes include C++ virtual function
call stubs, and functions that have multiple implementations
with different names. For example, the STM32 HAL contains
functions HAL_TIM_PWM_Init and HAL_TIM_OC_Init,
whose code is entirely identical, but operate on different data,
and have insufficient context to distinguish them. Similarly, in
many C++-based HAL functions, a stub is used to lookup and
call a method on the object itself; identical code for this can
exist in many places. Those without actual direct calls cannot
be resolved through context. Finally, many unused interrupt
handlers contain the same default content (e.g., causing the de-
vice to halt) and thus collide. Since they are interrupt handlers,
they are never directly called, and thus cannot be resolved
via context. It is worth noting that these cases will confuse
any library-matching tool, as there is simply no information
on which to make a correct decision within the program.

The few “Incorrect” matches made by LibMatch stem from
cases where the library function name actually changed during
linking. In these cases, LibMatch has a single match for the
function—thus finding a match—but applies the wrong name
(i.e., the name before it was changed during linking). Our mea-
sure of correctness is the name, and therefore these are marked
as “Incorrect”. There are two main causes of ‘Missing‘ func-
tions: the application overrides a symbol and we are unable to
infer it as an External match via context, or bugs in the CFG
recovery performed by angr causing the functions’ content to
differ between the program and the library when they should
not. For example, most Cortex-M applications contain a sym-
bol SystemInit, which performs hardware specific initializa-
tion. Most HALs provide a default, but this symbol is very of-
ten overridden by the firmware to configure hardware timing
parameters, and it is only ever called from other application-
customized code. Thus we lack context to resolve it. None of
the unmatched or collided functions are functions needed to
perform high-level emulation, and thus, the less-than-100%
accuracy of LibMatch does not impact HALucinator.

5.2 Scaling of High-Level Emulation

We will examine the benefits of HLE by exploring how the
simplicity of handlers and peripheral models allow emulation
with a minimum of human effort, and allow this effort to
scale to multiple systems.
Handlers and Human Effort. Implementing handlers is a
manual task; therefore it is important to quantify the amount
of effort required to emulate a system. While we could
perform this evaluation in terms of time, or in terms of an
objective measure of code complexity (which is given in Sec-
tion A.1), these measures do not factor in the amount the an-
alyst actually must understand about the code being replaced,
and thus do not fully convey the effort required. Therefore,
we divided the handlers used in our experiments into three
categories: Trivial handlers simply return a constant—usually
indicating the function executed correctly—and require no
knowledge of the implementation of the function being inter-
cepted. They are commonly used for hardware initialization
functions. Translating handlers translate the intercepted
function parameters to an action on a peripheral model. They
do not implement any logic, but just call a model after getting
the appropriate data for the model. This requires knowledge
of the function parameters, reading values to be passed to the
model, and then writing back values from the model to the
appropriate function parameters. For example, the handler
for the ENET_SendFrame from NXP’s HAL, simply reads the
frame buffer and length from the function parameters, and
passes them to the Ethernet model. The final category, Inter-
nal Logic is the most complex for HALucinator and requires
understanding the internal logic of the replaced functions.

Table 2 was created by taking the union of the handlers ex-
ecuted during interactive emulation for the binaries in Table 3
and classifying them as trivial, translating, or internal logic.
It shows 44.5% are trivial handlers, 42.2% are translating
handlers, and 13.3% implement internal logic. Therefore,
for our firmware samples, over 85% of the handlers can
be implemented with little or no understanding of how the
internals of functions they are intercepting are implemented.

The 13% that required understanding internal logic primar-
ily represent cases where the HAL itself manipulated global
state also used by the rest of the program. For example, the
Atmel Ethernet and 6LowPAN case studies use the external
interrupt controller (EXTI) which maps several external inter-
rupts to a single CPU interrupt. The EXTI interrupt service
routine (ISR) looks up the ID of the actual interrupt source in
an MMIO register, and uses it to look up the correct callback
in a global array. HALucinator does not have access to the
global array, and thus cannon directly look up the correct call-
back. Instead, the EXTI handler implements a simple MMIO
peripheral that enables reading/writing the MMIO status reg-
ister. This enables the EXTI ISR to execute correctly. While
this requires understanding some chip-level details, it retains
the scaling and relative simplicity of high-level emulation.



HAL Trivial Translation Internal Logic Total
ASF v3 12 (30.8%) 19 (48.7%) 8 (20.5%) 39
STM32 17 (58.6%) 9 (31.0%) 3 (10.3%) 29
NXP 8 (53.3%) 7 (46.7%) 0 ( 0.0%) 15
Total 37 (44.5%) 35 (42.2%) 11 (13.3%) 83

Table 2: Categorization by difficulty of implementing han-
dlers. Showing number of handlers that implement Trivial,
Translating, and Internal Logic behaviors.

We implemented a MMIO register and no internal machine,
versus implementing all the MMIO registers of all the used
peripherals in the firmware and their associated internal state
machines that control how the bits in those registers are used.
Scaling Across Devices. To demonstrate how HLE allows
the emulation of one HAL to scale across devices, we
constructed an experiment using samples from the NXP
MCUXpresso HAL, each from a different board and CPU.
These represent chips from each of NXPs major ARM
microcontroller product families, including Kinetis, LPC,
and i.MX, whose designs and peripheral layouts are entirely
different due to their development under formerly-separate
companies. Regardless of family and lineage, all of these
parts share the same HAL. As a result, we obtained 20
instances of the uart_polling example, from 20 different
development boards. The uart_polling example was
selected as UARTs are available on nearly every board and
the presence of other peripherals varies from board to board.
We then emulated these 20 firmware samples using the same
NXP UART handlers and peripheral models. Specifically we
used three handlers, a transmit handler, receive handler, and
a default handler that returns zero. The only differences in
the configuration of HALucinator for the different firmware
was in the RAM/Flash layout, clock interception, and power
initialization functions all of which were handled by the
trivial default handler. In total 29 unique functions were inter-
cepted. Six function at minimum, nine maximum, and 6.9 on
average were intercepted per board. This shows that the same
handlers and models can be used to support multiple product
families. The only challenge was to identify the names of the
intercepted clock and power initialization functions.

5.3 Interactive Emulation Comparison

Next we re-host the 16 firmware samples shown in Table 1
interactively, using QEMU, Avatar2 [43], and HALucinator.
In this experiment, we use the QEMU provided with
Avatar2 in its default configuration and load and execute the
firmware into QEMU without the hardware present. In this
configuration any access to unsupported MMIO in QEMU
will fault. Avatar2 was configured to execute the firmware in
QEMU and forward all MMIO to a physical board connected
by a debugger. Thus, all reads and writes to MMIO obtain
values from or write to physical hardware. HALucinator
utilized the functions found by LibMatch, and we intercept
a sufficient number of HAL functions to enable the firmware

samples to perform their externally observable functionality
as compared to execution on the physical hardware. For
any MMIO that is executed, we implement a default MMIO
handler that returns zero for reads and silently ignore writes.

We consider the external behavior to be “correct” if equiv-
alent functionality can be performed on the emulated system
as on the real hardware. Specifically, the TCP/UDP examples
successfully transmit the same data as the physical hardware.
We are able to access the same pages on the HTTP server
firmware samples. The FatFs examples are able to read and
write the required data to the the appropriate files within its
file system. We verified this by mounting the binary images
provide by HALucinator through the SD card model as a
FAT32 file system. The 6LoWPAN examples successfully
talk to each other and their echoed messages are sent out
their UARTs in the same order as the physical hardware.
The UART examples are able to send and receive data over
their UARTs and give the expected responses. Finally, the
PLC sample, connects to its Android programming app,
successfully loads a ladder logic, and executes it. Due to the
limited inspection capabilities of hardware we cannot verify
that equal code paths are followed as compared to physical
hardware. Obtaining this level of inspection is a primary mo-
tivation for emulating embedded systems. It should be noted
that enabling this level of emulation exceeds what is needed
purely for fuzzing, as fuzzing can be performed by simply get-
ting the system to read an input. Providing the same level of
functionality enables fuzzing to start from a plausible initial
starting point, and as will be shown in Section 5.4 HLE en-
ables targeting the fuzzer at different layers within a firmware.

Table 3 shows the software libraries used by each firmware,
and the interfaces modeled by HALucinator. For each
technique it shows the number of unique basic blocks
executed (“BB”), which indicates how much of the firmware
executes. It also shows if the external input and output
behavior matches that observed from executing the firmware
on physical hardware (external behavior correct – “EBC”).

For Avatar2, we report the number of reads and writes
forwarded to the board (“Fwd R/W”) which demonstrate
that Avatar2 is correctly forwarding memory requests. For
HALucinator, we report the number of functions intercepted
(“Funcs”) and the number of unique addresses handled by
the default MMIO. The number of functions intercepted
gives a measure of how much work is required to emulate
the firmware using HALucinator, and the MMIO using the
default handler are accesses to hardware that could potentially
be replaced with further interception of HAL functions.

HALucinator enables the correct black-box behavior in all
cases—all vendors, all boards, all firmware samples. Among
our baseline approaches, the NXP UART firmware using
Avatar2 is the only other firmware successfully emulated. This
is because it is a simple firmware that polls the MMIO and
does not use any interrupts. In all cases, QEMU triggers a bus
fault when any MMIO occurs and executes at most 39 unique



QEMU Avatar2 HALucinator
Mfr. Application Software Libraries Modeled Interfaces BB EBC BB Fwd R/W EBC BB Funcs. MMIO EBC
Atmel UART ASF UART 8 7 184 467 7 43 5 4 3
Atmel SD FatFs ASF, FatFS, UART, SD Card, EXTI 8 7 344 554 7 920 14 28 3
Atmel lwIP HTTP ASF, HTTP, lwIP UART, Ethernet 8 7 265 935 7 1,584 8 24 3
Atmel 6LoWPAN Sender ASF, Contiki, uIPv6, 6LoWPAN UART, 802.15.4, EXTI, Clock, Timer, EDBG 14 7 121 521 7 2,734 21 36 3
Atmel 6LoWPAN Receiver ASF, Contiki, uIPv6, 6LoWPAN UART, 802.15.4, EXTI, Clock, Timer, EDBG 14 7 122 903 7 2,474 21 36 3
STM UART STM32Cube UART, GPIO 8 7 40 17 7 66 10 7 3
STM SD FatFs STM32Cube FatFS GPIO, SD Card, Clock 8 7 41 17 7 625 18 25 3
STM UDP Echo Client STM32Cube, lwIP Ethernet, Clock, GPIO, EXTI 8 7 32 15 7 732 16 10 3
STM UDP Echo Server STM32Cube, lwIP Ethernet, Clock 8 7 40 17 7 568 15 10 3
STM TCP Echo Client STM32Cube, lwIP Ethernet, Clock, GPIO, EXTI 8 7 31 15 7 1,110 16 10 3
STM TCP Echo Server STM32Cube, lwIP Ethernet, Clock 8 7 33 15 7 1,002 15 10 3
STM PLC STM32Cube, lwIP, STM-WiFi Clock, Timer, STM-WiFI, UART, SPI 39 7 54 17 7 713 17 41 3
NXP UART MCUExpresso UART 4 7 107 1,766 3 82 6 28 3
NXP UDP Echo Server MCUExpresso, lwIP UART, Ethernet 4 7 54 66 7 805 13 43 3
NXP TCP Echo Server MCUExpresso, lwIP UART, Ethernet 4 7 54 66 7 1,173 14 43 3
NXP HTTP Server MCUExpresso, lwIP UART, Ethernet 4 7 56 68 7 1,756 14 45 3

Averages 9.7 98.7 341.2 1024.2 13.9 25.0

Table 3: Comparison of QEMU, Avatar2, and HALucinator.

basic blocks (on STM PLC). Avatar2’s MMIO forwarding
enables executing further into the firmware (the average num-
ber of basic blocks increases from 9.7 to 98.7), but quickly
runs into problems. All the STM samples and the NXP UDP,
TCP, and HTTP samples enable the SysTick timer early in
their initialization. The SysTick timer is part of the Cortex-M
architecture and implemented in QEMU. The emulation
is significantly slower than the actual hardware thus, when
SysTick is enabled QEMU is quickly overwhelmed with
interrupts. It is unable to finish handling one interrupt before
the next occurs. HALucinator intercepts the HAL functions
that initialize the SysTick timer and substitutes a counter to
keep time; enabling it to avoid this problem. All the Atmel
firmware samples halt when the debugger fails to write an
MMIO address on the board. The debugger does not give any
indication why this occurs. In most cases, the debugger has
successfully written the address previously, implying the error
is not that the address is invalid. This highlights one of the
challenges of emulating with hardware-in-the-loop. The emu-
lator, debugger, and board must be synchronized and execute
without error in unison to enable successful emulation. Even
if the debugger worked reliably, the firmware samples depend
on interrupts, which Avatar2 does not synchronize with the
emulator and thus they would still fail to execute correctly.

This experiment shows how HALucinator enables the em-
ulation of complex firmware that exhibits the same external
functionality as the firmware executing on real hardware,
which existing approaches cannot do. HALucinator executed
more than 1,000 basic blocks on average, 10x more than
Avatar2, on our sample firmware. The emulation of four dif-
ferent boards from three different manufactures demonstrates
the ability of HLE to support a wide variety of hardware, and
the reuse of the same peripheral models for all boards shows
their scalability across vendors and hardware platforms.

5.4 Fuzzing with HALucinator

We now demonstrate that HALucinator’s emulation is useful
for dynamic analysis by fuzzing the network connected

Name Time Executions Total Paths Crashes
WYCINWYC 1d:0h 1,548,582 612 5
Atmel lwIP HTTP (Ethernet) 19d:4h 37,948,954 8,081 273
Atmel lwIP HTTP (TCP) 0d:10h 2,645,393 1,090 38
Atmel 6LoWPAN Sender 1d:10 1,876,531 23,982 0
Atmel 6LoWPAN Receiver 1d:10 2,306,569 38,788 3
STM UDP Server 3d:8h 19,214,779 3,261 0
STM UDP Client 3d:8h 12,703,448 3,794 0
STM TCP Server 3d:8h 16,356,129 4,848 0
STM TCP Client 3d:8h 16,723,950 5,012 0
STM ST-PLC 1d:10h 456,368 772 27
NXP TCP Server 14d:0h 218,214,107 5164 0
NXP UDP Server 14d:0h 240,720,229 3032 0
NXP HTTP Server 14d:0h 186,839,871 9710 0

Table 4: Fuzzing experiments results.

firmware shown in Table 4, and the firmware used in the
experiments in WYCINWYC [44]. WYCINWYC investi-
gates the observability of memory corruption on embedded
systems, and provides a vulnerable implementation of
an XML parser on embedded system. Experiments were
performed on a 12-core/24-thread Xeon server, with 96GB
RAM. Table 4 shows the statistics provided by AFL during
the fuzzing sessions. Crucially, we were able to scale these
experiments to the full capacity of this hardware, due to
removing the dependence on the original hardware.

We include the WYCNINWYC example here, as it
provides a benchmark of crash detection in an embedded
environment. This firmware uses the same STM HAL used
in previous experiments, and no additional handlers were
implemented. We substituted our fuzz model for the serial
port model, and fuzzing was seeded with the non-crashing
XML input included with the binary. We triggered four of
the five crashes in [44], without the need for additional crash
detection instrumentation, and were able to trigger the final
crash by simply adding the ASAN-style sanitizer described
in Section 3.4. The remaining firmware were re-hosted
as in the interactive experiments, replacing the I/O server
with the fuzz model for network components and adding
fuzzing-related instrumentation. We also provided handlers
for disabling library-provided non-deterministic behaviors
(e.g., rand()), and generated inputs by simply recording
valid interactions performed in the previous experiments, and



serializing them into a form that can be mutated by AFL.
These experiments uncovered bugs in the firmware

samples. The ST-PLC firmware implements a Programmable
Logic controller that executes uploaded ladder logic programs.
It uses WiFi connectivity to receive the ladder logic programs
from an Android app. This sample is extremely timer-driven,
and made use of the deterministic timer mechanism to ensure
that each input produced the same block information for
AFL. We provided AFL with only a minimal sample ladder
logic program obtained from the STM PLC’s Android app
by capturing network traffic. After only a few minutes, AFL
detected an out-of-bounds memory access; upon further
inspection, we identified a buffer overflow in the firmware’s
global data section, which could result in arbitrary code
execution. The vulnerability is previously unknown, and we
are working with the vendor on a mitigation.

The Atmel HTTP server firmware is a small HTML
and AJAX application running on top of the popular lwIP
TCP/IP stack. After nearly 9 days, AFL detected 267 “unique”
crashes, which we disambiguated to 37 crashes using the
included minimization tools. Manual examination revealed
the crashes related to two bugs: a heap double-free in
lwIP itself, and a heap use-after-free caused by the HTTP
server’s erroneous use of lwIP functions that perform heap
management. The firmware, and the Atmel ASF SDK itself
ships with an outdated version of lwIP (version 1.4.1), and
both issues have since been fixed by the lwIP developers.

However, random mutations in Ethernet frames, even
guided by AFL, are not likely to produce much coverage in the
core application logic of the firmware. To focus more directly
on the HTTP server, and not the IP stack, we can exploit the
flexibility of high-level emulation, and instead re-host the bi-
nary in terms of the TCP APIs of the lwIP library (discovered
by LibMatch) that the HTTP server itself was written with,
allowing the fuzzed packets to reach deeper into the program.
Fuzzing at the higher level quickly found a buffer over-read
in the HTTP server’s handling of GET request parsing, which
provides an information disclosure in the heap.

The three crashes in the 6LoWPAN sample correspond
to a buffer overflow in the handling of the reassembly of
fragmented packets, resulting in overwriting many objects in
the binary’s data section with controlled input, and eventually
remote code execution. The issue relates to the Contiki-OS
platform, and as in the previous example, has been fixed
since the version included in the latest SDK was produced.
However, the fix in the latest version introduced two critical
vulnerabilities, which we reported as CVE-2019-8359 and
CVE-2019-9183 respectively. We worked with the Contiki
authors to patch these bugs.

These experiments show that HALucinator enables
practical security analysis of firmware without massive re-
engineering effort and without any hardware. The scalability
is in both the types of firmware that can be emulated, and
the number of instances that can be concurrently emulated.

This enables large parallelization of analyses and testing such
as fuzzing. The discovery of bugs in real firmware samples
demonstrates that the emulation is useful for dynamic
analysis of complex firmware.

6 Related Work

HALucinator draws upon related work in function and library
labeling, as well as firmware emulation.
Function Identification and Labeling. Previous work has
explored various aspects of “function identification”. As
this term has many over-loaded uses, it is important to
distinguish the problem LibMatch solves (labeling specific
binary function names in firmware samples) from others. Bin-
Diff [28, 55], and its open source counterpart Diaphora [21]
use graph-matching techniques to effectively and efficiently
compare two programs. While these tools can be effectively
used to label functions, by matching a target binary to each
library object, the tool does not account for collisions.

Multiple previous works have explored the problem of
function labeling, using various combinations of features
extracted from functions, and matching methods, to associate
one set of code from another. Feature extraction techniques
include function preamble-based signatures [31], backward
slices from system calls [35], and traces from symbolic
execution [46, 47]. Matching the extracted features has
been performed through Bayesian networks [15], neural
networks [33], and locality-sensitive hashing [24]. Unfortu-
nately, none of these systems are suited for labeling functions
in firmware due to several challenges: the inability to analyze
or execute ARM Cortex-M code, the lack of information
available to machine learning approaches due to small size
and close similarity of functions in HALs, and the inability
of some approaches to deal with collisions in an efficient way.
This lack of existing approaches leads us to develop our func-
tion matching approach that is tailored to embedded firmware.
Firmware Emulation. Many previous works have explored
the challenge of emulating embedded firmware. The most
prevalent approach employs hardware-in-the-loop execution,
as found in AVATAR [58], AVATAR2 [43], and SURRO-
GATES [36]. In these systems, the physical target device is
tethered to the analysis environment, typically using a debug
port, and its hardware peripherals are used by a standard
emulator during execution. This approach is limited by its
visibility into the hardware; even with full debugger support,
only the state of the processor is accessible to the emulator.
State internal to peripherals is not synchronized with the
emulator, and external events (e.g., timeouts or data reception)
modify the peripheral’s state, causing it to deviate from the
emulator’s state, which may lead to incorrect execution or
faults when the emulator attempts to modify the peripherals
state by read/writing the peripherals registers. In addition,
current hardware-in-the-loop approaches do not support inter-
rupts or direct memory access (DMA). HALucinator handles



interrupts and DMA through the same HALs developers use
to perform DMA; enabling emulating firmware which current
hardware-in-the loop approaches cannot.

Another approach [19, 20] to emulation involves using the
presence of a high-level operating system, such as Linux, as
a point of abstraction, and replacing the firmware’s version
with one able to be run in an emulator. This could be thought
of as a form of high-level emulation, as it uses the user-kernel
barrier as the modeling boundary. However, it only works
on firmware with a file-system image which can be booted
without any device-specific code being run. In this work, we
specifically target “blob” firmware, found in devices without
such an operating system.

All of these systems, including HALucinator, rely on an
underlying emulator to execute code and provide real or
emulated peripherals. The popular open-source QEMU [18]
provides the basis for most, and itself includes support
for a range of chips and the on-board peripheral models
needed to boot some firmware. SIMICS [38, 57] allows
one to implement cycle-accurate emulators, but requires
tedious manual effort to build the models of any device not
represented in its default distribution. However, as the number
of popular embedded CPUs has exploded, the usefulness of
these emulators in re-hosting a given firmware is decreasing.

HALucinator draws some inspiration from the work done
in game console emulation [23, 56], which pioneered the idea
of HLE, albeit applied to specific hardware environments
and software stacks. HALucinator represents a generalization
of this idea, and presents the first known application to
embedded firmware for security.

Firmware can also be re-hosted without full emulation,
if source code is available. Simulators for Contiki [45],
mBed [39] and RIOT-OS [17] allow the developer to compile
their firmware code into a binary that can run on the host
system. In contrast, HALucinator allows for a similar kind of
re-hosting to be performed, but on the final firmware binary,
and without the availability of source code.

Recently, approaches such as P2IM [12] and Pretender [32],
both concurrent with this work, achieve automated re-hosting
of embedded firmware by modeling the MMIO peripherals
directly. Pretender accomplishes this by recording the
original device’s MMIO activity, while P2IM instead utilizes
blind fuzzing of the entire MMIO layer. These approaches
themselves have differing utility; P2IM cannot be used as
a generic re-hosting solution, while Pretender requires the
original hardware which must be instrumentable. While
full automation is an important goal, and we expect that
some manual aspects of HALucinator can be automated
in the future, HALucinator’s HLE approach allows it to
handle many cases that neither automated system can.
First, both works list DMA as a major limitation; as DMA
tends to be used with high-performance peripherals, and its
complexity lends itself to being implemented within a library,
HALucinator handles DMA by simply removing it from

the program. We re-host multiple samples containing DMA
in Section 5.3. Second, P2IM only considers sequences of
MMIO interactions as input; when a crash is found, this must
be mapped back to the external stimulus, requiring a deep
understanding of the external peripherals’ MMIO interface.
HLE-based approaches do not suffer from this problem, as
they work only with this external stimulus, and the inputs can
be readily replayed against real and virtualized targets alike.

7 Limitations and Discussion

We believe that LibMatch and HALucinator represent an im-
portant step in the practicality and scalability of the dynamic
analysis of embedded firmware. However, the problem in
general is not fully solved. Here we will discuss limitations,
and open problems in embedded firmware analysis.
Use and Availability of HALs. The process of high-level
emulation as described in this work, requires the firmware use
a HAL, and the HAL must be available to the analyst (e.g.,
either open source, or part of the microcontroller’s SDK). The
compilation environment for the LibMatch database must
be similar to the compilation environment for the firmware,
and QEMU must support the microcontroller architecture.
Even when these conditions are met, handlers and peripheral
models must be developed for each HAL. Progress on
any of these limitations will increase the applicability of
HALucinator in analyzing firmware.

We note that microcontroller vendors are investing signifi-
cant resources into the development of HALs and license them
under permissive terms. While we cannot estimate the popula-
tion of devices today that use HALs, we expect these steps on
the part of manufacturers will lead to a rapid increase in HAL
usage. However, if a HAL is not used in a firmware sample, or
is unavailable to the analyst, then LibMatch cannot be used for
identifying interfaces usable for high-level emulation. This
does not prohibit high-level emulation; as a reverse-engineer
could manually identify useful abstractions in the binary. This
is likely preferable to writing low-level QEMU peripherals.
Library Matching. LibMatch implements extensions on top
of library matching algorithms that allow them to be used
for the purpose of finding HALs and libraries in firmware.
However, we note that the effectiveness of LibMatch,
especially when the compiler or library versions used is
unknown, is limited. This limitation comes from function
matching techniques’ inability to cope with compiler-induced
variations in generated code. While partial techniques
have been proposed, most recently in [24], the problem
is not solved in the general case. High-level emulation
and LibMatch will benefit directly from any advancement
in this orthogonal problem area of function matching in
the future. LibMatch’s primary contribution is the use of
context (callees/callers) of a function to disambiguate binary
equivalent functions, which is necessary to enable correct
interception and replacement of functions by HALucinator.



8 Conclusion

We explored the concept of high-level emulation to aid
in the practical re-hosting and analysis of embedded
“blob” firmware. To find useful abstractions, we showcased
improvements in binary library matching to enable hardware
abstraction layers and other common libraries to be detected
in binary firmware images. Implementations were then
broken down into abstract components that are reusable
across firmware samples and chip models.

HALucinator, is the first system to combine these tech-
niques into a system for both interactive dynamic analysis,
as well as fuzzing. We re-hosted 16 firmware samples,
across CPUs and HALs from three different vendors, and
with a variety of complex peripherals. High-level emulation
made this process simple, allowing for re-hosting to take
place with little human effort, and no invasive access to
the real hardware. Finally, we demonstrated HALucinator’s
applications to security, by using it to detect security bugs
in firmware samples. We believe that high-level emulation
will enable analysts to broadly explore embedded firmware
samples for fuzz testing and other analyses. HALuci-
nator is available at https://github.com/embedded-
sec/halucinator, HALucinator-fuzzer is available at
https://github.com/ucsb-seclab/hal-fuzz.
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A Appendix

A.1 Code Complexity Metrics

To assess the difficulty and complexity of the required manual
effort when programming the handlers and peripheral model,
we examine the amount of code—in source lines of code
(SLOC)—and its cyclomatic complexity (CC) in Table 5. Let
us look at the largest handler for each peripheral. The ASF Eth-
ernet handler requires 119 SLOC across with an average func-
tion cyclomatic complexity of 1.9 and a maximum of 6. The
Ethernet peripheral model takes an additional 60 SLOC with
average cyclomatic complexity of 2.2. This means an Ethernet
interface can be emulated in under 200 lines of simple code.

However, firmware uses more than one peripheral. The
6LoWPAN firmware samples use the IEEE 802.15.4 radio,
UART, Clock, the external interrupt controller (EXTI), and
on-board debugger (EDBG) interfaces. For these firmware
samples the amount of code and complexity of the code is
low. It require 228 SLOC for the handlers and 177 SLOC
lines of code for the peripheral models with the highest
average cyclomatic complexity being 2.2. Thus, with 405
lines of simple code, we emulate the firmware for a wireless
sensor implementing the 6LoWPAN protocol.

A.2 Evaluation of P2IM Firmware Samples

In order to test the applicability of HALucinator to realistic
firmware, the authors of P2IM [12] provided us upon request
with a portion of their real-world firmware samples. These
samples represent multiple CPU manufacturers, and various
HAL implementations, as described in Table 6 of the paper.

We re-hosted the five samples from this set that take input
from outside the device. For the PLC, Heat Press, and car
controller, the firmware contained the Arduino platform
HAL, and we implemented handlers for a small subset
of the Arduino platform’s functions, comprising only five
new handlers, to allow these samples to run. As this HAL
is designed for those new to embedded programming, it
helpfully abstracts all hardware-specific features, making it

STM32 Handlers Atmel Handlers NXP Handlers Peripheral Model
CC CC CC CC

Peripheral SLOC Max Ave SLOC Max Ave SLOC Max Ave SLOC Max Ave
802.15.4 — 89 3 1.4 — 62 3 2.0
Clock 21 1 1.0 25 2 1.3 — —
EDBG — 30 2 1.6 — —
Ethernet 67 4 1.5 119 6 1.9 50 2 1.2 60 3 2.2
EXTI — 47 4 2.2 — 32 2 1.4
GPIO 46 1 1.0 — — 36 2 1.3
SD Card 82 5 1.7 116 3 1.5 — 60 4 2.3
SPI 55 1 1.0 — — 66 5 1.9
WiFi TCP 69 8 2.4 — — 59 5 2.2
Timers 77 1 1.0 61 2 1.3 — 43 2 1.7
UART 29 1 1.0 37 1 1.0 36 1 1.0 41 4 2.0

Table 5: Showing SLOC, maximum and average cyclomatic
complexity (CC) of the handlers written for the STM32,
Atmel, and NXP HALs and the associated peripheral models.

Name Time Executions Total Paths Crashes
PLC 9d1h 167,649,720 1,585 634
Heat Press 9d1h 55,577,331 991 13
Steering Ctlr 23d14h 98,393,268 469 0
Drone 4d1h 9,234,661 4666 0
Console 4d1h 124,442,630 2834 0

Table 6: P2IM case-study firmware sample fuzzing results

a natural fit for our technique. As a result, this meant that all
handlers fell into the Trivial or Translating categories. The
drone firmware contains the STM32 HAL used extensively
in our evaluation in Section 5.3; we added three additional
Translating handlers, and the firmware ran without issue.

Finally, the Console firmware uses RIOT OS [17], which
is both an RTOS kernel and a set of hardware abstractions
and drivers. RIOT OS exposes a standard set of functions
for hardware peripherals, with multiple implementations
depending on the chip in use. Of the seven new handlers
that were required, five fell into the Trivial or Translating
categories. However, there was one notable exception: the
RIOT task switcher uses new ARM architectural features
and CPU instructions not yet supported by QEMU or
Unicorn Engine. Thankfully, this is a standard component
of RIOT that, like any other, can be turned into a handler. By
implementing the context switching as a handler (requiring
15 lines of handler code), we both get deep introspection into
the behavior of RIOT OS programs, and the ability to explore
multi-threading-related issues in RIOT OS programs in the
future, regardless of their underlying hardware.

We fuzzed these samples with HALucinator. Table 6 shows
the results. We observed a variance in execution speed, both
due to the nature and size of the input, but also how well
this input is checked for correctness. For example, the Drone
sample executed particularly slowly, due to the fact that if
erroneous input was detected, the firmware would call an
error handler routine, which caused the system to hang. We
were able to reproduce the crashes in the PLC and Heat Press
samples.
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