
SpecROP: Speculative Exploitation of ROP Chains

Atri Bhattacharyya
EPFL

Andrés Sánchez
EPFL

Esmaeil M. Koruyeh
UC Riverside

Nael Abu-Ghazaleh
UC Riverside

Chengyu Song
UC Riverside

Mathias Payer
EPFL

Abstract
Speculative execution attacks, such as Spectre, reuse code
from the victim’s binary to access and leak secret information
during speculative execution. Every variant of the attack re-
quires very particular code sequences, necessitating elaborate
gadget-search campaigns. Often, victim programs contain
few, or even zero, usable gadgets. Consequently, speculative
attacks are sometimes demonstrated by injecting usable code
sequences into the victim. So far, attacks search for mono-
lithic gadgets, a single sequence of code which performs all
the attack steps.

We introduce SpecROP, a novel speculative execution at-
tack technique, inspired by classic code reuse attacks like
Return-Oriented Programming to tackle the rarity of code
gadgets. The SpecROP attacker uses multiple, small gadgets
chained by poisoning multiple control-flow instructions to
perform the same computation as a monolithic gadget. A key
difference to classic code reuse attacks is that control-flow
transfers between gadgets use speculative targets compared
to targets in memory or registers.

We categorize SpecROP gadgets into generic classes and
demonstrate the abundance of such gadgets in victim libraries.
Further, we explore the practicality of influencing multiple
control-flow instructions on modern processors, and demon-
strate an attack which uses gadget chaining to increase the
leakage potential of a Spectre variant, SMoTherSpectre.

1 Introduction

Spectre [1] demonstrated the power of speculative execu-
tion attacks by leaking information across various protection
boundaries: sandboxes, processes, userspace/kernel, and vir-
tual machines. These attacks reuse code gadgets (short instruc-
tion sequences with useful functionality) already present in
the victim’s code base to access and leak secrets such as cryp-
tographic keys or arbitrary memory. As a form of code-reuse
attacks, they require gadgets composed of specific instruction
sequences to exist in victim binaries. Often, the length of these

sequences, their complexity, or the rarity of their constituent
instructions implies that the occurrence of usable gadgets is
sparse. A case in point is the gadget required by Spectre. The
attack requires a gadget where the attacker controls two regis-
ters, and contains two loads, of which the second load must
access an address which depends on the value loaded by the
first. In fact, the attack on the Linux kernel, which is a massive
and diverse code base, relied on its eBPF (extended Berkeley
Packet Filter) subsystem to essentially inject the gadget into
the kernel.

To address the lack of powerful, monolithic gadgets, we
propose the use of speculative gadget sequences. We present
SpecROP, an attack based around the idea of using the effects
of multiple, small gadgets to effectively perform computa-
tion equivalent to much larger, monolithic gadgets. The attack
methodology leverages the relative abundance of the smaller
gadgets as compared to larger gadgets to provide the required
leakage gadgets. SpecROP is similar to existing code-reuse
attacks (such as Return-Oriented Programming [2, 3] and
Jump-Oriented Programming [4]). In comparison to these
code reuse techniques, SpecROP leverages branch poisoning,
a common starting step in speculative execution attacks, to
effectively stitch the execution of these smaller gadgets. We
search for small code sequences which perform common mod-
ifications on state (e.g., add, shift registers) and end in a return
or indirect jump. During speculation, the CPU consults the
branch predictor to decide the jump target, allowing us to redi-
rect execution to the next gadget. We use automated binary
analysis to discover the constituent gadgets of a SpecROP
chain, using our tool, SpecFication.

This paper makes the following contributions:
• A study of the contexts in which branch targets may

be maliciously influenced on modern processors (with
hardware and microcode updates against Spectre-like
attacks);

• Analysis of gadget chaining practicality, using indirect
jump instructions as well as returns;

• A proof-of-concept attack, where we extend the capabil-
ities of an existing speculative execution attack;

• A practical attack on a real target, libcrypto from
OpenSSL, leaking multiple bits of the plaintext during
encryption;

• A binary analysis tool, SpecFication, for discovering
gadgets in real-world libraries, and a characterization
of the existence of some classes of generic gadgets in
commonly-used libraries.

2 Background

SpecROP extends the power and impact of speculative execu-
tion attacks [1,5,6] by enabling the combined use of multiple
gadgets, similar in spirit as Return-Oriented Programming
which enabled complex code-reuse attacks. Here, we provide
the necessary background for SpecROP.

2.1 Speculative Execution Attacks
Modern processor design has led to a class of attacks known
as Speculative Execution Attacks (SEA). These attacks target
mechanisms designed to allow a processor to ameliorate the
impact of long latency instructions on performance. Specifi-
cally, processors fetch and execute instructions out-of-order
and speculate when lacking all the information needed to
make decisions. Instructions executed by the processor fol-
lowing a misprediction are incorrect. While processors revert
the architecturally visible effects of incorrect actions, microar-
chitectural side-effects remain. This allows SEA attacks to
leak information encoded into cache residency [1, 5], or port
utilization [6] during the period of incorrect execution. The
period starting from the point the processor mispredicts until
it realizes its mistake is the speculation window.

The microarchitectural structure, and its behavior which
encodes information defines a side-channel. Variants of SEA
differ in their choice of side-channel and the reason for mis-
speculation. Spectre-v1 [1] exploits misspeculation following
a bounds-check prior to an array access. Spectre-v2 exploits
misprediction of the target of an indirect call or jump. Both of
these variant use a Flush+Reload channel [7]. SMoTherSpec-
tre [6] and NetSpectre [8] use alternate side-channels based in
port contention (ports are microarchitectural structures used
for scheduling instructions within the processor pipeline) and
the power-up status of AVX units instead.

2.2 Microarchitectural Side-channels
Microarchitectural side-channels are data channels on a pro-
cessor which leverage state stored in microarchitectural struc-
tures, such as the cache or branch predictors, to transfer in-
formation. As opposed to a covert-channel, the transmitter in
a side-channel is not privy to the communication: the trans-
mitter is inadvertently leaking information and is referred to
as the victim. The receiver reads the information from the
channel, and is referred to as the attacker.

SEA depend on side-channels to leak any secrets accessed
during speculative execution, since any architectural chan-
nels are erased when the processor detects misspeculation,
and rolls back architecturally visible state. Here, we fo-
cus on two side-channels: a cache residency based chan-
nel (Flush+Reload), and a port contention based channel
(SMoTher).

Flush+Reload channel A Flush+Reload channel [7] en-
codes information in the cache residency of a cache block
at a specific address (A). This channel requires the attacker
and victim to temporally share a core and its cache. Initially,
the attacker primes the channel by flushing the cache block,
evicting it from all layers of caches: the block is now un-
cached. In the second step, the victim executes. During its
execution, the victim encodes a secret bit into the channel by
conditionally loading from the address A. If the secret is 0, it
loads A (thereby caching the block); if the secret is 1, it does
not. Finally, the attacker reads the channel by reloading the
address A, and timing how long it takes. If the secret was 0,
and the victim had already cached the block, the attacker’s
load is fast, else it is slow. This channel encodes a single bit.

A variant of this channel uses 256 unique address (A0
through A255) which map to different cache blocks. The vic-
tim encodes a secret byte (b) by only loading Ab. In the reload
phase, the attacker reloads all addresses and times each load.
The load Ab completes faster than the others, thereby leaking
a byte.

SMoTher channel A SMoTher channel [6] encodes infor-
mation in the port utilization of the victim’s instructions. This
side-channel requires the attacker and victim to share a Si-
multaneously Multi-Threaded (SMT) core, thereby sharing
the ports on the core.

The victim encodes a secret bit by executing a SMoTher
gadget, a secret-dependent conditional branch leading to (tar-
get and fallthrough) code sequences which utilize different
ports. Concurrently, the attacker executes a specific sequence
of instructions designed to cause port contention with the
target sequence, and times its execution. In the case that the
victim is executing the fallthrough sequence, there is no port
contention and the attacker completes its own sequence faster.
In the other case, when the victim executes the target se-
quence, port contention causes the attacker’s execution to be
slower. The attacker, therefore, uses its timing to infer which
sequence the victim was executing. Since the victim’s secret
bit determines which way the conditional branch goes, the
attacker is able to leak the secret bit. This channel encodes a
single bit.

2.3 Return/Jump Oriented Programming
Return-Oriented Programming (ROP) is a code-reuse tech-
nique based on chaining multiple instruction sequences al-

Indirect jump

First gadget

Second gadget

...

Start of
speculation

Processing
gadgets

Leakage Leakage of
secret

Figure 1: Phases of a Speculative ROP attack.

ready present in victim code into a gadget capable of per-
forming complex computations. ROP gadgets end in a re-
turn instruction, chained through the attacker-compromised
return addresses on the stack. This mechanism is used to
chain the smaller sequences into complex exploits. In 2007,
Shacham [2] demonstrated how gadgets from instruction se-
quences in libc could be used to achieve Turing-complete
computation. Jump-Oriented Programming (JOP) [4] is a re-
lated technique where indirect jumps are hijacked through
memory corruption to similarly compose smaller gadgets into
complete attacks.

Similar to previously known buffer-overflow attacks, ROP
requires the ability to corrupt the stack (or to pivot the stack
to an alternate location). While buffer-overflow attacks were
commonly used to inject and execute shell code onto the stack,
they were effectively eliminated by one mitigation technique:
hardware exclusion of writable and executable permissions on
pages. ROP attacks bypass this mitigation by design, reusing
instructions already existing within the victim’s binary and
which must necessarily have executable permissions.

Code-reuse attacks depend on the existence of gadgets
which perform computation useful to the attacker. The statis-
tical probability of a gadget existing in a binary is dictated by
two parameters: the length of the sequence and the probabil-
ity of occurrence of each instruction in the gadget within the
binary. On an architecture with variable-length instructions,
such as x86_64, short instructions such as ret (encoded as
one byte) may be even found inside the machine code for
longer instructions (such as mov rax, rbx). In general, com-
monly existing ROP gadgets are small sequences of common,
sometimes unintended, instructions.

3 Speculative ROP

Speculative Return-Oriented Programming (SpecROP), is an
exploit technique that leverages gadget chaining to enhance
the capabilities of an SEA attacker. Figure 1 shows the steps of
a SpecROP attack. The attack starts at a mispredicted control-
flow instruction, an indirect jump/call or return. The attacker
poisons the branch predictor on the processor to control the

1 / / C : a r r a y 2 [a r r a y 1 [x] * 4096]
2 mov (rax , rdi , 8) , rax
3 s h l 0xc , rax
4 mov (rdx , rax , 8) , rax

(a) Spectre gadget where rax points to array1, rdx points to
array2, and rdi is x

1 / / Gadget 1 : Load s e c r e t
2 mov (rdx , rax , 1) , edx
3 c a l l *(rbx + 0x40)
4 / / Gadget 2 : S h i f t s e c r e t
5 s h l 0x20 , rdx
6 mov eax , eax / / E x t r a n e o u s
7 or rdx , rax / / E x t r a n e o u s
8 r e t
9 / / Gadget 3 : Leak s e c r e t

10 mov (rbx , rdx , 8) , r s i

(b) Equivalent SpecROP chain where rdx points to array1, rbx
points to array2, and rax is x. Lines 6 and 7 contain code irrelevant
to the gadget chain.

Listing 1: A SpecROP chain from libc which can be used in
place of the Spectre gadget

predicted target of the jump. Thereafter, the processor exe-
cutes instructions along the first gadget in the chain: a process-
ing gadget. Subsequently, the attacker manipulates a control-
flow instruction at the end of the first gadget to direct execu-
tion to the second gadget, and so on through a gadget chain,
similar to a ROP attack. The chain of processing gadgets is
responsible for performing attacker-controlled computation,
and is key to the increased capabilities of a SpecROP attacker
(which we discuss later). The final gadget(s) in the chain, a
leakage gadget, is used to leak secrets. The key difference
to ROP attacks is that SpecROP gadgets are executed and
chained speculatively, i.e., the target of the indirect control
flow transfer is not read from a memory location but indirectly
influenced and “primed” by the attacker.

SpecROP bypasses the reliance of existing SEA on two
conditions which are hard to satisfy, by chaining and leverag-
ing the execution of multiple gadgets. First, in classic SEA
the victim’s secret needs to be directly accessible, either in
a register or in memory referenced to by a register. Using a
gadget chain overcomes this requirement, enabling attacks
which require multiple operations to access the secret. For
example, functions in the generic interface for the OpenSSL
library (called EVP) have a pointer to a context structure as
the first argument. The context includes a pointer to cipher-
specific data (Figure 2b). For AES ciphers, this data is the
encryption key. Accessing the key from the context pointer
requires pointer arithmetic and two dereferences (see the “re-

call		*0x20(rax)

mov		0x78(rdi),rdi
mov		(rdi),	rax
test	0x1,rax
jmp		...
crc32	
popcnt

lea		0x20(rdi),rdi

mov		0x58(rdi),rax

testb	0x1,(rax)
jmp		...

SpecROP gadget chain

Required gadget

Processing Leakage

rdi	=	&ctx

rdi	=	&ctx	+	0x20

rax	=	cipher_data
				=	&AES_key

(a) Control flow during an SEA attack, and for a SpecROP attack.
Below the dotted lines, we show the relevant register state.

 EVP_CIPHER_CTX
ctx

rdi

AES	key

cipher_data

0x78

(b) OpenSSL’s Memory layout: The EVP_CIPHER_CTX struc-
ture contains a pointer to the AES key at an offset of 0x78.

Figure 2: A SpecROP chain starting with a pointer to the OpenSSL cipher context structure, and capable of leaking the AES key.

quired gadget” in Figure 2a). Such a monolithic gadget which
starts with a pointer to the context, and accesses and leaks
the key requires a long sequence of instructions. We were un-
able to find such a gadget within multiple libraries. Existing
SEA, therefore, are incapable of exploiting calls to the EVP
functions to leak the key. In contrast, we found a chain using
three gadgets from libcrypto (“SpecROP gadget chain” in
Figure 2a) which allows attackers to access and leak the AES
key. The full gadgets are listed in Appendix B. This chain
requires the attacker to poison an extra indirect jump and an
extra return instruction.

Second, classic SEA require a single gadget to both access
the secret, and leak it into the microarchitectural channel. The
gadget used to leak information in Spectre attacks requires
two dependent memory loads with a left-shift of at-least 6
bits (to encode each value in a different, 64-byte cache line)
in between (Listing 1a). So far, no natural gadget of this
kind has been disclosed publicly, even for large, real-world
binaries such as the Linux kernel. In fact, we applied our tool,
SpecFication, to search for monolithic, Spectre-like gadgets
in commonly-used libraries (listed in Section 5.2), the Linux
kernel and its modules, and in QEMU without any results.
In contrast, we found an equivalent SpecROP chain in libc

(Listing 1b). The chain has three gadgets , two of which are
dependent loads, with one shift gadget in between. Generally,
each gadget in a SpecROP chain is shorter than a monolithic
gadget, and there is a higher probability of finding them in
the victim’s code.

SpecROP offers several benefits compared to traditional
ROP and JOP attacks. Unlike ROP attacks, SpecROP does
not require any corruption of the victim’s memory to chain
gadgets. While there is an abundance of memory corruption
attacks, they require the attacker to interact directly with the
victim. In contrast, SpecROP attacks can be performed with
only microarchitectural interactions between the attacker and
their victim. Further, mitigations for memory safety which
protect the stack state do not affect the SpecROP attacker. Un-

like JOP attacks, SpecROP does not require a dispatcher gad-
get whose repeated indirect calls enable chaining of gadgets.
Finally, ROP/JOP attacks require that none of the chained
gadgets have unwanted side-effects such as exceptions. By
executing speculatively, SpecROP bypasses these restrictions.
For example, it allows the transient execution of code that
dereferences a null pointer as long as the loading of the secret
or the leakage gadget do not depend on it.

Limitations SpecROP chains are limited in their length, in
terms of the number of instructions and the number of cycles
they take to execute. Processors have microarchitectural lim-
its on the number of instructions they can fetch and execute
speculatively: the re-order buffer can hold around 200 instruc-
tions on modern processors. The entire gadget chain must
also complete its execution before the mispredicted branch is
resolved. Following a last-level cache miss, the speculation
window is up to a few hundred cycles [1].

Unlike JOP, SpecROP gadgets using indirect jumps cannot
be repeated. The technique used to poison jumps (Branch
Target Injection) implies a unique predicted target for each
address, precluding the reuse of these gadgets in more than
one place in the same chain.

3.1 Gadgets
Gadgets are the building blocks of a SpecROP attack, and an
attacker will require the presence of a variety of gadgets to
launch complicated attacks. We devise a system of catego-
rization of gadgets in Section 3.1.1 and show metrics of the
availability of each category in Section 4.

Gadgets in a typical SpecROP chain perform one of three
important functions: (i) manipulate processor state to access
secrets, and (ii) move said secrets into registers (iii) where a
final gadget leaks them. At each step, one or more gadgets may
be used. Figure 2 shows example gadgets from libcrypto

which access and leak the key. The first gadget is an arithmetic

gadget, where the lea instruction effectively adds an offset to
a pointer. The second gadget is a data movement gadget, and
moves a pointer to the secret into register rax. Finally, the last
gadget is a leakage gadget (using the SMoTher side-channel)
which dereferences a byte of the secret, and encodes the LSB
into the channel.

3.1.1 Classification of gadgets

Gadgets in a SpecROP chain can be classified based on the
functionality they provide. The main gadget categories are:

• Arithmetic gadgets perform simple arithmetic such as ad-
ditions or subtractions. These might be useful for pointer
manipulation, for example, allowing an attacker to craft
pointers to secrets.

• Shift gadgets shift and rotate values in registers. Gadgets
used in the SMoTherSpectre attack leak specific bits in
registers (for example, the LSB). These gadgets allow
an attacker to move secrets in other bits of the register
into those bits which are leakable.

• Data movement gadgets move secrets or other data
between registers, and between registers and memory.
These can be used for moving secrets into a register
targeted by the leakage gadget, for example.

• Leakage gadgets encode register/memory state into mi-
croarchitectural channels, enabling the attacker to later
infer and leak information.

• Multi-use gadgets perform more than one of the above
functions. An example is a lea gadget that performs an
addition and multiplication.

This classification allows us to locate generic gadgets in
existing code bases, rather than specific sequences for partic-
ular attack scenarios. In Section 5, we describe SpecFication,
a tool for finding useful SpecROP gadgets, under constraints
on their length, and starting and ending conditions.

4 Evaluation

We now evaluate the practical aspects of a SpecROP attack.
First, we explore the contexts in which gadgets can be chained,
and the limits on the number of control-flow instructions
which can reliably be poisoned. Towards this goal, we ex-
plore both avenues of chaining SpecROP gadgets: indirect
jumps and returns. Second, we create a prototype attack in a
laboratory setting to explore how chained gadgets enhance
a SMoTherSpectre attack, and whether there is any loss in
accuracy of leaked information as a result of chaining gadgets.
Finally, we describe a SpecROP attack on a real-world target,
libcrypto from OpenSSL, demonstrating that such attacks
are indeed feasible.

Context 6700K 8700 9700 10510U

Cross thread Y Y N N1

Cross process N N N N
Aliased Y Y Y Y
1 even with factory microcode.

Table 1: Contexts in which branch poisoning is feasible

1 / / Load un i qu e a d d r e s s Ai
2 mov (rdx) , rcx
3 add 0x100 , rdx
4 / / Load a d d r e s s t o n e x t g a d g e t
5 mov (r d i) , r8
6 add 0x8 , r d i
7 / / Jump t o n e x t g a d g e t
8 jmpq r8

Listing 2: Gadgets used to determine maximum chaining
length using indirect jumps. The loads to Ai mark the execu-
tion of this gadget. The final jump chains to the next gadget.

4.1 Gadget chaining
The practicality of a SpecROP attack is strongly linked to the
number of gadgets that can be reliably chained: the express-
ibility of the chain increases with the number of gadgets it
contains. Most practical SEA attacks will require at least two
(for the Spectre example) to three gadgets (for the OpenSSL
example). We describe our experiments for chaining gadgets
using indirect jumps and return instructions and evaluate the
contexts under which we were able to influence the branch
predictor.

Indirect jump poisoning in different contexts We evalu-
ated the ability to poison the branch predictor

• across threads sharing an SMT physical core,
• across processes sharing an SMT physical core, and
• across instructions at different addresses, leveraging

aliasing within the Branch Target Buffer (BTB).
We experimented with four generations of Intel’s processors
with updated microcode: i) Skylake i7-6700K, ii) Coffee Lake
i7-8700, iii) Coffee Lake Refresh i7-9700, and iv) Comet Lake
i7-10510U. From Table 1, we can see that branch poisoning is
only possible between an attacker and victim who share code
execution within a process, for example, a browser sandbox
running JavaScript from multiple websites.

4.1.1 Chaining gadgets through indirect jumps

Let us investigate the chaining of gadgets ending in indirect
jumps and calls. Assuming that the targets for the jump are
unavailable, the processor will use target predictions from

the BTB to speculatively fetch and execute instructions from
multiple gadgets.

In our experiment, we execute two threads from the same
process running on logical cores sharing a physical core. One
of the threads takes the role of an attacker, using a sequence
of indirect jumps through gadgets J0-J15 to train the branch
predictor. Listing 2 shows the code for the gadgets. The other
thread takes the role of the victim, speculatively following the
same path through the gadgets. The goal of this experiment is
to determine how many gadgets are actually executed by the
victim.

The target for the terminal jump of each gadget is loaded
from an array in memory (line 5), allowing us to “program”
different paths for the attacker and victim. On the attacker, the
gadgets are chained in an order designed to appear random to
the processor (J0 → J2 → J13 → J4 → J10 . . .J15). Architec-
turally, the victim is programmed to jump directly from J0 to
the end of J15. However, we flush the targets for the victim
from the cache, causing it to speculatively execute the same
chain as trained by the attacker until the targets are fetched
from memory. At this point, the victim state is rolled back.

To determine whether a gadget Ji is executed by the victim,
we instrument them with memory accesses (line 2) to unique
addresses Ai. Using per-address Flush+Reload channels (see
Section 2.2), we can determine which gadgets are executed:
if gadget Ji is executed speculatively, the access to Ai is faster
in the Reload phase. Knowing which gadgets were actually
executed by the victim allows us to infer how many indirect
jumps were successfully poisoned.

Figure 3a shows results from running this experiment on
two generations of Intel processors, the i7-8700 and the i7-
6700K, both with and without the latest microcode updates.
On each machine, we use 10 sets of 1,000 runs, plotting the
median of the fraction of times the nth gadget was executed
by the victim. The limits show the minimum and maximum
fractions across the sets. On both processors, up to four gad-
gets can be chained with more than 50% success. However,
the probabilities of chaining five or more gadgets drops dras-
tically, with less than 10% success for reaching six gadgets.
A preliminary investigation suggests that TLB misses are not
responsible for this trend, as moving the gadgets or the cache-
lines for the Flush+Reload channels to 2MB hugepages do
not improve it. We also see that microcode updates do not
significantly affect the median success rate.

4.1.2 Chaining gadgets through return instructions

We now study the chaining of gadgets terminated by return
instructions (ret). Modern processors use the Return Stack
Buffer (RSB) to predict the target of a ret instruction when
the return address on the stack is not immediately available.
Return addresses are pushed onto the RSB by call instruc-
tions, and are popped by ret instructions. Using unmatched
function calls, attackers can push excess values onto the RSB

and cause misprediction on later returns.
To show the possibility of chaining gadgets using RSB we

consider two experiments. In the first, the attacker and victim
execute on the same thread. In the second, the attacker and
victim run on different threads within the same process, using
a futex to interleave their execution on a single core.

Same-thread chaining In this experiment, the attacker uses
function calls to push a sequence of addresses onto the RSB.
The victim executes subsequently, its return instructions using
predictions from the RSB. The addresses on the RSB lead
to a sequence of gadgets, each of which accesses memory at
an unique address before executing a (poisoned) ret instruc-
tion. The memory accesses form a Flush+Reload channel to
determine which of the gadgets were executed by the victim.

Figure 3b shows results of our experiments on an i7-6700K,
an i7-8700 (16 RSB entries each), and a Xeon(R) E5-1620 (24
RSB entries). These experiments demonstrate the chaining
of up to five gadgets with a reasonable success rate on the
i7-6700K processor and up to two gadgets on the Xeon(R)
E5-1620. The success rate drops precipitously to practically
zero for more gadgets on all processors.

Cross-thread chaining In this experiment, the attacker poi-
sons the RSB (as in the previous experiment) before using a
futex to switch to the victim thread. Due to the limited size
of the RSB, and its pollution during the context switch (there
are multiple function calls within the kernel code) only a few
RSB entries remain untouched for the victim. The victim’s
execution is again similar to the previous experiment. On a
i7-6700, the attacker can consistently chain up to two gadgets
on the victim. On a Xeon(R) E5-1620, up to three gadgets
can be chained using the RSB.

4.2 Proof-of-Concept
We now demonstrate the power of the SpecROP exploit tech-
nique. The proof-of-concept (PoC) attack is based on the
SMoTherSpectre attack, which leaks specific bits using a side-
channel based on port contention. Specifically, the SMoTher
leakage gadget targets the least-significant bit (LSB) of the
register rdx. In our PoC, we use this leakage gadget in differ-
ent chains, augmenting the leakage capabilities of SMoTh-
erSpectre. While this PoC uses the SpecROP approach to
ameliorate one limitation of the SMoTherSpectre attack, we
believe that it is indicative of the improvement possible for
other attacks.

Our concept attack improves the SMoTherSpectre attack by
leaking eight bits of the register, not just the LSB. The attacker
achieves this by using shift gadgets for performing right-shift
operations on register rdx before being redirected to the leak-
age gadget. Note that the attack can trivially be extended to
leak the rest of the register. Figure 4 shows the flow of control
on the victim. The attack starts at the basic block ending in

1 2 3 4 5 6 7 8
Num ber of gadgets chained (with indirect jum ps)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 r
un

s
nth

ga
dg

et
 r

ea
ch

ed i7-6700K
i7-8700
i7-6700K (factory)
i7-8700 (factory)

(a) Using indirect jumps

1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 r

un
s

nth
ga

dg
et

 r
ea

ch
ed i7-6700K

i7-8700
E5-1620

Number of gadgets chained (with returns)

(b) Using ret instructions

Figure 3: The median success rate of chaining gadgets of different lengths on various processors. The limits represent the
maximum and minimum rate across runs. Entries marked "factory" represents runs without microcode updates.

an indirect jump (labeled jmp in the figure). The actual jump
target is the end block. By ensuring that the branch target is
unavailable, the attacker causes the victim to start speculative
execution, following the gadget chain trained by the attacker.
The attacker repeats this process several times, leading the
victim across the different paths to the leakage gadget. Along
each path, the register holding the secret is shifted by different
offsets, so that the leakage gadget ultimately leaks different
bits of the key.

Let us illustrate the process of leaking different bits. At
the jump gadget, suppose register dl holds a 8-bit secret
s = {si|i ∈ [0,7]} which the attacker wishes to leak. When
the attacker directly chains the jmp to the leakage gadget,
the value leaked is s0, the LSB of rdx. Instead, when the at-
tacker chains jmp→shift 1→leak, the register rdx holds s1
in the LSB at the leakage gadget. The leakage gadget now
encodes s1 into the side-channel. Similarly, on repetitions
where the attacker chains jmp→shift j→leak, the bit s j is
leaked. Therefore, by progressively redirecting the victim’s
speculative control flow through different SpecROP chains,
the attacker extends the leakage scope of SMoTherSpectre.

The SpecROP attack is not constrained to leaking individ-
ual bits. It is the characteristic of the leakage channel used
in this POC that a bit is leaked at a time. With a cache-based
side-channel which leaks a byte at a time, and addition gad-
gets which manipulate the pointer used to access secrets, a
SpecROP attacker can leak an entire byte per iteration.

This proof-of-concept attack models a behavior which is
typical of many programs, for example OpenSSL. C++ virtual
function calls use indirect jumps, and hold a pointer to the
object as the first parameter. For a virtual function call within
a loop, the attacker may run different chains on different iter-
ations. If the attacker can access different secrets by chaining
different sequences of gadgets, the attacker may progressively

jmp

jmp

shift 1

shift 2

...

shift 7

leak

Figure 4: The flow of control during non-speculative execu-
tion (solid line), SMoTherSpectre attack (dashed line) and in
SpecROP attack (dotted lines).

leak multiple secrets as the victim executes.
In our laboratory proof-of-concept, the attacker and vic-

tim run in separate processes. We run the experiment on an
i7-6700K processor with microcode updates disabled. This
allows cross-process branch poisoning on a shared physical
core. With updated microcode, the attacker model changes to
that described in Section 4.1.

Our laboratory proof-of-concept was used to leak 1,024
randomly generated bytes. As discussed previously, different
chains leak each of the 8 bits per byte, and we treat samples
for each bit as a separate channel in the evaluation. For each
channel, we collect 1,024 attacker SMoTher timing samples
(a measure of port contention with the victim), corresponding
to 1,024 randomly generated "secret" bits on the victim. We
then separate the attacker timings into two sets, depending
on the value of corresponding secret bit on the victim, and
plot the probability distribution function (pdf) for each set.
When the distributions are clearly distinguishable, it means
that the attacker’s timing is strongly correlated to the victim’s
secret and can be classified with a high accuracy. Figure 5

120 130 140 150 160 170 180 190 200
At tacker (SMoTher) t im ing

0.00

0.05

0.10

0.15

0.20

0.25
Pr

ob
ab

ili
ty

secret = 0
secret = 1

Figure 5: SMoTher timing for multiple gadget chain, sepa-
rated according to the actual "secret" bit values. We have
plotted the ranges of the individual probability distribution
functions, separated by the secrets they represent, zero and
one.

shows the results of the experiment. Our plot aggregates the
results, showing the range of probabilities across the channels.
The plot reveals that the attacker timings are similar across
all channels, and that there is a clear separation within the
distributions based on the actual secret. This means that the
attacker can choose a threshold (around 140 cycles in this
case), and classify each timing sample as a zero or one with a
high accuracy. In fact, we can accurately guess victim secrets
across all channels with an accuracy ranging between 99%
and 100%.

In this experiment, the channel for bit 0 uses the shortest
chain, directly connecting the jmp gadget to the leakage gad-
get. In fact, this chain is identical to the base SMoTherSpectre
attack. This chain requires a single poisoned branch, whereas
the chains for leaking other bits require two. We have seen
(in Section 4.1.1) that longer chains lead to a diminishing
probability of reaching the final (leakage) gadget. Therefore,
the leakage accuracy for channel 0 is the target for the other
channels. In fact, channel 0 leaks with 100% accuracy, and
even the worst channel has an accuracy of greater than 99%.
This shows that for a gadget chain of length two, SpecROP
allows us to augment the leakage scope of SMoTherSpectre
without suffering any loss of accuracy.

4.3 OpenSSL attack

In this section, we describe a realistic attack on a target pro-
gram using OpenSSL’s generic EnVeloP (EVP) interface to
encrypt/decrypt data. This attack improves upon the base
SMoTherSpectre attack on the same target, enabling the at-
tacker to leak an additional bit of the secret by modifying a
pointer held in register rdx using an arithmetic gadget. By
poisoning the BTB, the base SMoTherSpectre attack redirects

an indirect call in the EVP_EncryptUpdate function directly to
a leakage gadget. The register rdx holds a pointer to the secret
plaintext and this gadget leaks a bit of it from memory. In
contrast, the SpecROP attacker first redirects the indirect call
to an arithmetic gadget which increments rdx by a constant
(for eg. 0x40), and subsequently to a leakage gadget. As a re-
sult, the attacker leaks a different bit from the plaintext. With
different arithmetic gadgets, this approach can vastly increase
the leakage scope of SMoTherSpectre. Figure 6 illustrates
this: the leftmost path shows the speculative control-flow in
the base attack, and the other paths illustrate the leakage pos-
sible through different chains of gadgets. All the processing
and leakage gadgets are taken from glibc, which is likely
to be linked for most C programs, and are listed in full in
Appendix B.

In particular, we implemented an attack using the chain
which increments rdx by 0x40. The basic procedure of the
attack is very similar to SMoTherSpectre: the attacker and
victim are threads in the same process running on logical cores
on an SMT (hyperthreaded) physical core. Over 100,000
runs, the victim sets/resets the targeted bit in the plaintext
and initiates an AES encryption. Concurrently, the attacker
thread passes through a sequence of indirect jumps to poison
the BTB. In contrast to basic SMoTherSpectre, this chain
poisons more than one indirect branch on the victim. During
the consequent period of speculative execution on the victim,
the attacker times a sequence of instructions using rdtsc

timestamps. Due to port contention, the attacker’s readings
should be correlated to the victim’s secret. After the run, we
separate the attacker’s timings into sets based on the actual
value of the victim’s secret, and use the Student’s t-test to
validate that the distributions are actually distinguishable with
high confidence (95%).

We ran our attack on an i7-8700 processor. Compared
to SMoTherSpectre, the victim in our attack executed the
leakage gadget in 33% of the runs instead of 80%. This is
explained by our observations in Section 4.1.1: the success
rate of reaching the final gadget drops with the length of the
chain. Despite the added noise which results from runs where
the leakage gadget was not reached, the Student’s t-test reports
that the distributions are distinguishable with 95% confidence.
The test reports a timing difference of 4.41%±0.06%.

5 SpecFication: Gadget Search

To automate and improve the search for complex gadget
chains, we develop a tool. The goal of our gadget search
tool is two-fold:

1. To characterize the presence of processing gadgets which
will enable an attacker to perform useful transformations
on program state. Section 3.1.1 lists the target gadget
classes.

2. To automate the process of finding gadget chains as per
a set of constraints (described below).

testq	0x400,	(rdx)

rdx	=
&plaintext+0x40

Start of
speculation

Processing
gadget

Leakage
gadget

EVP_EncryptUpdate:
call	*0x20(rax)
rdx	=	&plaintext

add	0x40,	rdx

Base attack
SMoTherSpectre SpecROP + SMoTherSpectre variants

rdi	=	*
(&plaintext+0x50)

mov	0x50(rdx),rdi

testq	0x10,	rdi

rax	=
&plaintext+0xf

lea	0xf(rdx),rax

rdx	=
&plaintext+0xf

mov	rax,rdx

rax	=
&plaintext+7

lea	0x7(rdx),rax

rdx	=
&plaintext+7

mov	rax,rdx

Figure 6: SpecROP allows an attacker to extend the leakage scope of the SMoTherSpectre attack on OpenSSL, targeting plaintext
during encryption. The base attacker can leak a bit from byte 1 of the plaintext, whereas SpecROP chains enable leakage from
bytes 8, 16, 65 and 80 using different processing gadgets. The relevant register state is shown below the dotted lines for each
gadget.

The first goal allows us to support our claim that gadgets
enhance the capability of an attacker to access and leak se-
crets. The second goal will enable attackers to construct useful
chains from gadgets in real binaries, where the number of in-
dividual gadgets is large, and intractable for manual analysis.

Constraint handling SpecROP gadget chains have to re-
spect constraints to prevent scenarios which stop speculation.
For example, a gadget which loads an rip relative offset into
register rax prevents speculation on a later indirect jump us-
ing the same register. Another constraint is that the register
holding the secret must not be overwritten. A final constraint
is that the gadget chain must make the secret available at the
location (register/memory) disclosed by the leakage gadget.
Other constraints are important for specific side-channels, for
example a NetSpectre attacker requires intermediate gadgets
to not use AVX instructions.

SpecFication uses symbolic representation of x86_64 in-
structions to model their effects on processor state. This ap-
proach allows us to both compose the effects of instructions
to express the effects of a gadget and to express constraints
over our gadgets. As in ROP-chain tools [9], SpecFication
starts by enumerating every address which can be interpreted
as a valid instruction sequence ending in an indirect jump or
return instruction. For each of these sequences, we model the
semantics of the instructions over the registers. Currently, we
only handle certain classes of instructions such as data move-
ment, logic, arithmetic and branch instructions. SpecFication
uses the Z3 theorem prover [10] for testing constraints over
each sequence.

5.1 SpecFication architecture

SpecFication works in three phases: (i) binary disassembly
and preprocessing, (ii) gadget characterization, and (iii) con-
straint enforcement.

In the binary disassembly phase, the Capstone [11] frame-
work disassembles our target binaries. We create instruction
sequences, including unintended instructions, which end in a
return or indirect jump. Since we prioritize short gadgets, we
limit the length of explored sequences to 6 instructions. We
also remove gadgets containing specific instructions such as
unintended control-flow and privileged instructions.

Based on the intermediate representation of the gadgets
provided by Capstone, we map gadget semantics of the gad-
gets in the characterization phase. We express the semantics
of each instruction in the Hoare logic space and compose the
effects of all constituent instruction to generate the overall
effect of the gadgets. This makes the gadgets amenable to
processing by the Z3 theorem prover [10] in the solving phase.
An alternate approach would be to leverage previous work
which provide the formal specification of x86_64 instructions,
such as Strata [12] and Dasgupta et. al. [13]. For determining
the effect of a gadget chain, the code for each of the individual
gadgets must be composed after removing the terminating
control-flow instructions (which the attacker will poison).

5.2 Evaluation and Results

We now evaluate the effectiveness of SpecFication in finding
usable SpecROP gadgets in common libraries. Particularly,

4d 8b 4a 4d 8b 02 41 ff 52 1008

movq	0x08(r10),r9 movq	(r10),r8 callq		*0x10(r10)

mov
0x08(r10),ecx

movq	(r10),r8 callq		*0x10(r10)

Aligned sequence of instructions

Unaligned gadget

Figure 7: Example of an unaligned SpecROP gadget found in
libcrypto

we look at instances of generic gadget types discussed in
Section 3.1.1.

Target libraries We have chosen a set of target libraries
based on their ubiquity and security criticality. Specifically,
we analyze:

• libcrypto from OpenSSL v1.1.1d,
• mod_ssl, mod_proxy and mod_http2 from Apache

v2.4.41,
• libdl v2.30, and
• libc v2.30.

Testing setup SpecFication is written in Python, and de-
pends on Capstone v4.0 and Z3 v4.8. All reported running
times were measured on an i7-8700 processor with 16GB of
memory running Debian 10 and Linux v5.4.

Results In the binary disassembly phase, SpecFication cre-
ates SpecROP gadgets: sequences of instructions ending in a
return or indirect jump (an endpoint). For the analyzed bina-
ries (which range from a few kilobytes to a few megabytes),
the number of gadgets we analyze range from a few hundreds
to thousands. Table 2 highlights statistics about the number
of gadgets processed by SpecFication. Note that there are
roughly 10 gadgets for each unique endpoint in these bina-
ries. A large fraction of the gadgets also contain at least one
unintended instruction.

As a particular use case, we report statistics for a run in
which we search for data movement gadgets which load from
memory at any address with register r12 as a base. We can see
that the tool finds at least one usable gadget in each library,
the exception being the smallest library (libdl). The running
time for the tool ranges from a few seconds to a few minutes
depending on the size of the binary. The constraint solving
phase, which involves calling the Z3 solver, is the largest
contributor to the runtime.

We report statistics on the occurrence of gadgets classified
as per the classes described in Section 3.1.1.

• Arithmetic gadgets: Table 4 highlights the number of
arithmetic gadgets found in our target libraries, separated

as per the register on which the operation is done. There
are a larger number of arithmetic gadgets operating on
the first eight registers (rax to rbp) than on the remaining
(r8 to r15). We do find a large number of gadgets, spe-
cially in libc which operate on the first four argument
registers used by the System-V calling convention: rdi,
rsi, rdx and rcx. This enables a SpecROP attacker to
perform ample range of computation with function argu-
ments: for example, if these arguments are pointers to
secrets, the attacker can manipulate and access different
parts of the secret. Finally, some gadgets target registers
rsp and rbp which allow the attacker to access secrets
on the stack.

• Shift gadgets: We found a smaller number of gadgets
performing bit movement on registers: 25 in libcrypto,
95 in libc and a handful in other libraries. A detailed
breakdown of the occurrence of such gadgets is shown
in Appendix A.

• Data movement gadgets: We searched for gadgets in the
target libraries which can move data between unique
pairs of source and destination registers. Overall, there
are a maximum of 240 unique pairs from the 16 general
purpose registers (ignoring sub-registers) in x86_64. Ta-
ble 3 reports the number of such gadgets in each library,
as well as the number of gadgets which result from unin-
tended instructions (one in five gadgets, on average). By
chaining more than one such gadget, we can increase the
number of register pairs, allowing greater flexibility in
data movement. The column labeled "Chained" shows
the number of register pairs possible by chaining two
data-movement gadgets. In line with the general aim
of gadget chaining, most libraries exhibit a significant
increase in data-movement possibilities with increased
chain length. In fact, chaining two gadgets allows 84%
of the register pairs possible with chains of any length.

• Leakage gadgets: Table 4 also reports (in even rows) the
occurrence of gadget leaking information into cache-
based side channels, assuming that loads to secret-
dependent addresses can leak information.

The results in this section not only illustrate the abun-
dance of usable SpecROP gadgets in real libraries, but also
demonstrate the practicality of using binary analysis for per-
forming automated gadget search with formally specifiable
constraints. This methodology has allowed us to construct
practical SpecROP chains against OpenSSL (Figure 2) and
similar to Spectre (Listing 1). We have demonstrated that
this methodology can streamline the often manual process of
finding gadgets in new binaries, and for newer side-channel
attacks.

6 Mitigation

The mitigations against a SpecROP attack include generic
defenses against SEA, such as preventing speculation, pre-

Data-movement gadgets addressing r12

Library Binary size Endpoints Gadgets Unaligned Endpoints Gadgets Analysis time (s)

libcrypto 3.3M 1,209 13,437 9,545 19 65 233
libc 1.8M 1,282 15,044 10,130 5 13 333
libdl 15K 22 266 205 0 0 4
mod_ssl 235K 48 490 332 2 4 8
mod_proxy 131K 30 338 246 1 1 5
mod_http2 244K 112 1,113 796 3 8 18

Table 2: Number of endpoints, gadgets, and unaligned gadgets found per library. We also show statistics for a particular use-case:
searching for gadgets which load from an address based on register r12

Library
Data movement

gadgets (unaligned) Chained
Analysis
time (s)

libcrypto 116 (9) 210 5,644
libc 101 (23) 204 8,432
libdl 2 (2) 2 305
mod_ssl 32 (10) 47 419
mod_proxy 34 (11) 46 295
mod_http2 27 (5) 72 875

Table 3: Occurrence of data movement gadgets moving data
between registers. We report how many unique combinations
of source and destination x86_64 registers were found in each
library.

venting branch predictor poisoning and control flow integrity.
Other defenses particular to SpecROP might include limits on
the number of branches followed speculatively. Static binary
analysis techniques are inherently limited in their ability to
detect whether usable SpecROP chains exist in binaries due
to the large number of possible targets for a poisoned indirect
jump or return instruction, and the exponential explosion in
the number of possible sequences with the number of chained
gadgets.

Preventing speculation in software The simplest protec-
tion against SEA is to restrict speculation following sensitive
branches (where there is access to secrets). This can be done
by using serializing instructions (for example cpuid), or mem-
ory fences (for example lfence) when the side-channel uses
load instructions. If implemented by a shotgun approach, the
performance implications are significant. However, we have
shown how SpecROP chains expand the reach of SEA to
access secrets, precluding fine-grained application of specu-
lation barriers. Another mitigation, retpolines [14], protects
indirect jumps by replacing them with return instructions. It
also pollutes the Return Stack Buffer with the address of an
infinite loop to prevent speculation on the ret. A practical,
though partial, mitigation would be to identify code which
might access secrets (e.g., array accesses following a bounds

check), and insert retpolines on subsequent indirect calls and
returns. This approach would still be vulnerable to gadget
chains where the attacker is able to manipulate existing state
to access secret state in unforeseen, and therefore unprotected,
gadgets.

Limiting speculation in hardware Architectural propos-
als which limit the number of speculative control-flow in-
structions will effectively constrain the maximum length of
a SpecROP chain, reducing the attack surface. However, the
typical speculation window on a modern, high-performance
processor extends to hundreds of instructions, where it is
likely to contain tens of speculative control-flow instructions.
We have already seen that it is impractical to chain more than
4-5 gadgets on these processors Figure 3a. A smaller limit on
speculative control-flow instructions (say 2-3) may have an
unacceptable performance overhead.

Preventing leakage Numerous proposals exist for mitigat-
ing SEA by closing the leakage channels, particularly for
memory-based channels. InvisiSpec [15] proposes an sepa-
rate buffer to hold speculatively loaded values, preventing
them from affecting cache state. DAWG [16] dynamically
partitions the cache to prevent cross-context cache channels.
Other proposals which restrict execution of instructions de-
pendent on speculatively accessed values [17] will effectively
close all speculative side-channels, even if they do not prevent
the chaining of gadgets.

Preventing branch poisoning Existing processors offer
some degree of protection against control-flow hijacking
across processes, and between different processor privilege
levels (particularly userspace and the kernel) [18–20], either
in hardware or through microcode updates. However, as we
can see from results in Table 1, these measures do not com-
pletely mitigate all branch poisoning attack scenarios.

Enforcing control-flow integrity Any control-flow in-
tegrity mechanism aiming to mitigate SpecROP must ac-
count for speculative control-flow. Therefore, off-the-shelf

Library Type rax rbx rcx rdx rdi rsi rsp rbp r8 r9 r10 r11 r12 r13 r14 r15

libcrypto
A 665 259 34 78 69 65 186 48 0 0 0 0 15 33 10 3
L 218 255 137 192 238 59 899 159 26 21 7 0 128 106 106 35

libc
A 889 317 128 171 419 421 32 3 13 29 2 0 8 12 6 15
L 188 171 65 96 570 110 643 231 8 8 36 360 34 28 41 32

libdl
A 25 6 0 0 0 0 1 0 0 0 0 0 0 0 0 0
L 9 11 0 8 0 0 43 0 0 0 0 0 0 0 0 0

mod_ssl
A 12 8 0 4 0 0 0 0 0 0 0 0 0 0 2 0
L 2 38 0 2 0 10 10 1 0 0 0 0 8 2 23 0

mod_proxy
A 12 6 0 0 2 0 1 0 0 0 0 7 2 2 0
L 8 2 0 0 0 0 13 0 0 0 0 0 2 0 0 1

mod_http2
A 46 5 0 5 0 9 0 0 0 0 0 0 0 0 0 0
L 32 48 6 22 43 15 112 60 0 0 0 0 8 13 16 46

Table 4: Occurrence of arithmetic (A) and leakage (L) gadgets, listed on the first and second rows respectively for each library

CFI mechanisms are insufficient. Hardware mechanisms in-
clude Intel’s upcoming CET technology [21] which plans to
limit speculative execution following a jump or call. However,
as we see with the example in Figure 2, SpecROP attacks
are still possible within the limits imposed by the early im-
plementations1. Since the set of targets allowed by CET is
a superset of the actual set of targets, it remains to be seen
if this imprecision can be used for speculative exploitation.
There are newer proposals [22] for more complete CFI under
speculative execution.

7 Related Work

The hypothesis that an advanced SEA might chain multiple
code gadgets by having “multiple outstanding speculative
changes of address stream caused by branch prediction” first
appeared in a white-paper by ARM [23]. The paper, however,
lacks an investigation of this idea, its practicality or the exis-
tence of the required code-gadgets. A similar hypothesis also
appears in a more recent work by Canella et al. [24].

More recently, Mambretti et al. [25] demonstrated a practi-
cal SEA using multiple, chained gadgets to leak informa-
tion following a mispredicted conditional branch. Unlike
SpecROP, the attack requires a memory corruption bug in the
victim binary to be able to inject arbitrary return addresses
on to the stack. The targets for the return instructions used
to chain gadgets comes from the overwritten stack. In con-
trast, SpecROP considers a stronger attacker model and is
more stealthy. Our attacker cannot write arbitrary values to
the victim’s stack, and leaves no architecturally visible traces.

Bulck et al. [26] mention the possibility of using Load
Value Injection(LVI) to transiently poison the values loaded
from memory and used by return and indirect jump instruc-

1The early implementations of Intel CET will restrict execution following
indirect jumps/calls to 8 instructions and 5 loads.

tions, thereby chaining gadgets like in ROP/JOP. LVI depends
on faulty behavior in specific CPU models. Moreover, their
attack requires the ability to induce faults in the victim on
the load instructions which they wish to poison. In general,
this makes their attack practical only against victims running
within an SGX enclave. The paper also does not comment on
the practicality of causing multiple LVIs.

Other work which uses automated program analysis in-
clude Spectector [27] and oo7 [28]. Both of these works aim
to prevent Spectre-like attacks by doing a static analysis of
the code. oo7 statically applies taint analysis to binaries to
check whether tainted values (secrets) can affect the outcome
of conditional branches and speculative memory accesses.
Spectector analyzes binaries for speculative code paths which
leave microarchitectural traces which the architecturally in-
tended path does not. Given the exact path through a SpecROP
chain, Speculator would be able to detect that the instruction
sequence is leaky. However, neither of these analyses can prac-
tically detect information leakage resulting from a SpecROP
gadget chain since the set of available sequences to analyze
grows exponentially with the length of the gadget chain.

SplitSpectre [29] also proposes an approach to implement
the Spectre attack where the target does not contain any single
gadget which loads the secret and performs a dependent load,
instead relying on an attacker with the ability to inject the
second load on the natural control-flow following the first.
In contrast, SpecROP reuses existing gadgets for both loads.
Further, Spectector will be able to detect that the code se-
quence used in SplitSpectre is leaky since there is a direct
path between the dependent loads.

8 Conclusion

Through SpecROP, we extend our understanding of practi-
cal Speculative Execution Attacks by studying the ability to

chain multiple gadgets. We demonstrate that poisoning multi-
ple control flow instructions (returns and indirect jumps) is
possible on modern processors. In fact, on tested processors,
we can poison up to 4 indirect jumps with more than 50%
success rate. This opens up the potential for attackers to use
gadget chains instead of monolithic gadgets. With the use of
the SpecROP technique, we show how generic gadgets can
extend the reach of secrets accessible by an attacker, with an
example of how this methodology may be applied to access
and leak the AES key from a pointer to the context. We also
demonstrate a practical attack which is able to leak multi-
ple plaintext bits from a victim during encryption using the
OpenSSL library.

To facilitate the gadget search, we design SpecFication, a
gadget search tool for searching for generic SpecROP gadgets,
from which we build up useful chains. Applying SpecFication
to existing code bases, we see the abundance of small, generic
SpecROP gadgets. We also study the possible mitigation tech-
niques for SpecROP attacks. Our results lead us to believe
that modern processors and programs are indeed vulnerable
to a SpecROP attack, and that processors require hardware
solutions for preventing malicious influence on branch/return
prediction.

We have published as open-source the code for our experi-
ments, the proof-of-concepts and SpecFication to enable oth-
ers to further explore this methodology. The code is available
at the GitHub repository https://github.com/HexHive/
specrop-public.

Acknowledgments

We thank the anonymous reviewers for their insightful com-
ments. This project has received funding from the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation program (grant agreement
No. 850868).

References

[1] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom, “Spectre attacks: Exploit-
ing speculative execution,” in 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[2] H. Shacham, “The geometry of innocent flesh on the
bone: return-into-libc without function calls (on the
x86),” in Proceedings of the 2007 ACM Conference
on Computer and Communications Security, CCS
2007, Alexandria, Virginia, USA, October 28-31, 2007,
P. Ning, S. D. C. di Vimercati, and P. F. Syverson,
Eds. ACM, 2007, pp. 552–561. [Online]. Available:
https://doi.org/10.1145/1315245.1315313

[3] V. van der Veen, D. Andriesse, M. Stamatogiannakis,
X. Chen, H. Bos, and C. Giuffrida, “The Dynamics
of Innocent Flesh on the Bone: Code Reuse Ten
Years Later,” in CCS, Oct. 2017. [Online]. Avail-
able: Paper=http://vvdveen.com/publications/newton.
pdfWeb=https://www.vusec.net/projects/newton

[4] T. K. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang,
“Jump-oriented programming: a new class of code-reuse
attack,” in Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security,
ASIACCS 2011, Hong Kong, China, March 22-24, 2011,
B. S. N. Cheung, L. C. K. Hui, R. S. Sandhu, and
D. S. Wong, Eds. ACM, 2011, pp. 30–40. [Online].
Available: https://doi.org/10.1145/1966913.1966919

[5] E. M. Koruyeh, K. N. Khasawneh, C. Song, and
N. B. Abu-Ghazaleh, “Spectre returns! speculation
attacks using the return stack buffer,” in 12th USENIX
Workshop on Offensive Technologies, WOOT 2018,
Baltimore, MD, USA, August 13-14, 2018, C. Rossow
and Y. Younan, Eds. USENIX Association, 2018.
[Online]. Available: https://www.usenix.org/conference/
woot18/presentation/koruyeh

[6] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner,
A. Sorniotti, B. Falsafi, M. Payer, and A. Kurmus,
“Smotherspectre: Exploiting speculative execution
through port contention,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, London, UK,
November 11-15, 2019, L. Cavallaro, J. Kinder, X. Wang,
and J. Katz, Eds. ACM, 2019, pp. 785–800. [Online].
Available: https://doi.org/10.1145/3319535.3363194

[7] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A
high resolution, low noise, L3 cache side-channel
attack,” in Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, August
20-22, 2014, K. Fu and J. Jung, Eds. USENIX
Association, 2014, pp. 719–732. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/yarom

[8] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and
D. Gruss, “Netspectre: Read arbitrary memory over
network,” in Computer Security - ESORICS 2019 - 24th
European Symposium on Research in Computer Security,
Luxembourg, September 23-27, 2019, Proceedings, Part
I, ser. Lecture Notes in Computer Science, K. Sako,
S. Schneider, and P. Y. A. Ryan, Eds., vol. 11735.
Springer, 2019, pp. 279–299. [Online]. Available:
https://doi.org/10.1007/978-3-030-29959-0_14

[9] S. Schirra, “Ropper - rop gadget finder and binary infor-
mation tool,” http://scoding.de/ropper/, 2014.

https://github.com/HexHive/specrop-public
https://github.com/HexHive/specrop-public
https://doi.org/10.1145/1315245.1315313
Paper=http://vvdveen.com/publications/newton.pdf Web=https://www.vusec.net/projects/newton
Paper=http://vvdveen.com/publications/newton.pdf Web=https://www.vusec.net/projects/newton
https://doi.org/10.1145/1966913.1966919
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://doi.org/10.1145/3319535.3363194
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://doi.org/10.1007/978-3-030-29959-0_14
http://scoding.de/ropper/

[10] L. De Moura and N. Bjørner, “Z3: An efficient smt
solver,” in International conference on Tools and Al-
gorithms for the Construction and Analysis of Systems.
Springer, 2008, pp. 337–340.

[11] N. A. Quynh, “Capstone: Next-gen disassembly frame-
work,” Black Hat USA, vol. 5, no. 2, pp. 3–8, 2014.

[12] S. Heule, E. Schkufza, R. Sharma, and A. Aiken,
“Stratified synthesis: Automatically learning the x86-64
instruction set,” in Programming Language Design and
Implementation (PLDI). ACM, June 2016. [Online].
Available: http://dx.doi.org/10.1145/2908080.2908121

[13] S. Dasgupta, D. Park, T. Kasampalis, V. S. Adve, and
G. Rosu, “A complete formal semantics of x86-64
user-level instruction set architecture,” in Proceedings of
the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, June 22-26, 2019, K. S. McKinley
and K. Fisher, Eds. ACM, 2019, pp. 1133–1148.
[Online]. Available: https://doi.org/10.1145/3314221.
3314601

[14] P. Turner, “Retpoline: a software construct for prevent-
ing branch-target-injection,” https://support.google.com/
faqs/answer/7625886, 2018.

[15] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W.
Fletcher, and J. Torrellas, “Invisispec: Making spec-
ulative execution invisible in the cache hierarchy
(corrigendum),” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 2019, Columbus, OH, USA, October
12-16, 2019. ACM, 2019, p. 1076. [Online]. Available:
https://doi.org/10.1145/3352460.3361129

[16] V. Kiriansky, I. A. Lebedev, S. P. Amarasinghe,
S. Devadas, and J. S. Emer, “DAWG: A defense
against cache timing attacks in speculative execution
processors,” in 51st Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 2018,
Fukuoka, Japan, October 20-24, 2018. IEEE Com-
puter Society, 2018, pp. 974–987. [Online]. Available:
https://doi.org/10.1109/MICRO.2018.00083

[17] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and
B. Kasikci, “NDA: preventing speculative execution
attacks at their source,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2019, Columbus, OH, USA,
October 12-16, 2019. ACM, 2019, pp. 572–586.
[Online]. Available: https://doi.org/10.1145/3352460.
3358306

[18] Intel Corporation, “Deep dive: Indirect branch restricted
speculation,” https://software.intel.com/security-

software-guidance/insights/deep-dive-indirect-branch-
restricted-speculation, accessed: 2020-03.

[19] ——, “Deep dive: Indirect branch predictor barrier,”
https://software.intel.com/security-software-guidance/
insights/deep-dive-indirect-branch-predictor-barrier,
accessed: 2020-03.

[20] ——, “Deep dive: Single thread indirect branch pre-
dictors,” https://software.intel.com/security-software-
guidance/insights/deep-dive-single-thread-indirect-
branch-predictors, accessed: 2020-03.

[21] ——, “Control-flow enforcement technology specifi-
cation,” https://software.intel.com/sites/default/files/
managed/4d/2a/control-flow-enforcement-technology-
preview.pdf, May 2019, accessed: 2020-03.

[22] E. M. Koruyeh, S. H. A. Shirazi, K. N. Khasawneh,
C. Song, and N. B. Abu-Ghazaleh, “SPECCFI: miti-
gating spectre attacks using CFI informed speculation,”
CoRR, vol. abs/1906.01345, 2019. [Online]. Available:
http://arxiv.org/abs/1906.01345

[23] R. Grisenthwaite, “Cache speculation side-channels,”
January 2018.

[24] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp,
B. von Berg, P. Ortner, F. Piessens, D. Evtyushkin,
and D. Gruss, “A systematic evaluation of transient
execution attacks and defenses,” in 28th USENIX
Security Symposium, USENIX Security 2019, Santa
Clara, CA, USA, August 14-16, 2019, N. Heninger
and P. Traynor, Eds. USENIX Association, 2019, pp.
249–266. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity19/presentation/canella

[25] A. Mambretti, A. Sandulescu, A. Sorniotti, W. K.
Robertson, E. Kirda, and A. Kurmus, “Bypassing
memory safety mechanisms through speculative control
flow hijacks,” CoRR, vol. abs/2003.05503, 2020.
[Online]. Available: https://arxiv.org/abs/2003.05503

[26] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp,
M. Minkin, D. Genkin, Y. Yarom, B. Sunar, D. Gruss,
and F. Piessens, “Lvi: Hijacking transient execution
through microarchitectural load value injection,” in 41th
IEEE Symposium on Security and Privacy (S&P’20),
2020.

[27] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke,
and A. Sanchez, “Spectector: Principled detection of
speculative information flows,” in IEEE Symposium
on Security and Privacy. IEEE, May 2020. [On-
line]. Available: https://www.microsoft.com/en-
us/research/publication/spectector-principled-
detection-of-speculative-information-flows/

http://dx.doi.org/10.1145/2908080.2908121
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1145/3314221.3314601
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://doi.org/10.1145/3352460.3361129
https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1145/3352460.3358306
https://doi.org/10.1145/3352460.3358306
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-restricted-speculation
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-restricted-speculation
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-restricted-speculation
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-predictor-barrier
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-predictor-barrier
https://software.intel.com/security-software-guidance/insights/deep-dive-single-thread-indirect-branch-predictors
https://software.intel.com/security-software-guidance/insights/deep-dive-single-thread-indirect-branch-predictors
https://software.intel.com/security-software-guidance/insights/deep-dive-single-thread-indirect-branch-predictors
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
http://arxiv.org/abs/1906.01345
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://arxiv.org/abs/2003.05503
https://www.microsoft.com/en-us/research/publication/spectector-principled-detection-of-speculative-information-flows/
https://www.microsoft.com/en-us/research/publication/spectector-principled-detection-of-speculative-information-flows/
https://www.microsoft.com/en-us/research/publication/spectector-principled-detection-of-speculative-information-flows/

[28] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and
A. Roychoudhury, “oo7: Low-overhead defense against
spectre attacks via program analysis,” IEEE Transac-
tions on Software Engineering, 2019.

[29] A. Mambretti, M. Neugschwandtner, A. Sorniotti,
E. Kirda, W. K. Robertson, and A. Kurmus, “Speculator:
a tool to analyze speculative execution attacks and
mitigations,” in Proceedings of the 35th Annual
Computer Security Applications Conference, ACSAC
2019, San Juan, PR, USA, December 09-13, 2019,
D. Balenson, Ed. ACM, 2019, pp. 747–761. [Online].
Available: https://doi.org/10.1145/3359789.3359837

A SpecROP: Shift gadgets

Table 5 breaks down the shift gadgets found in each library
based on the register which is operated on.

B OpenSSL attack gadgets

This section fully lists the gadgets used in the OpenSSL at-
tacks shown in Figure 2 and Figure 6. The gadgets are found
in glibc and libcrypto.

B.1 Processing gadgets
The following processing gadget increments the register rdi
by a constant 0x20. It is found in libcrypto.

1f6cc6: lea 0x20(rdi),rdi
1f6cca: callq *0x18(%rax)

The following processing gadget loads a pointer from the
memory referenced by rdi at offset 0x58 into register rax. It
is found in libcrypto.

b2f1b: mov 0x58(%rdi),%rax
b2f1f: retq

The following processing gadget increments the value in
rdx by 0x40. It is found in libcrypto.

16b87f: add 0x40, rdx
16b883: add rdx, rsi
16b886: add rdx, rdi
16b889: lea 0x2e920(rip), r11
16b890: movsxd (r11, rdx, 4), rcx
16b894: add r11, rcx
16b897: jmp *rcx

The following processing gadget stores the value of
rdx + 0xf in rax. It is found in glibc.

17df7e: lea 0xf(rdx),rax
17df82: retq

The following processing gadget stores the value of
rdx + 7 in rax. It is found in glibc.

17df26: lea 0x7(rdx),rax
17df2a: retq

The following processing gadget stores the value of rax in
rdx. It is found in glibc.

12afdf: mov rax,rdx
12afe2: callq *0x28(r12)

The following processing gadget loads 8 bytes at address
referenced by rdx at an offset of 0x50 into register rdi. It is
found in glibc.

12ef33: mov 0x50(rdx),rdi
12ef37: mov rdx,rsi
12ef3a: callq *rax

B.2 Leakage gadgets
The following gadget leaks the LSB of register rax. It is found
in glibc.

cf6ac: mov -0x1b0(rbp),rdx
cf6b3: mov -0x1a8(rbp),rdi
cf6ba: mov r15d,esi
cf6bd: or 0x2,esi
cf6c0: mov rbx,rcx
...
cf939: test 0x1,al
cf93b: je cf6ac
cf941: mov r15d,r13d
cf944: movb 0x0,(rdx)
cf947: mov -0x1b0(rbp),rdx
cf94e: and 0xfffff7ef,r13d
cf955: mov rbx,rcx
cf958: mov r13d,esi
cf95b: or 0x2,esi
...

The following gadget leaks the 3rd LSB from the byte at
offset 1 from the pointer in rdx. It is found in glibc.

f5393: testq 0x400, (rdx)
f539a: je f5382
f539c: mov -0xb0(rbp), rdi
f53a3: mov -0xf0(rbp), edx
f53a9: mov (rdi, rax, 8), rax
f53ad: test edx, edx
f53af: mov rax, 0x50(rbx)
...
f5382: add 0x1, rax
f5386: add 0x20, rdx
f538a: cmp rax, -0x100(rbp)
...

https://doi.org/10.1145/3359789.3359837

Library rax rbx rcx rdx rdi rsi rsp rbp r8 r9 r10 r11 r12 r13 r14 r15

libcrypto 3 10 2 6 3 1 0 0 0 0 0 0 0 0 0 0

libc 21 44 0 29 1 0 0 0 0 0 0 0 1 1 0 0

libdl 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0

mod_ssl 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

mod_proxy 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

mod_http2 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5: Occurrence of shift gadgets in each library, broken down based on the affected register

The following gadget leaks the 6th LSB from byte refer-
enced by the pointer in rbp. The first instruction is an un-
aligned instruction. It is found in glibc.

6aa23: testb 0x20, (rbp)
6aa27: je 6aa2f
6aa29: mov (rbx),rax
6aa2c: orl $0x20,(rax)
6aa2f: add $0x18,rsp
6aa33: mov r13,rdi
6aa36: pop rbx
6aa37: pop rbp
6aa38: pop r12
6aa3a: pop r13
...

The following gadget leaks the 5th LSB from the register
rdi. It is found in glibc.

8ed34: test 0x10,rdi
8ed3b: je 8ed5a
8ed3d: movdqu (rdi,rsi,1),xmm0
8ed42: pcmpeqb (rdi),xmm0
8ed46: pmovmskb xmm0,edx
8ed4a: sub 0xffff,edx
8ed50: jne 8ee80
8ed56: add 0x10,rdi
8ed5a: mov r11,r10
8ed5d: and 0xffffffffffffffe0,r10

	Introduction
	Background
	Speculative Execution Attacks
	Microarchitectural Side-channels
	Return/Jump Oriented Programming

	Speculative ROP
	Gadgets
	Classification of gadgets

	Evaluation
	Gadget chaining
	Chaining gadgets through indirect jumps
	Chaining gadgets through return instructions

	Proof-of-Concept
	OpenSSL attack

	SpecFication: Gadget Search
	SpecFication architecture
	Evaluation and Results

	Mitigation
	Related Work
	Conclusion
	SpecROP: Shift gadgets
	OpenSSL attack gadgets
	Processing gadgets
	Leakage gadgets

