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Control-Flow	Hijacking	(CFH)

• Microsoft:	70%	of	bugs	are	memory	corruptions	

• Control	and	Data	Planes	are	interleaved	

• Memory	corruption	à Control-Flow	Hijacking
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Forward	Edge

• Function	pointers;	virtual	calls

• Control-Flow	Integrity	(CFI)	– statically	calculates	target	sets
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Backward	Edge

• Return	Instructions
• Does	CFI	style	analysis	work?
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NO



Backward	Edge

• CFI	style	target	sets	include	every call	site	for	the	function

• Target	sets	are	too	large	to	provide	meaningful	protection
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Security	requires	integrity	for	return	addresses!



CFH	Mitigation	Today

• Seminal	CFI	paper	by	Abadi	et.	al.	called	for	shadow	stack	

• See	Burow	et	al	CSUR	2017[1]	

• Deployed	versions	by	Microsoft	/	Google	only	cover	forward	edge
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No	equally	strong	defense	for	backward	edge!

[1]	Burow	et.	al.	“Control-flow	integrity:	Precision,	security,	and	performance.”	CSUR	2017.



Shadow	Stacks

• Separate	return	addresses	from	data	plane

• Provide	integrity	protection	for	return	addresses

• Performant	and	highly	compatible	
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Need	to	deploy	Shadow	Stack	with	CFI!



Control-Flow	Hijacking	Illustrated

Program	Stack

Return	Address

Stack	Canary

Array

Pointer

13



Control-Flow	Hijacking	Illustrated

Program	Stack

Return	Address

Stack	Canary

Array

Pointer

14



Control-Flow	Hijacking	Illustrated

Program	Stack

Return	Address

Stack	Canary

Array

Pointer

15



Control-Flow	Hijacking	Illustrated

Program	Stack

Return	Address

Stack	Canary

Array

Pointer

16



Control-Flow	Hijacking	Illustrated

Program	Stack

Return	Address

Stack	Canary

Array

Pointer

17



Control-Flow	Hijacking	Illustrated

Program	Stack

ROP	Pointer

Stack	Canary

Array

Pointer

18



What	is	a	Shadow	Stack?
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Shadow	Stack	Defense	
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Advantages	of	Shadow	Stacks

• Know	at	runtime	what	function	you	were	called	from

• Dynamic	defense	– does	NOT rely	on	static	analysis	

• Separates	code	and	data	planes	for	backward	edges
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Fully	precise	backward	edge	protection!



Shadow	Stack	Design	Space
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Recommended	Shadow	Stack

• Indirect	mapping

• Use	a	general	purpose	register	for	shadow	stack	pointer
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Optimal	performance	and	high	compatibility!



Recommended	Mapping

• Indirect	Mapping

• As	performant	as	direct	mapping

• Minimizes	memory	overhead
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Fastest	mapping	has	lowest	memory	overhead!



Recommended	Encoding

• Use	general	purpose	(GP)	register	for	shadow	stack	pointer

• Does	not	increase	register	pressure

• Significant	optimization	for	shadow	stacks
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Dedicating	a	register	to	the	shadow	stack	
pointer	is	an	effective	optimization!



Compatibility	of	Recommended	Shadow	Stack	

• Threading:	fully	supported.	GP	registers	are	thread	local

• Stack	Unwinding:	provide	instrumented	setjmp /	longjmp

• Unprotected	Code:	save	and	restore	shadow	stack	pointer	
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Support	all	applications	and	
incremental	deployment!



Intra-Process	Memory	Isolation

• Shadow	Stack	splits	code	and	data	planes	

• Enables	integrity	enforcement	by	isolating	return	addresses
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Shadow	Stacks	enable	code	pointer	integrity	
for	return	addresses!



Intra-Process	Memory	Isolation

• Software	based	randomization	defense	are	defeasible	

• Intel	MPX	uses	bounds	checks	for	isolation,	moderate	performance

• Intel	MPK	changes	permissions	of	pages,	slow	performance
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None	of	these	are	fully	satisfactory.	Tagged	
architectures	are	a	promising	new	approach.



SPEC	CPU2006	Performance	Evaluation
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Shadow	
Stack

Geometric
Mean Max Min

Direct	 5.78% 38.68% 0.00%

Recommended 3.65% 9.70% 0.00%
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SPEC	CPU2006	– Integrity	Enforcement
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Integrity	
Scheme

Geometric
Mean Max Min

Randomization 4.31% 13.68% 0.00%

MPX 12.12% 33.02% 2.47%

MPK 61.18% 419.81% 0.00%



Conclusion

• Stack	remains	vulnerable	to	code	reuse	attacks

• Need	to	separate	return	addresses	from	data	plane

• Recommend	a	compact,	register	based	shadow	stack	for	deployment
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Shadow	Stacks	+	CFI	=	practical	CFH	mitigation

https://github.com/HexHive/ShadowStack


