
SoK:	Shining	Light	on	
Shadow	Stacks

Nathan	Burow,	Xinping Zhang,	Mathias	Payer



Control-Flow	Hijacking	(CFH)

• Microsoft:	70%	of	bugs	are	memory	corruptions	

• Control	and	Data	Planes	are	interleaved	

• Memory	corruption	à Control-Flow	Hijacking

2

Data Code	Pointer



Control-Flow	Hijacking	(CFH)

• Microsoft:	70%	of	bugs	are	memory	corruptions

• Control	and	Data	Planes	are	interleaved

• Memory	corruption	à Control-Flow	Hijacking

3

Data Code	Pointer



Forward	Edge

• Function	pointers;	virtual	calls

• Control-Flow	Integrity	(CFI)	– statically	calculates	target	sets

4



Forward	Edge

• Function	pointers;	virtual	calls

• Control-Flow	Integrity	(CFI)	– statically	calculates	target	sets

5

fptr()



Forward	Edge

• Function	pointers;	virtual	calls

• Control-Flow	Integrity	(CFI)	– statically	calculates	target	sets

6

fptr()



Backward	Edge

• Return	Instructions
• Does	CFI	style	analysis	work?

7



Backward	Edge

• Return	Instructions
• Does	CFI	style	analysis	work?

8

ret



Backward	Edge

• Return	Instructions
• Does	CFI	style	analysis	work?

9

NO



Backward	Edge

• CFI	style	target	sets	include	every call	site	for	the	function

• Target	sets	are	too	large	to	provide	meaningful	protection

10

Security	requires	integrity	for	return	addresses!



CFH	Mitigation	Today

• Seminal	CFI	paper	by	Abadi	et.	al.	called	for	shadow	stack	

• See	Burow	et	al	CSUR	2017[1]	

• Deployed	versions	by	Microsoft	/	Google	only	cover	forward	edge

11

No	equally	strong	defense	for	backward	edge!

[1]	Burow	et.	al.	“Control-flow	integrity:	Precision,	security,	and	performance.”	CSUR	2017.



Shadow	Stacks

• Separate	return	addresses	from	data	plane

• Provide	integrity	protection	for	return	addresses

• Performant	and	highly	compatible	

12

Need	to	deploy	Shadow	Stack	with	CFI!



Control-Flow	Hijacking	Illustrated

Program	Stack

Return	Address

Stack	Canary

Array

Pointer

13



Control-Flow	Hijacking	Illustrated

Program	Stack

Return	Address

Stack	Canary

Array

Pointer

14



Control-Flow	Hijacking	Illustrated

Program	Stack

Return	Address

Stack	Canary

Array

Pointer

15



Control-Flow	Hijacking	Illustrated

Program	Stack

Return	Address

Stack	Canary

Array

Pointer

16



Control-Flow	Hijacking	Illustrated

Program	Stack

Return	Address

Stack	Canary

Array

Pointer

17



Control-Flow	Hijacking	Illustrated

Program	Stack

ROP	Pointer

Stack	Canary

Array

Pointer

18



What	is	a	Shadow	Stack?

⋮

foo()

bar()

Return	Address

Return	Address

Program	Stack Shadow	Stack

Return	Address

⋮
Return	Address

19



Shadow	Stack	Defense	

Program	Stack

ROP	Pointer

Stack	Canary

Array

Pointer

Shadow	RA

Shadow	Stack

20



Shadow	Stack	Defense	

Program	Stack

ROP	Pointer

Stack	Canary

Array

Pointer

Shadow	RA

Shadow	Stack

21



Shadow	Stack	Defense	

Program	Stack

ROP	Pointer

Stack	Canary

Array

Pointer

Shadow	RA

Shadow	Stack

❌

22



Advantages	of	Shadow	Stacks

• Know	at	runtime	what	function	you	were	called	from

• Dynamic	defense	– does	NOT rely	on	static	analysis	

• Separates	code	and	data	planes	for	backward	edges

23

Fully	precise	backward	edge	protection!



Shadow	Stack	Design	Space

24

[1]	T.	H.	Dang,	P.	Maniatis,	and	D.	Wagner,	“The	performance	cost	of	shadow	stacks	and	stack	canaries,”	in	AsiaCCS ’15
[2]	T.-c.	Chiueh and	F.-H.	Hsu,	“Rad:	A	compile-time	solution	to	buffer	overflow	attacks,”	in	ICDCS	’01
[3]	L.	Davi,	A.-R.	Sadeghi,	and	M.	Winandy,	“Ropdefender:	A	detection	tool	to	defend	against	return-oriented	programming	attacks,”	in	AsiaCCS’11

[1] [2],[3]

Stack Stack

Shadow 
Stack

8MB

8MB

constant

Direct Mapping

Stack Stack

Shadow 
Stack

8MB

Indirect Mapping

Grows on 
demand



Recommended	Shadow	Stack

• Indirect	mapping

• Use	a	general	purpose	register	for	shadow	stack	pointer

25

Optimal	performance	and	high	compatibility!



Recommended	Mapping

• Indirect	Mapping

• As	performant	as	direct	mapping

• Minimizes	memory	overhead

26

Fastest	mapping	has	lowest	memory	overhead!



Recommended	Encoding

• Use	general	purpose	(GP)	register	for	shadow	stack	pointer

• Does	not	increase	register	pressure

• Significant	optimization	for	shadow	stacks

27

Dedicating	a	register	to	the	shadow	stack	
pointer	is	an	effective	optimization!



Compatibility	of	Recommended	Shadow	Stack	

• Threading:	fully	supported.	GP	registers	are	thread	local

• Stack	Unwinding:	provide	instrumented	setjmp /	longjmp

• Unprotected	Code:	save	and	restore	shadow	stack	pointer	

28

Support	all	applications	and	
incremental	deployment!



Intra-Process	Memory	Isolation

• Shadow	Stack	splits	code	and	data	planes	

• Enables	integrity	enforcement	by	isolating	return	addresses

29

Shadow	Stacks	enable	code	pointer	integrity	
for	return	addresses!



Intra-Process	Memory	Isolation

• Software	based	randomization	defense	are	defeasible	

• Intel	MPX	uses	bounds	checks	for	isolation,	moderate	performance

• Intel	MPK	changes	permissions	of	pages,	slow	performance

30

None	of	these	are	fully	satisfactory.	Tagged	
architectures	are	a	promising	new	approach.



SPEC	CPU2006	Performance	Evaluation

31

Shadow	
Stack

Geometric
Mean Max Min

Direct	 5.78% 38.68% 0.00%

Recommended 3.65% 9.70% 0.00%



SPEC	CPU2006	Performance	Evaluation

32

Shadow	
Stack

Geometric
Mean Max Min

Direct	 5.78% 38.68% 0.00%

Recommended 3.65% 9.70% 0.00%



SPEC	CPU2006	– Integrity	Enforcement

33

Integrity	
Scheme

Geometric
Mean Max Min

Randomization 4.31% 13.68% 0.00%

MPX 12.12% 33.02% 2.47%

MPK 61.18% 419.81% 0.00%



Conclusion

• Stack	remains	vulnerable	to	code	reuse	attacks

• Need	to	separate	return	addresses	from	data	plane

• Recommend	a	compact,	register	based	shadow	stack	for	deployment

34

Shadow	Stacks	+	CFI	=	practical	CFH	mitigation

https://github.com/HexHive/ShadowStack


