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Internet of Things

• The number of IoT devices is expected to exceed 20 billion by 2020.

• Many will be microcontroller based systems (IoT-μCs).

• Run single static binary image directly on the hardware.

• Can be with/without an OS (bare-metal).

• Direct access to peripherals and processor.

• Small memory.

• Examples:

• WiFi System on Chip

• Cyber-physical systems

• UAVs
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Internet of Things Security

• In 2016, one of the largest DDoS attack to date was caused
by IoT devices[1].

• In 2017, Google’s Project Zero used a vulnerable WiFi SoC to gain 
control of the application processor on smart phones[2].

[1]  https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/

[2] https://googleprojectzero.blogspot.co.uk/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
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Evaluation in Current IoT Defenses

• Multiple defenses have been proposed.

• TyTan[DAC15], TrustLite[EurSys14], 

C-FLAT [CCS16], nesCheck[AsiaCCS17],

SCFP[EuroS&P18], LiteHAX[ICCAD18]

CFI CaRE [RAID17], ACES[SEC18],

MINION [NDSS18], EPOXY [S&P17] 

• How are they evaluated?

• Ad-hoc evaluation.

[1] R. P. Weicker, “Dhrystone: a synthetic systems programming benchmark,” Communications of the ACM, vol. 27, no. 10, pp. 1013–1030, 1984

[2] EEMBC, “Coremark - industry-standard benchmarks for embedded systems,” http://www.eembc.org/coremark.

[3] J. Pallister, S. J. Hollis, and J. Bennett, “BEEBS: open benchmarks for energy measurements on embedded platforms,” CoRR, vol. abs/1308.5174, 

2013.[Online]. Available: http://arxiv.org/abs/1308.5174
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Defense
Evaluation Type

Benchmark Case Study

TyTan ✓

TrustLite ✓

C-FLAT ✓

nesCheck ✓

SCFP Dhrystone[1] ✓

LiteHAX CoreMark[2] ✓

CFI CaRE Dhrystone[1] ✓

ACES ✓

Minion ✓

EPOXY BEEBS[3] ✓



IoT-μCs Evaluation (Ideally)
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IoT-μCs Evaluation (Reality)
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• Comparison is not feasible

• Evaluation is limited and tedious

• Different benchmarks

• Different Metrics



Why not use Existing Benchmark?

• Current benchmarks are rigid and simplistic.

• Many are just one file with simple application.

• Metrics are limited and cumbersome to collect.

• Hardware dependent.

• Do not use peripherals.

• No network connectivity.
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Proposed Solution: BenchIoT

• BenchIoT provides a suite of benchmark applications and
an evaluation framework. 

• A realistic set of IoT benchmarks.

• Mimics common IoT characteristics, e.g., tight coupling with sensors and actuators. 

• Works for both with/without an OS.

• Our evaluation framework is versatile and portable.

• A software based approach.

• Can collect metrics related to security and resource usage. 

• Targeted Architecture: ARMv7-M (Cortex-M3,4, and 7 processors).
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Comparison Between BenchIoT and Other Benchmarks 

[1] R. P. Weicker, “Dhrystone: a synthetic systems programming benchmark,” Communications of the ACM, vol. 27, no. 10, pp. 1013–1030, 1984

[2] J. Pallister, S. J. Hollis, and J. Bennett, “BEEBS: open benchmarks for energy measurements on embedded platforms,” CoRR, vol. abs/1308.5174, 

2013.[Online]. Available: http://arxiv.org/abs/1308.5174

[3] EEMBC, “Coremark - industry-standard benchmarks for embedded systems,” http://www.eembc.org/coremark

[4] EEMBC, “Coremark - industry-standard benchmarks for embedded systems,” http://www.eembc.org/iotmark

[5] EEMBC, “Coremark - industry-standard benchmarks for embedded systems,” http://www.eembc.org/ securemark
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Benchmark
Task Type Network 

Connectivity
Peripherals

Sense Compute Actuate

BEEBS [2] ✓

Dhrystone [1] ✓

CoreMark [3] ✓

IoTMark [4] ✓ ✓
Partially 

(Bluetooth only)
Only I2C

SecureMark [5] ✓

BenchIoT ✓ ✓ ✓ ✓ ✓



BenchIoT: Overview
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BenchIoT Design Feature: (1) Hardware agnostic

• Applications often depend on the underlying vendor & board.

• Memory is mapped differently on each board.

• Peripherals are different across boards.

• For Operating systems:

• Mbed OS(C++) 
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BenchIoT Design Feature: (2) Reproducibility

• Applications are event driven.

• Example: User enters a pin.

• Problem: This is inconsistent (e.g., variable timing).

• Solution: Trigger interrupt from software.

• Creates deterministic timing.

• Allows controlling the benchmarking execution.
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BenchIoT Design Feature: (2) Reproducibility
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/* Pseudocode */

1. void benchmark(void){

2. do_some_computation();

3. ...

4. ...

5. wait_for_user_input();

6. read_user_input();

7. ...

8.

9. }

This is not deterministic

/* Pseudocode */

1. void benchmark(void){

2. do_some_computation();

3. ...

4. ...

5. trigger_interrupt();

6. ...

7. read_user_input();

8. ...

9.

10.}

Normal application BenchIoT

Deterministic



BenchIoT Design Feature: (3) Metrics
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• Allows for measurement of 4 classes of metrics: Security, performance, 
energy, and memory.



BenchIoT Design Feature: (3) Metrics
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: Static metric

: Dynamic metric Security

SVC cycles

Total 
privileged  cycles

Privileged
Thread cycles

Max Code
region ratio

DEP

ROP resiliency

# of indirect calls

Max Data 
region ratio

Performance

& Energy

Total 
execution cycles

CPU sleep  
cycles

Total energy

Memory

Stack+Heap
usage

Total RAM usage

Total Flash 
usage



Set of Benchmark Applications

• Boards without non-common peripherals can still run the benchmark.
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Benchmark
Task Type

Peripheral
Sense Compute Actuate

Smart Light ✓ ✓ ✓
Low-power Timer, GPIO,

Real-time clock

Smart Thermostat ✓ ✓ ✓ ADC, Display, GPIO, uSD card

Smart Locker ✓ ✓
Serial (UART),Display, uSD

Card , Real-time clock

Firmware Updater ✓ ✓
Flash in-application 

programming

Connected Display ✓ ✓ Display, uSD Card



BenchIoT Evaluation: Defense Mechanisms
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• A hypervisor that enforces the 

principle of least privilege.

25ms

Hashed code 

block

• Verifies the integrity of the code 

present on the device.

• Uses a real-time task that runs 

in a separate thread.

• Isolates its code in a secure 

privileged region.
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Data

P
ri
v
ile

g
e

d

• Isolates sensitive data to a 

secure privileged region.

• Disables the secure region after 

the data is accessed.



BenchIoT Evaluation: Defense Mechanisms

• The goal is to demonstrate BenchIoT effectiveness in evaluation.

• Non-goal: To propose a new defense mechanism.

• ARM’s Mbed-µVisor and Remote Attestation (RA) require an OS.

• Data Integrity (DI) is applicable to Bare-Metal (BM) and OS benchmarks.
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BenchIoT Evaluation: Defense Mechanisms
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ARM’s Mbed-µVisor
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• Comparable

• Evaluation is automated 

and extensible.



Performance Results
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Privileged Execution Minimization Results

• Overhead as % of the insecure baseline application
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Code Injection Evaluation
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Defense
Data Execution Prevention

(DEP)

Mbed-uVisor  (Heap)

Remote Attestation (OS) ✓

Data Integrity (OS) 

Data Integrity (Bare-metal) 



Energy Consumption Results
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uVisor had 

no sleep cycles

≈
20% energy overhead

All defenses had

modest runtime 

overhead 

Overhead as % over baseline



Measurement Overhead
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Percentage of total execution cycles

Average Overhead → 1.2%



BenchIoT: Summary

• Benchmark suite of five realistic IoT applications.

• Demonstrates network connectivity, sense, compute, and actuate characteristics.

• Applies to systems with/without an OS.

• Evaluation framework:

• Covers security, performance, memory usage, and energy consumption.

• Automated and extensible.

• Evaluation insights:

• Defenses can have similar runtime overhead, but a large difference in energy consumption.

• Open source:

• https://github.com/embedded-sec/BenchIoT
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