
BenchIoT: A Security Benchmark for
The Internet of Things

Naif Almakhdhub, Abraham Clements, Mathias Payer, and Saurabh Bagchi

1

Internet of Things

• The number of IoT devices is expected to exceed 20 billion by 2020.

• Many will be microcontroller based systems (IoT-μCs).

• Run single static binary image directly on the hardware.

• Can be with/without an OS (bare-metal).

• Direct access to peripherals and processor.

• Small memory.

• Examples:

• WiFi System on Chip

• Cyber-physical systems

• UAVs

2

Internet of Things Security

• In 2016, one of the largest DDoS attack to date was caused
by IoT devices[1].

• In 2017, Google’s Project Zero used a vulnerable WiFi SoC to gain
control of the application processor on smart phones[2].

[1] https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/

[2] https://googleprojectzero.blogspot.co.uk/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html

3

https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://googleprojectzero.blogspot.co.uk/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html

Evaluation in Current IoT Defenses

• Multiple defenses have been proposed.

• TyTan[DAC15], TrustLite[EurSys14],

C-FLAT [CCS16], nesCheck[AsiaCCS17],

SCFP[EuroS&P18], LiteHAX[ICCAD18]

CFI CaRE [RAID17], ACES[SEC18],

MINION [NDSS18], EPOXY [S&P17]

• How are they evaluated?

• Ad-hoc evaluation.

[1] R. P. Weicker, “Dhrystone: a synthetic systems programming benchmark,” Communications of the ACM, vol. 27, no. 10, pp. 1013–1030, 1984

[2] EEMBC, “Coremark - industry-standard benchmarks for embedded systems,” http://www.eembc.org/coremark.

[3] J. Pallister, S. J. Hollis, and J. Bennett, “BEEBS: open benchmarks for energy measurements on embedded platforms,” CoRR, vol. abs/1308.5174,

2013.[Online]. Available: http://arxiv.org/abs/1308.5174

4

Defense
Evaluation Type

Benchmark Case Study

TyTan ✓

TrustLite ✓

C-FLAT ✓

nesCheck ✓

SCFP Dhrystone[1] ✓

LiteHAX CoreMark[2] ✓

CFI CaRE Dhrystone[1] ✓

ACES ✓

Minion ✓

EPOXY BEEBS[3] ✓

IoT-μCs Evaluation (Ideally)

5

Defense Mechanism A

Benchmark

foo

2

1

Evaluation

Metrics

3

A standardized
software application

IoT-μCs Evaluation (Reality)

6

Defense Mechanism A

Benchmark

foo

2

1

A’s

Evaluation

Metrics

3

Defense Mechanism B

Benchmark

bar

B’s

Evaluation

Metrics

• Comparison is not feasible

• Evaluation is limited and tedious

• Different benchmarks

• Different Metrics

Why not use Existing Benchmark?

• Current benchmarks are rigid and simplistic.

• Many are just one file with simple application.

• Metrics are limited and cumbersome to collect.

• Hardware dependent.

• Do not use peripherals.

• No network connectivity.

7

Proposed Solution: BenchIoT

• BenchIoT provides a suite of benchmark applications and
an evaluation framework.

• A realistic set of IoT benchmarks.

• Mimics common IoT characteristics, e.g., tight coupling with sensors and actuators.

• Works for both with/without an OS.

• Our evaluation framework is versatile and portable.

• A software based approach.

• Can collect metrics related to security and resource usage.

• Targeted Architecture: ARMv7-M (Cortex-M3,4, and 7 processors).

8

Comparison Between BenchIoT and Other Benchmarks

[1] R. P. Weicker, “Dhrystone: a synthetic systems programming benchmark,” Communications of the ACM, vol. 27, no. 10, pp. 1013–1030, 1984

[2] J. Pallister, S. J. Hollis, and J. Bennett, “BEEBS: open benchmarks for energy measurements on embedded platforms,” CoRR, vol. abs/1308.5174,

2013.[Online]. Available: http://arxiv.org/abs/1308.5174

[3] EEMBC, “Coremark - industry-standard benchmarks for embedded systems,” http://www.eembc.org/coremark

[4] EEMBC, “Coremark - industry-standard benchmarks for embedded systems,” http://www.eembc.org/iotmark

[5] EEMBC, “Coremark - industry-standard benchmarks for embedded systems,” http://www.eembc.org/ securemark

9

Benchmark
Task Type Network

Connectivity
Peripherals

Sense Compute Actuate

BEEBS [2] ✓

Dhrystone [1] ✓

CoreMark [3] ✓

IoTMark [4] ✓ ✓
Partially

(Bluetooth only)
Only I2C

SecureMark [5] ✓

BenchIoT ✓ ✓ ✓ ✓ ✓

BenchIoT: Overview

10

Compile &

link

BenchIoT

Benchmark
Can use a different benchmark

Evaluation Framework

Run benchmark on

board

Collect

dynamic metrics

Collect

static metrics

Parse the

benchmark binary

Metric collector

runtime library

User

Configuration files

Results

file

Benchmark

Binary

BenchIoT Design Feature: (1) Hardware agnostic

• Applications often depend on the underlying vendor & board.

• Memory is mapped differently on each board.

• Peripherals are different across boards.

• For Operating systems:

• Mbed OS(C++)

11

Vendor & board dependent

Hardware MCU Registers

CMSIS

(Cortex Microcontroller Software Interface Standard)

HAL Library

(Hardware Abstraction Layer)

Mbed

Application

Portable

BenchIoT Design Feature: (2) Reproducibility

• Applications are event driven.

• Example: User enters a pin.

• Problem: This is inconsistent (e.g., variable timing).

• Solution: Trigger interrupt from software.

• Creates deterministic timing.

• Allows controlling the benchmarking execution.

12

BenchIoT Design Feature: (2) Reproducibility

13

/* Pseudocode */

1. void benchmark(void){

2. do_some_computation();

3. ...

4. ...

5. wait_for_user_input();

6. read_user_input();

7. ...

8.

9. }

This is not deterministic

/* Pseudocode */

1. void benchmark(void){

2. do_some_computation();

3. ...

4. ...

5. trigger_interrupt();

6. ...

7. read_user_input();

8. ...

9.

10.}

Normal application BenchIoT

Deterministic

BenchIoT Design Feature: (3) Metrics

14

• Allows for measurement of 4 classes of metrics: Security, performance,
energy, and memory.

BenchIoT Design Feature: (3) Metrics

15

: Static metric

: Dynamic metric Security

SVC cycles

Total
privileged cycles

Privileged
Thread cycles

Max Code
region ratio

DEP

ROP resiliency

of indirect calls

Max Data
region ratio

Performance

& Energy

Total
execution cycles

CPU sleep
cycles

Total energy

Memory

Stack+Heap
usage

Total RAM usage

Total Flash
usage

Set of Benchmark Applications

• Boards without non-common peripherals can still run the benchmark.

16

Benchmark
Task Type

Peripheral
Sense Compute Actuate

Smart Light ✓ ✓ ✓
Low-power Timer, GPIO,

Real-time clock

Smart Thermostat ✓ ✓ ✓ ADC, Display, GPIO, uSD card

Smart Locker ✓ ✓
Serial (UART),Display, uSD

Card , Real-time clock

Firmware Updater ✓ ✓
Flash in-application

programming

Connected Display ✓ ✓ Display, uSD Card

BenchIoT Evaluation: Defense Mechanisms

17

ARM’s Mbed-µVisor
Remote Attestation

(RA)

Data Integrity

(DI)

Application

code

µVisor

+

OS

U
n

p
ri

v
ile

g
e

d
P

ri
v
ile

g
e

d

• A hypervisor that enforces the

principle of least privilege.

25ms

Hashed code

block

• Verifies the integrity of the code

present on the device.

• Uses a real-time task that runs

in a separate thread.

• Isolates its code in a secure

privileged region.

Sensitive

Data

P
ri
v
ile

g
e

d

• Isolates sensitive data to a

secure privileged region.

• Disables the secure region after

the data is accessed.

BenchIoT Evaluation: Defense Mechanisms

• The goal is to demonstrate BenchIoT effectiveness in evaluation.

• Non-goal: To propose a new defense mechanism.

• ARM’s Mbed-µVisor and Remote Attestation (RA) require an OS.

• Data Integrity (DI) is applicable to Bare-Metal (BM) and OS benchmarks.

18

BenchIoT Evaluation: Defense Mechanisms

19

ARM’s Mbed-µVisor
Remote Attestation

(RA)

Data Integrity

(DI)

BenchIoT

Benchmarks

BenchIoT

Evaluation Framwork

ARM’s Mbed-µVisor

Evaluation

RA

Evaluation

DI

Evaluation

• Comparable

• Evaluation is automated

and extensible.

Performance Results

20

Evaluated without

the display peripheral

Number of cycles in

(Billions/Millions)

Privileged Execution Minimization Results

• Overhead as % of the insecure baseline application

21

Almost the entire

application runs

as privileged

for all defenses

Except uVisor

uVisor is

the most

effective defense

in reducing

privileged execution
Percentage of total execution cycles

Lower

privileged

execution

→

Better

Security

Code Injection Evaluation

22

Defense
Data Execution Prevention

(DEP)

Mbed-uVisor  (Heap)

Remote Attestation (OS) ✓

Data Integrity (OS) 

Data Integrity (Bare-metal) 

Energy Consumption Results

23

uVisor had

no sleep cycles

≈
20% energy overhead

All defenses had

modest runtime

overhead

Overhead as % over baseline

Measurement Overhead

24

Percentage of total execution cycles

Average Overhead → 1.2%

BenchIoT: Summary

• Benchmark suite of five realistic IoT applications.

• Demonstrates network connectivity, sense, compute, and actuate characteristics.

• Applies to systems with/without an OS.

• Evaluation framework:

• Covers security, performance, memory usage, and energy consumption.

• Automated and extensible.

• Evaluation insights:

• Defenses can have similar runtime overhead, but a large difference in energy consumption.

• Open source:

• https://github.com/embedded-sec/BenchIoT

25

https://github.com/embedded-sec/BenchIoT

