
No source? No problem!
High speed binary fuzzing

Nspace & @gannimo

2High Speed Binary Fuzzing - HexHive - 36C3

About this talk

● Fuzzing binaries is hard!
◦ Few tools, complex setup

● Fuzzing binaries in the kernel is even harder!

● New approach based on static rewriting

3High Speed Binary Fuzzing - HexHive - 36C3

+ ≈ 100M LoC
Kernel
Libc
Desktop

4High Speed Binary Fuzzing - HexHive - 36C3

Fuzzing 101

Input generation

OK

Bug!

Target

5High Speed Binary Fuzzing - HexHive - 36C3

Effective fuzzing 101

● Test cases must trigger bugs
◦ Coverage-guided fuzzing

● The fuzzer must detect bugs
◦ Sanitization

● Speed is key (zero sum game)!

6High Speed Binary Fuzzing - HexHive - 36C3

Fuzzing with source code

Source code Compiler Instrumented
binary

Coverage tracking, sanitization, ...

● Add instrumentation at compile time
● Short snippets of code for coverage tracking, sanitization, ...

7High Speed Binary Fuzzing - HexHive - 36C3

Application Application

Libraries

Kernel Drivers

Source

No
source

8High Speed Binary Fuzzing - HexHive - 36C3

Rewriting binaries

● Approach 0: black box fuzzing
● Approach 1: rewrite dynamically

◦ Translate target at runtime
◦ Terrible performance (10-100x slower)

● Approach 2: rewrite statically
◦ More complex analysis
◦ ...but much better performance!

9High Speed Binary Fuzzing - HexHive - 36C3

Static rewriting challenges

● Simply adding code breaks the target

mov [rax + rbx*8], rdi
dec rbx
jnz -7

mov [rax + rbx*8], rdi
<new code>
dec rbx
jnz -7

● Need to find all references and adjust them

10High Speed Binary Fuzzing - HexHive - 36C3

Static rewriting challenges

● Scalars and references are indistinguishable
◦ Getting it wrong breaks the target

long (*foo)(long) = &bar;

mov [rbp-0x8], 0x400aae

long foo = 0x400aae; ?

11High Speed Binary Fuzzing - HexHive - 36C3

Coverage-guided
fuzzing

Sanitization

Instrumenting
binaries in the
kernel

Instrumenting
binaries

12High Speed Binary Fuzzing - HexHive - 36C3

Coverage-guided
fuzzing

Sanitization

Instrumenting
binaries in the
kernel

Instrumenting
binaries

13High Speed Binary Fuzzing - HexHive - 36C3

RetroWrite [Oakland ‘20]

● System for static binary instrumentation

● Symbolized assembly files easy to instrument

● Implements coverage tracking and binary ASan

14High Speed Binary Fuzzing - HexHive - 36C3

Position-independent code

● Code that can be loaded at any address

● Required for: ASLR, shared libraries

● Cannot use hardcoded static addresses
◦ Must use relative addressing instead

15High Speed Binary Fuzzing - HexHive - 36C3

Position-independent code

● On x86_64, PIC leverages RIP-relative addressing
◦ lea rax, [rip + 0x1234]

● Distinguish references from constants in PIE binaries
◦ RIP-relative = reference, everything else = constant

16High Speed Binary Fuzzing - HexHive - 36C3

Symbolization

● Symbolization replaces
references with
assembler labels

lea rax, [rip + 0x1234]
call 0x1337
dec rcx
jnz -15

17High Speed Binary Fuzzing - HexHive - 36C3

Symbolization

● Symbolization replaces
references with
assembler labels

1) Relative jumps/calls

loop1:
lea rax, [rip + 0x1234]
call func1
dec rcx
jnz loop1

18High Speed Binary Fuzzing - HexHive - 36C3

Symbolization

● Symbolization replaces
references with
assembler labels

1) Relative jumps/calls
2) PC-relative addresses

loop1:
lea rax, [data1]
call func1
dec rcx
jnz loop1

19High Speed Binary Fuzzing - HexHive - 36C3

Symbolization

● Symbolization replaces
references with
assembler labels

1) Relative jumps/calls
2) PC-relative addresses
3) Data relocations

loop1:
lea rax, [data1]
call func1
dec rcx
jnz loop1

20High Speed Binary Fuzzing - HexHive - 36C3

Symbolization

● Symbolization replaces
references with
assembler labels

1) Relative jumps/calls
2) PC-relative addresses
3) Data relocations

loop1:
lea rax, [data1]
<new code>
call func1
dec rcx
jnz loop1

21High Speed Binary Fuzzing - HexHive - 36C3

Coverage-guided
fuzzing

Sanitization

Instrumenting
binaries in the
kernel

Instrumenting
binaries

22High Speed Binary Fuzzing - HexHive - 36C3

Coverage-guided fuzzing

input[0] == ‘P’

input[1] == ‘N’

input[2] == ‘G’

do_something() fail()

● Record test coverage (e.g.
with instrumentation)

● Inputs that trigger new
paths are “interesting”

● Mutate interesting inputs to
discover new paths

23High Speed Binary Fuzzing - HexHive - 36C3

Coverage-guided fuzzing

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

24High Speed Binary Fuzzing - HexHive - 36C3

Coverage-guided
fuzzing

Sanitization

Instrumenting
binaries in the
kernel

Instrumenting
binaries

25High Speed Binary Fuzzing - HexHive - 36C3

Address Sanitizer (ASan)

● Instrumentation catches memory corruption at runtime
◦ Arguably most dangerous class of bugs

● Very popular sanitizer
◦ Thousands of bugs in Chrome and Linux

● About 2x slowdown

26High Speed Binary Fuzzing - HexHive - 36C3

ASan red zones

char buf[4];
buf

Red zone

Red zone
strcpy(buf, “AAAAA”);

27High Speed Binary Fuzzing - HexHive - 36C3

Coverage-guided
fuzzing

Sanitization

Instrumenting
binaries in the
kernel

Instrumenting
binaries

28High Speed Binary Fuzzing - HexHive - 36C3

RetroWrite instrumentation

● Coverage tracking: instrument basic block starts

● Binary ASan: instrument all memory accesses,
link with libASan

29High Speed Binary Fuzzing - HexHive - 36C3

Kernel vs. userspace fuzzing

Crash
handling Tooling Determinism

Userspace
OS handles

crashes
gracefully

Easy to use and
widely available

Single-threaded
code usually
deterministic

Kernel
Need VM to keep

the system
stable

More complex
setup, fewer

tools

Interrupts, many
concurrent

threads

30High Speed Binary Fuzzing - HexHive - 36C3

Kernel binary fuzzing
● Approach 0: black box fuzzing
● Approach 1: dynamic translation

◦ Slow! (10x +)
◦ No sanitization like ASan

● Approach 2: Intel Processor Trace (or similar)
◦ Requires hardware support
◦ Still no sanitization

● Approach 3: static rewriting

31High Speed Binary Fuzzing - HexHive - 36C3

kRetroWrite

● Apply RetroWrite to the kernel

● Implemented so far: support for Linux modules

● Demonstrates that RetroWrite applies to the kernel

32High Speed Binary Fuzzing - HexHive - 36C3

kRetroWrite

● Kernel modules are always position-independent

● Linux modules are ELF files
◦ Reuse RetroWrite’s symbolizer

● Implemented code coverage and binary ASan

33High Speed Binary Fuzzing - HexHive - 36C3

kRetroWrite coverage

● Idea: use kCov infrastructure
◦ Can interoperate with source-based kCov

● Call coverage collector at the start of each basic block

● Integrates with, e.g., syzkaller, or debugfs

34High Speed Binary Fuzzing - HexHive - 36C3

kRetroWrite coverage

cmp rbx, 1234
jz block1

mov [rax], rbx mov [rax], 1234

35High Speed Binary Fuzzing - HexHive - 36C3

kRetroWrite coverage

call trace_pc
cmp rbx, 1234
jz block1

call trace_pc
mov [rax], rbx

call trace_pc
mov [rax], 1234

36High Speed Binary Fuzzing - HexHive - 36C3

kRetroWrite binary ASan

● In userspace: link with libASan

● In kernel: build kernel with KASan (kernel ASan)

● Reuse modified userspace instrumentation pass

37High Speed Binary Fuzzing - HexHive - 36C3

kRetroWrite binary ASan

● Instrument each memory access with a check

● Failed checks print a bug report

● Compatible with source-based kASan

38High Speed Binary Fuzzing - HexHive - 36C3

Fuzzing with kRetroWrite

● Rewritten modules can be loaded and fuzzed with
standard kernel fuzzers

● So far: tested with syzkaller

39High Speed Binary Fuzzing - HexHive - 36C3

Coverage-guided
fuzzing

Sanitization

Instrumenting
binaries in the
kernel

Instrumenting
binaries

40High Speed Binary Fuzzing - HexHive - 36C3

Our experiments
● Userspace: SPEC2006 runtime performance

◦ RetroWrite ASan
◦ Source ASan
◦ Valgrind memcheck

● Kernel: fuzz filesystems/drivers with syzkaller
◦ Source KASan + kCov
◦ kRetroWrite KASan + kCov

41High Speed Binary Fuzzing - HexHive - 36C3

Results - Userspace

42High Speed Binary Fuzzing - HexHive - 36C3

Preliminary results - kernel

Exec/s - BTRFS

Source

kRetroWrite

Demo

44High Speed Binary Fuzzing - HexHive - 36C3

Let’s test kRetroWrite on a filesystem

45High Speed Binary Fuzzing - HexHive - 36C3

Coverage-guided
fuzzing

Sanitization

Instrumenting
binaries in the
kernel

Instrumenting
binaries

46High Speed Binary Fuzzing - HexHive - 36C3

Conclusions
● Instrument real-world binaries for fuzzing

◦ Coverage tracking for fast fuzzing
◦ Memory checking to detect bugs

● Static rewriting at zero instrumentation cost
◦ Limited to position independent code
◦ Symbolize without heuristics

● More? https://github.com/HexHive/retrowrite
◦ User-space now, kernel in ~2-3 weeks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

