
No source? No problem!
High speed binary fuzzing

Nspace & @gannimo
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About this talk

● Fuzzing binaries is hard!
◦ Few tools, complex setup

● Fuzzing binaries in the kernel is even harder!

● New approach based on static rewriting
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+ ≈ 100M LoC 
Kernel
Libc
Desktop
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Fuzzing 101

Input generation

OK

Bug!

Target
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Effective fuzzing 101

● Test cases must trigger bugs
◦ Coverage-guided fuzzing

● The fuzzer must detect bugs
◦ Sanitization

● Speed is key (zero sum game)!
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Fuzzing with source code

Source code Compiler Instrumented 
binary

Coverage tracking, sanitization, ...

● Add instrumentation at compile time
● Short snippets of code for coverage tracking, sanitization, ...
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Application Application

Libraries

Kernel Drivers

Source

No 
source
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Rewriting binaries

● Approach 0: black box fuzzing
● Approach 1: rewrite dynamically

◦ Translate target at runtime
◦ Terrible performance (10-100x slower)

● Approach 2: rewrite statically
◦ More complex analysis
◦ ...but much better performance!
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Static rewriting challenges

● Simply adding code breaks the target

mov [rax + rbx*8], rdi
dec rbx
jnz -7

mov [rax + rbx*8], rdi
<new code>
dec rbx
jnz -7

● Need to find all references and adjust them
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Static rewriting challenges

● Scalars and references are indistinguishable
◦ Getting it wrong breaks the target

long (*foo)(long) = &bar;

mov [rbp-0x8], 0x400aae

long foo = 0x400aae; ?
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Coverage-guided 
fuzzing

Sanitization

Instrumenting 
binaries in the 
kernel

Instrumenting 
binaries
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Coverage-guided 
fuzzing

Sanitization

Instrumenting 
binaries in the 
kernel

Instrumenting 
binaries
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RetroWrite [Oakland ‘20]

● System for static binary instrumentation

● Symbolized assembly files easy to instrument

● Implements coverage tracking and binary ASan
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Position-independent code

● Code that can be loaded at any address

● Required for: ASLR, shared libraries

● Cannot use hardcoded static addresses
◦ Must use relative addressing instead 
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Position-independent code

● On x86_64, PIC leverages RIP-relative addressing
◦ lea rax, [rip + 0x1234]

● Distinguish references from constants in PIE binaries
◦ RIP-relative = reference, everything else = constant
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Symbolization

● Symbolization replaces 
references with 
assembler labels

lea rax, [rip + 0x1234]
call 0x1337
dec rcx
jnz -15
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Symbolization

● Symbolization replaces 
references with 
assembler labels

1) Relative jumps/calls

loop1:
lea rax, [rip + 0x1234]
call func1
dec rcx
jnz loop1
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Symbolization

● Symbolization replaces 
references with 
assembler labels

1) Relative jumps/calls
2) PC-relative addresses

loop1:
lea rax, [data1]
call func1
dec rcx
jnz loop1
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Symbolization

● Symbolization replaces 
references with 
assembler labels

1) Relative jumps/calls
2) PC-relative addresses
3) Data relocations

loop1:
lea rax, [data1]
call func1
dec rcx
jnz loop1
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Symbolization

● Symbolization replaces 
references with 
assembler labels

1) Relative jumps/calls
2) PC-relative addresses
3) Data relocations

loop1:
lea rax, [data1]
<new code>
call func1
dec rcx
jnz loop1
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Coverage-guided 
fuzzing

Sanitization

Instrumenting 
binaries in the 
kernel

Instrumenting 
binaries
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Coverage-guided fuzzing

input[0] == ‘P’

input[1] == ‘N’

input[2] == ‘G’

do_something() fail()

● Record test coverage (e.g. 
with instrumentation)

● Inputs that trigger new 
paths are “interesting”

● Mutate interesting inputs to 
discover new paths
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Coverage-guided fuzzing

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
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Coverage-guided 
fuzzing

Sanitization

Instrumenting 
binaries in the 
kernel

Instrumenting 
binaries
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Address Sanitizer (ASan)

● Instrumentation catches memory corruption at runtime
◦ Arguably most dangerous class of bugs

● Very popular sanitizer
◦ Thousands of bugs in Chrome and Linux

● About 2x slowdown
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ASan red zones

char buf[4];
buf

Red zone

Red zone
strcpy(buf, “AAAAA”);
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Coverage-guided 
fuzzing

Sanitization

Instrumenting 
binaries in the 
kernel

Instrumenting 
binaries
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RetroWrite instrumentation

● Coverage tracking: instrument basic block starts

● Binary ASan: instrument all memory accesses, 
link with libASan
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Kernel vs. userspace fuzzing

Crash 
handling Tooling Determinism

Userspace
OS handles 

crashes 
gracefully

Easy to use and 
widely available

Single-threaded 
code usually 
deterministic

Kernel
Need VM to keep 

the system 
stable

More complex 
setup, fewer 

tools

Interrupts, many 
concurrent 

threads
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Kernel binary fuzzing
● Approach 0: black box fuzzing
● Approach 1: dynamic translation

◦ Slow! (10x +)
◦ No sanitization like ASan

● Approach 2: Intel Processor Trace (or similar)
◦ Requires hardware support
◦ Still no sanitization

● Approach 3: static rewriting
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kRetroWrite

● Apply RetroWrite to the kernel

● Implemented so far: support for Linux modules

● Demonstrates that RetroWrite applies to the kernel
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kRetroWrite

● Kernel modules are always position-independent

● Linux modules are ELF files
◦ Reuse RetroWrite’s symbolizer

● Implemented code coverage and binary ASan
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kRetroWrite coverage

● Idea: use kCov infrastructure
◦ Can interoperate with source-based kCov

● Call coverage collector at the start of each basic block

● Integrates with, e.g., syzkaller, or debugfs
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kRetroWrite coverage

cmp rbx, 1234
jz block1

mov [rax], rbx mov [rax], 1234 
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kRetroWrite coverage

call trace_pc
cmp rbx, 1234
jz block1

call trace_pc
mov [rax], rbx 

call trace_pc
mov [rax], 1234 
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kRetroWrite binary ASan

● In userspace: link with libASan

● In kernel: build kernel with KASan (kernel ASan)

● Reuse modified userspace instrumentation pass
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kRetroWrite binary ASan

● Instrument each memory access with a check

● Failed checks print a bug report

● Compatible with source-based kASan
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Fuzzing with kRetroWrite

● Rewritten modules can be loaded and fuzzed with 
standard kernel fuzzers

● So far: tested with syzkaller
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Coverage-guided 
fuzzing

Sanitization

Instrumenting 
binaries in the 
kernel

Instrumenting 
binaries
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Our experiments
● Userspace: SPEC2006 runtime performance

◦ RetroWrite ASan
◦ Source ASan 
◦ Valgrind memcheck

● Kernel: fuzz filesystems/drivers with syzkaller
◦ Source KASan + kCov
◦ kRetroWrite KASan + kCov
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Results - Userspace
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Preliminary results - kernel

Exec/s - BTRFS

Source

kRetroWrite



Demo



44High Speed Binary Fuzzing  -  HexHive  -  36C3

Let’s test kRetroWrite on a filesystem
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Coverage-guided 
fuzzing

Sanitization

Instrumenting 
binaries in the 
kernel

Instrumenting 
binaries
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Conclusions
● Instrument real-world binaries for fuzzing

◦ Coverage tracking for fast fuzzing
◦ Memory checking to detect bugs

● Static rewriting at zero instrumentation cost
◦ Limited to position independent code
◦ Symbolize without heuristics

● More? https://github.com/HexHive/retrowrite 
◦ User-space now, kernel in ~2-3 weeks
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