
CUP: Comprehensive
User-Space Protection

Nathan Burow, Derrick McKee, Scott A. Carr, Mathias Payer

Memory Safety

● All software exploits rely on corrupting memory state
○ Control-flow hijacking: Code-pointers

○ Data only: Critical variables, program state

● C / C++ do not provide memory safety

● ~60 vulnerabilities and ~30 exploits per month [1]

[1] Victor Van der Veen, Lorenzo Cavallaro, and Herbert Bos. "Memory errors: The past, the present, and the future." RAID’12. 2

Memory Safety In The Wild

 Updated data from: www.vvdveen.com/memory-errors 3

Memory Safety Definition

● Memory objects have capabilities:
○ Size -- base address and length

○ Allocation Status -- allocated, free

● Spatial violation
○ Violate the size capability

○ Buffer overflow

● Temporal violation
○ Violate the allocation status capability

○ Use-after-free

Memory

Memory Object

Buffer Overflow

Buffer Underflow

4

Memory Safety Definition

● Memory objects have capabilities:
○ Size -- base address and length

○ Allocation Status -- allocated, free

● Spatial violation
○ Violate the size capability

○ Buffer overflow

● Temporal violation
○ Violate the allocation status capability

○ Use-after-free

Memory

Memory Object
Use After Free

5

Related Work

● Spatial Safety
○ Fat Pointers -- inline metadata

○ SoftBound -- disjoint metadata

○ Low-Fat Pointers -- alignment based

● Temporal Safety
○ CETS -- persistent disjoint metadata

○ DangNull -- modify pointers on free

Memory

0x404

0x400

0x410

0x400
0x10len

base
ptr

0x400, 0x10Metadata 0x400, 0x10

6

Limitations of Related Work

● Focus on compatibility instead of security
○ Do not modify pointers

○ Can silently fail to check a dereference

○ Validating correctness of implementation is difficult

● SoftBound+CETS
○ Two levels of indirection to look up metadata

○ Permanent storage of 8 bytes per object

● Do not scale to handle all memory allocations
○ SPEC CPU2006 benchmarks allocate up to 205 billion objects with pointers

○ Firefox allocates 1.4 billion objects with pointers to run the Kraken benchmark

7

Memory Safety Mechanism Requirements

● Precision
○ Must know exact size capability of every pointer

● Object Awareness
○ Must be able to track the allocation status capability of every pointer

● Comprehensive Coverage
○ Must protect all types of allocations: stack, heap, global

○ Must protect all allocations in user space

● Exactness
○ No false positives → Usable

○ No false negatives → Secure

8

Design

● Hybrid Metadata
○ Encodes capability ID in pointer

○ Fail Closed -- unchecked deref fail by default

○ Performant

■ IDs propagate naturally on assignment

■ Direct lookup of metadata

● Tradeoff: limited IDs
○ Reuse IDs → Probabilistic temporal guarantees

○ Full temporal safety until ID is reused

● Static analysis on Stack
○ Use local metadata for stack allocations

○ Saves capability IDs → Improves temporal guarantees

Memory

ptr 0x80100004

0x400

0x410

+0x0010 0x400, 0x410

9

Validating Instrumentation Through Design

● Observation: finding memory allocations is easier than finding derefs
○ Can design guarantee that all pointers to instrumented allocations are checked?

○ If so, would only need to prove that all allocations are instrumented to validate implementation

● Enrich all pointers on allocation so that CPU faults if dereferenced

● Fails closed: enriched pointers cannot be dereferenced without check
○ Leads to no false negatives

○ Validates correctness of our implementation

● Improves over existing work which can silently miss a check

10

Implementation: Allocation

● Create metadata entry
○ Base is the first valid address

○ End is the last valid address

● Capability ID → index in metadata table

● Replace pointer with capability ID and offset
○ Set high order bit to 1

○ Next 31 bits are the ID -- metadata index

○ Low order 32 bits are offset in object

○ Offset is ptr - base, initially 0

● Hybrid metadata: pointer encodes ID

typedef struct {
 void *base;
 void *end;
} metadata_t;

typedef struct {
 unsigned int32 enriched : 1;
 unsigned int32 capbility_id : 31;
 unsigned int32 offset;
} enriched_t;

typedef union {
 void *native;
 enriched_t enriched;
} ptr_t;

11

Implementation: Dereference

● Reconstruct pointer: offset + base

● If pointer is in bounds:
○ Ptr - base >= 0

○ Upper - ptr >= 0

○ If fail, high order bit is 1 (negative number)

● Check computes these and puts high order bit in reconstructed pointer

● General purpose fault for out of bound dereferences

void *check_bounds(size_t ptr,
 size_t base, size_t upper) {
 size_t valid = (ptr - base) | (upper - ptr);
 valid &= 0x8000000000000000;
 // valid is 0 if ptr >= base && ptr < upper
 return (void *)(ptr | valid);
}

12

Challenges for CUP: Temporal Safety

● On free, invalidate metadata

● Problem: eventually run out of capability IDs
○ Does not affect spatial safety, only temporal

● Solution is policy dependent:
○ Number of capability IDs in configurable -- tradeoff object size versus number of IDs

○ Reuse capability IDs

■ Free list

● Memory usage: put IDs at front of free list

● Security: randomize ID reuse

■ Garbage collect capability IDs

● Temporal safety depends on time to ID reuse

● If new capability does not overlap any previous capability → Secure

13

Comprehensive Coverage

● CUP recompiled and supports libc

● All user-space code should be recompiled with CUP
○ Compatibility mode exists to support incremental deployment

○ Significantly weakens security guarantees

● Kernel remains unprotected
○ Must instrument the syscall boundary between user and kernel space

○ Calls into kernel: unenrich pointers

○ Returns from kernel: enrich pointers

14

Evaluation: Security

● NIST provides a test suite of all CWEs called Juliet
○ Use to validate the CUP implementation

○ No false negatives or false positives

● False Positives
○ Implementation bug in SoftBound fails to handle alloca() calls correctly

● False Negatives
○ Primarily due to libc functions, e.g., strcpy or memcpy not being protected

○ Neither SoftBound nor AddressSanitizer fail closed

○ Cannot guarantee that all memory safety violations are caught

False Negatives False Positives

SoftBound+CETS 1032 (25%) 12 (0.3%)

AddressSanitizer 315 (8%) 0 (0%)

CUP 0 (0%) 0 (0%)
15

Evaluation: Performance on SPEC CPU2006

● 158% vs 38% for ASan

● 126% vs 245% for SoftBound on benchmarks where both run

16

Conclusion

● CUP presents Hybrid Metadata
○ Faster than SoftBound’s disjoint metadata

○ Supports temporal safety by allowing object aware metadata

● Fails Closed
○ No False Negatives on Juliet

○ Design validates implementation

● Performant Memory Safety remains a hard problem

https://github.com/HexHive/CUP

Questions?
17

