
1

EPOXY: Shielding Bare-Metal
Embedded Systems

Mathias Payer (@gannimo), Purdue University
Jointly with Abraham Clements and Saurabh Bagchi
http://hexhive.github.io

2
https://en.wikipedia.org/wiki/Pwn2Own

Bugs are everywhere?

https://en.wikipedia.org/wiki/Pwn2Own

3

Trends in Memory Errors*

* Victor van der Veen, https://www.vvdveen.com/memory-errors/, updated Feb. 2017

https://www.vvdveen.com/memory-errors/

4

Software is unsafe and insecure*

● Low-level languages (C/C++) trade type safety
and memory safety for performance
– Our systems are implemented in C/C++
– Too many bugs to find and fix manually

* SoK: Eternal War in Memory. Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song.
In IEEE S&P'13

Google Chrome: 76 MLoC
glibc: 2 MLoC
Linux kernel: 14 MLoC

5

Control-Flow
Hijack Attack

6

Attack scenario: code injection

● Force memory corruption to set up attack
● Redirect control-flow to injected code

Code Heap Stack

7

Attack scenario: code reuse

● Find addresses of gadgets
● Force memory corruption to set up attack
● Redirect control-flow to gadget chain

Code Heap Stack

8

Defenses protect desktops/servers

● Address Space Layout Randomization
– Shuffles address space, requires information leak

● Data Execution Prevention
– Prohibits code injection, requires ROP

● Stack Canaries
– Prohibits stack smashing, requires direct write

9

Control-Flow
Integrity

10

Control-Flow Integrity (CFI)*

● Restrict a program’s dynamic control-flow to
the static control-flow graph
– Requires static analysis
– Dynamic enforcement mechanism

● Forward edge: virtual calls, function pointers
● Backward edge: function returns

* Control-Flow Integrity. Martin Abadi, Mihai Budiu, Ulfar Erlingsson, Jay Ligatti. CCS ‘05
* Control-Flow Integrity: Protection, Security, and Performance. Nathan Burow, Scott A.
Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan Brunthaler, Mathias Payer. ACM
CSUR ‘18, preprint: https://nebelwelt.net/publications/files/18CSUR.pdf

https://nebelwelt.net/publications/files/18CSUR.pdf

11

Control-Flow Integrity (CFI)

CHECK(fn);
(*fn)(x);

CHECK_RET();
return 7Attacker may corrupt memory,

code ptrs. verified when used

12

CFI: limitations

● CFI provides incremental security
– Attacker can choose between valid targets
– Data-flow attacks are out of scope

● Strength of CFI depends on static analysis
– Coarse-grained: all functions are allowed
– Fine-grained: arity or function prototype

13

Are we making progress?

2007

2017

14

The State of the IoT

15

Defenses deployed on IoT devices

16

Bare-metal devices

(c) dekuNukem, hackaday.io
(c) Felix, lowpowerlab.com

(c) bunnie, bunniestudios.com

(c) yenra

17

Security challenges

● Single application
– No separate privilege levels (kernel/user)

● No MMU (virtual memory)
– Defenses limited to physical memory space

● Tight constraints
– Runtime, memory, battery

18

IoT security stack

Security Hardware

Global Data

Stack

Code

Bare-metal Application
Unused or trivially

bypassed

Vulnerable to:
Stack smashing
Code injection

Global data corruption

IO
Always accessible

Single (Root)
execution domain

No ROP defenses

Sensitive IO

RAM

Flash

19

Let’s exploit like in ‘99

(c) MGM

20

EPOXY*
* Embedded Privilege Overlay across (X)

hardware for anY software

21

EPOXY design

EPOXY
LLVM-based

compiler

Sensitive
IO

Hardened
Application

Source
Code

● LLVM-based compiler
● Protects against

– Code injection
– IO manipulation
– Control-flow hijack*
– Data corruption*

* Probabilistic, strength may vary (tm)

22

Embedded systems: opportunities

● No separation between “apps” or user/kernel
– Only few instructions require privileges

● Small memory size: MBs of Flash, KBs of RAM
– Memory is dedicated, may reuse all slack space

● Tight runtime constraints
– Execution is interrupt driven, use slack

● Low power requirements
– Limit overhead to few instructions

23

Mission 1: privilege separation

(c) AMC, Walking Dead

24

Before EPOXY

Code

Global Data

Stack

IO

Application

Security HW

Sensitive IO

Privileged
Execution

25

Privilege separation

● Static analysis identifies restricted operations
– Specific instructions per ISA
– Sensitive memory-mapped registers (MPU, IO)

● Instrumentation to
– Configure MPU to drop privileges
– Raise privileges selectively

● Enable security hardware
– Enforce W^X code, RW data
– Protect access to security hardware, I/O

26

Privilege overlay: benefits

Code

Global Data

Stack

IO

Security HW

Sensitive IO

Enabled,
Access Restricted

Access Restricted

Unprivileged
Execution

Privileged
Execution

Set to RX, Enforces
Code Integrity

Set to RW, Stops
Code Injection

Evaluation: privileged instructions

Application Tool Exe Priv Priv %

PinLock EPOXY 823K 1.4K 0.17%

FreeRTOS-MPU 823K 813K 98.78%

FatFS-uSD EPOXY 33.3M 3.9K 0.01%

FreeRTOS-MPU 34.1M 33.0M 96.77%

TCP-Echo EPOXY 310M 1.5K <0.001%

FreeRTOS-MPU 322M 307.0M 95.34%

28

Mission 2: stop stack smashing

(c) Nintendo

* V. Kuznetsov et al., Code Pointer Integrity, OSDI 2014

RAM

Stack .data .bss heapStack UnSafeStack

Guard Region

Stack integrity through SafeStack

● Split stack into safe stack and unsafe stack*
● Move unsafe objects to unsafe stack
● Protects against stack smashing

Mission 3: shuffle

EPOXY

● Shuffle globals, stack, and code
– Protects against ROP
– Protects against global data corruption

Seed

Binary 1

Binary 2

Binary 3

Binary 4

Seed 1

Seed 2

Seed 3

Seed 4

Diversification

Sources

RAM

.data .bss heapStack UnSafeStackA B D A B C D

.data

B b dca a cb d

.bss

C 12 4 3

Flash

foo bar baz bar2 foo2 handler Jumps to handler

Binary 1

invalid execution

E

Padding

Stack UnSafeStackheap

handler foo foo2 bar2 bar baz

Diversification

EPOXY: full feature set

Code

Global Data

Stack

IO

Hardened Application

Security HW

Sensitive IO

Enabled,
Access Restricted

Access Restricted

UnSafeStack
 Isolate Unsafe Data

Protected stack,
ROP Protections

Global Data Protected

ROP Protections

Unprivileged
Execution

Privileged
Execution

Set to RX, Enforces
Code Integrity

Set to RW, Stops
Code Injection

Evaluation: ROP gadgets

Surviving Across

App Total 2 5 25 50 Last

PinLock 294K 14K 8K 313 0 48

FatFS-uSD 1,009K 39K 9K 39 0 32

TCP-Echo 676K 22K 9K 985 700 107

Using ROPgadget compiler to identify surviving
gadgets across # diversified binaries

Performance impact (BEEP)

Runtime SS PO All

Min -7.3% -1.3% -11.7%

Ave -3.5% 0.1% 1.1%

Max 4.4% 2.1% 14.2%

Energy SS PO All

Min -4.2% -10.3% -10.2%

Ave 0.2% -0.2% 2.5%

Max 7.3% 2.8% 17.9%

SS: SafeStack, PO: Privilege Overlay

Performance impact

P
in

L
o

c
k

F
a

tF
S

-u
S

D

T
C

P
-E

c
h

o

 1 5

 1 0

 5

0

5

1 0

1 5

%
 I

n
c

re
a

s
e

 E
n

e
rg

y

S S
P O

P
in

L
o

c
k

Fa
tF

S
-u

S
D

T
C

P
-E

c
h

o

 1 5

 1 0

 5

0

5

1 0

1 5

%
 I

n
c

re
a

s
e

 R
u

n
ti

m
e

S S
P O

IoT Apps Runtime IoT Apps Energy

37

Conclusion

38

● Embedded systems need protection
– Currently no defenses, easy target

● Fast forward embedded security by 3 decades
– Privilege separation, mitigate code injection
– Safe stack protects against stack smashing
– Diversification instead of ASLR

● Meets runtime, memory, energy requirements

Source: https://github.com/HexHive/EPOXY

Conclusion

https://github.com/HexHive/EPOXY

39

Thank you!

Questions?

Mathias Payer (@gannimo), Purdue University
http://hexhive.github.io

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	SafeSTack
	Slide 30
	Diversification
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

