
REV.NG: A Unified Binary Analysis Framework
to Recover CFGs and Function Boundaries

Alessandro Di Federico
Politecnico di Milano, Italy

alessandro.difederico@polimi.it

Mathias Payer
Purdue University, U.S.A.

mathias.payer@nebelwelt.net

Giovanni Agosta
Politecnico di Milano, Italy

agosta@acm.org

Abstract
Static binary analysis is a key tool to assess the security of third-
party binaries and legacy programs. Most forms of binary analy-
sis rely on the availability of two key pieces of information: the
program’s control-flow graph and function boundaries. However,
current tools struggle to provide accurate and precise results, in
particular when dealing with hand-written assembly functions and
non-trivial control-flow transfer instructions, such as tail calls. In
addition, most of the existing solutions are ad-hoc, rely on hand-
coded heuristics, and are tied to a specific architecture.

In this paper we highlight the challenges faced by an architec-
ture agnostic static binary analysis framework to provide accurate
information about a program’s CFG and function boundaries with-
out employing debugging information or symbols. We propose a set
of analyses to address predicate instructions, noreturn functions,
tail calls, and context-dependent CFG.

REV.NG, our binary analysis framework based on QEMU and
LLVM, handles all the 17 architectures supported by QEMU and
produces a compilable LLVM IR. We implement our described
analyses on top of LLVM IR. In an extensive evaluation, we test our
tool on binaries compiled for MIPS, ARM, and x86-64 using GCC
and clang and compare them to the industry’s state of the art tool,
IDA Pro, and two well-known academic tools, BAP/ByteWeight
and angr. In all cases, the quality of the CFG and function bound-
aries produced by REV.NG is comparable to or improves over the
alternatives.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis

Keywords static binary analysis, function boundary detection,
control-flow graph recovery

1. Introduction
Binary analysis is an effective approach to recover useful infor-
mation from legacy and commercial off-the-shelf (COTS) binaries
for which the source code is not available. Such information helps
the analyst in understanding the behavior of the program (e.g., to
classify benign or malicious functionalities), to evaluate and test if

specific security policies hold, or even to retrofit security features
such as CFI [23, 19, 10, 22] directly into the binary.

In the context of static binary analysis, when dealing with C/C++
programs stripped of debugging information, two particularly chal-
lenging tasks are the recovery of an accurate control-flow graph
(CFG) for the program and the detection of the boundaries of the
original functions. This information is very supports reverse engi-
neering purposes or debugging code and it is essential to efficiently
rewrite or transform the underlying binary.

While a number of existing tools already provide such infor-
mation, they often struggle to support multiple architectures. Ex-
isting tools either develop a set of ad-hoc heuristics to handle each
new architecture (IDA Pro [8]) or, if the tool employs an interme-
diate representation for its analyses, have to create a new frontend
to handle each new architecture. Examples of the latter case are
BAP/ByteWeight [3, 2] (x86 and ARM only), MC-Semantics [18]
(x86 only) and LLBT [14] (ARM only). A key consequence is that
existing tools focus only on one or few architectures, which means
that software built for architectures that are less popular, or emerg-
ing (e.g., RISC-V) is difficult to analyze. This problem intensifies
with the spread of IoT devices which often employ low power or
ultra-low power processors with less known and highly customized
ISAs.

We propose a unified system for binary analysis which em-
ploys a set of principled techniques rather than architecture-specific
heuristics for its analyses and that, unlike existing work, defers the
burden of providing a reliable frontend for a wide range of archi-
tectures to existing tools. In our prototype we rely on QEMU to
provide such a frontend. QEMU is a dynamic binary translator that
lifts binary code into a custom intermediate representation (IR) for
17 different architectures, including x86, x86-64, MIPS, ARM, and
AArch64. As a tool aiming at full system emulation, QEMU sup-
ports even the most sophisticated ISA extensions. For instance, it
already supports the recently introduced Intel MPX ISA extensions.
The large community and industry interest around QEMU virtu-
ally guarantees that new architectures and extensions are supported
promptly (e.g., RISC-V [12]).

The main benefit of this approach, besides the vastly reduced ef-
fort in handling a large number of ISAs, relies on the fact that all the
supported architectures are first-class citizens. Moreover, QEMU’s
IR abstracts all architecture-specific details. All analyses building
on top of the QEMU IR, therefore, have to be designed in an ISA-
agnostic way. In practice, when handling ISA-specific peculiari-
ties, such as MIPS delay slots or ARM predicate instructions, the
approaches are equally effective, respectively, on OpenRISC delay
slots and x86-64 conditional move instructions.

On top of this framework, we build a set of sophisticated, ISA-
agnostic analyses to recover two critical pieces of information for
further analysis: the CFG and function boundaries. Unlike existing
tools that strive to achieve similar aims, we increase the accuracy



of the recovered CFG by also handling hand-written, low-level
assembly functions with non-trivial CFGs. Recovered CFGs and
function boundaries are the foundation for static binary analysis
and static binary rewriting mechanisms. Precision is crucial as
imprecision leads to overhead, loss of functionality, and potentially
to security vulnerabilities when the transformed binary is executed.

In our prototype implementation, REV.NG, we translate the IR
provided by QEMU into LLVM IR, an environment that facili-
tates further analyses. In our evaluation we compare our proto-
type against the de-facto commercial standard, IDA Pro [8], and
two open-source tools, BAP/ByteWeight [3, 2] and angr [17, 16],
showing how we obtain comparable or better results preserving the
generality of our approach by avoiding any ISA-specific heuristic.
Contributions. In this paper, we make the following contributions:

• We design a framework for static binary analysis that handles
different architectures.

• We propose a set of fully automated principled analyses, built
on top of our framework to recover an accurate CFG and func-
tion boundaries, even in presence of hand-written assembly and
neither employing ISA-specific (hand-crafted) heuristics nor re-
lying on debugging information or symbols.

• We evaluate our prototype implementation against the de-facto
industry standard for static binary analysis, IDA Pro, and two
related works [3, 17, 16, 2], and we show that our results are
comparable or better without having to fall back to per-ISA
hand-crafted heuristics. We also demonstrate that we handle the
CFG of non-trivial, real world hand-written assembly functions
where other tools fail.

Organization of the paper. Section 2 presents the main challenges
to address in order to obtain an accurate CFG and accurate function
boundaries. In Section 3 we introduce our analysis framework and
the binary lifting process. Section 4 discusses our solution, while
in Section 5 we report the results of our experiments and provide
a case study. Finally, Section 6 reviews the state of the art and, in
Section 7, we draw our conclusions.

2. Challenges for binary analysis
Recovering the control-flow graph and the function boundaries of a
binary program for which no source code or debugging information
are available presents several challenges [20]. In the following,
we discuss them focusing on the issues that an ISA-independent
analysis framework faces.

2.1 Challenges in CFG recovery
Recovering the CFG of a program consists in essentially two
phases. The first phase identifies the basic blocks composing the
application, while the second phase establishes the correct relation-
ships among them in terms of control-flow. In practice, this means
that the analysis has to enumerate all basic block starting addresses,
their size, and whether a control-flow transfer from one basic block
to another is feasible or not.
Basic block identification. The initial step of any analysis on a bi-
nary program consists in identifying the subset of the program im-
age that contains executable code. While distinguishing code from
data is an orthogonal problem and outside the scope of this work,
typically the various image formats provide a segmentation of the
program in terms of executable, readable, and writable areas, even
in absence of debugging information. Indeed, this information is es-
sential for the operating system to assign appropriate permissions
to the underlying memory pages when an instance of a program is
initialized.

After the identification of the executable portion of the program,
basic blocks need to be identified. The starting addresses of basic
blocks can be drawn from multiple sources. The first and foremost
source consists in the program’s entry point and, in case of a dy-
namic library, in the exported functions. Other basic block starting
addresses can be harvested through code analysis. Pointers to other
basic blocks are found in direct jump instructions, constants mate-
rialized through one or more instructions, and global data (.rodata
in particular) where jump tables or function pointers are typically
stored.

CFG recovery. After collecting basic blocks’ starting address and
size, the control-flow recovery can start. Direct jump instructions
provide useful information and are straightforward to incorporate.
Unfortunately, they are not sufficient to completely recover the
CFG. The main challenge consists in handling indirect control-
flow transfer instructions, i.e., indirect function calls and indirect
branch instructions. In general, it is impossible to enumerate the
exact set of possible jump targets for indirect control transfers. The
worst case is represented by a jump to a user-controlled value,
where all executable code becomes reachable. Alternatively, the
destination address may be the result of an arbitrarily complicated
computation, which might even be impossible to track.

With this premise, we classify indirect control-flow transfer in-
structions in three categories that, when handled correctly, provide
an accurate CFG:

Compiler-generated, function-local CFG. All the indirect jump
instructions generated by a compiler to efficiently lower the
control-flow of certain statements, most notably C switch
statements.

“Reasonable” hand-written assembly. Indirect jumps manually
introduced by the developer in assembly, usually to optimize
low level routines such as memcpy. Compared to the CFG that a
compiler typically generates, the developer can produce more
efficient but hard-to-analyze code. By reasonable, we mean,
for instance, a function that does not make assumptions about
the values of its parameters, but rather enforces (implicitly or
explicitly) the constraints locally (see example in Section 5.2).

Indirect function calls. Indirect function calls through function
pointers or C++ virtual functions.

In this work, we aim to handle accurately the first case and to
develop a set of analyses to handle as many cases as possible of
the second category. In fact, these two classes make up the most
part of the CFG needed for our final goal: the recovery of function
boundaries. On the other hand, indirect function calls might involve
virtual tables or function pointer fields of dynamically allocated
objects, which are harder to track statically. In short, recovering
targets of function calls is an orthogonal problem, which deserves
to be treated on its own and does not compromise functionality,
since pointer to targets of indirect function calls are typically avail-
able elsewhere (e.g., virtual tables). Note that, to enable support for
large binaries, as a design choice, we do not employ SMT-solvers,
which can provide the most accurate results but limit the scalability
of the approach [17].

2.2 Challenges in the recovery of function boundaries
The recovery of function boundaries in a program consists in iden-
tifying all function entry points and associating them all with their
reachable basic blocks, skipping over function call instructions.
This task poses a series of challenges.

First of all, the accuracy of the function boundary recovery is
highly dependent on the quality of the underlying CFG. In fact, if,
e.g., the CFG lacks information about the destinations of an indirect



jump, all the destination basic blocks might not be considered part
of the function, leading to a loss in accuracy.

Another issue is deciding whether a certain basic block is the
entry point of a function or not. The presence of an explicit function
call to its address is a strong indication, but it may not always
be available. Specifically, a certain function might never be called
directly but only through a function pointer, a C++ virtual call, or a
tail call.

Further, several common challenges emerge while trying to
identify function boundaries across architectures. In the following
we report some of the most relevant:

Call thunks. In ISAs where the program counter is not address-
able, it is a common practice to perform a function call to the
next instruction so that the program counter becomes available
on the stack or in the link register. The destination of such a
function call should not be mistakenly interpreted as the entry
point of an actual function.

noreturn functions. A noreturn function, in C terms, is a func-
tion that never returns (e.g., exit or longjmp). These functions
are sometimes called through a function call instruction and not
through a simple jump. This leads to a spurious path from the
call site to the next instruction, which might even be part of a
distinct function.

Shared code. Two functions may share a portion of their bodies,
in particular, two hand-written assembly functions might share
the footer or a sequence of instructions for error handling.

Calls to the middle of a function. In certain cases, a function
might have multiple entry points. This case is mostly seen in
hand-written assembly and it is usually employed to provide a
faster version of a function that does not verify certain precon-
ditions that are known to hold.

Tail calls. Tail calls appear in the code as simple unconditional
jump instructions, and, therefore, have to be handled in a way
that prevents them from being mistakenly identified as part of
the function-local CFG.

3. First steps: binary lifting and a basic CFG
This section discusses preliminary steps on how a high-level pro-
gram representation and a basic control-flow graph is obtained from
binary code. Leveraging the ISA-independent QEMU binary trans-
lator, binary code is lifted into QEMU IR which can then be trans-
lated into LLVM IR. Starting from this LLVM IR, a set of analyses
(OSRA and SET) [6] recover a basic control-flow graph.

3.1 An ISA-independent binary analysis framework
A primary objective of our work consists in developing ISA-
independent analyses. While this is challenging in itself, supporting
different instruction sets in a unified manner increases these chal-
lenges. The ideal situation would be to work on an intermediate
representation while abstracting all the details specific to an archi-
tecture and making the behavior of each instruction explicit, along
with all its side effects. While this has been done in the past [3, 14],
from an engineering point of view, it requires a large amount of
work, in particular for large and complex CISC instruction sets
such as x86 and its successors. Moreover, such an effort has a non-
diminishing marginal cost for supporting new architectures, since,
in most cases, the opportunities for code reuse in different archi-
tectures are limited. Therefore, related works typically focus on
a limited set of architectures (usually one or two) and often only
support a subset of instructions in complex ISAs like x86, thus
ignoring, e.g., vector instructions or floating point instructions.

md5sum.arm
Collect JTs from

global data

Lift to
QEMU IR

Collect JTs from
direct jumps Translate to LLVM IR

new JT

Collect JTs from
indirect jumps

new JT

Identify function
boundaries

md5sum.cfg

md5sum.functions

Figure 1. Overview of the REV.NG system. JT stands for jump
target, and the new JT notation represents the fact that at least a
new jump target has been discovered.

REV.NG decouples the problem of CFG recovery from interpret-
ing an ISA by offloading the task of handling different architectures
to an existing abstraction layer: QEMU. The core component of
QEMU enabling this kind of abstraction is the tiny code generator
(TCG) which translates instructions of a supported ISA into TCG
instructions, QEMU’s IR. In emulator mode, QEMU translates its
IR to executable code for the host architecture. In our case, instead
of generating machine code, we further translate the QEMU IR into
a higher level IR, namely the LLVM IR. By employing QEMU’s
tiny code generator as a frontend, we obtain an IR from any of the
architectures it supports with minimal effort.

While our analyses are agnostic with respect to the underlying
IR, leveraging LLVM has several advantages. For example, the
LLVM IR is in SSA-form and provides use-def chains out of the
box. LLVM has a well-developed and clean API. As a compiler
framework, LLVM allows the recompilation of generated code for
any of the supported target architectures. Employing LLVM in a
binary analysis framework allows building a static binary translator
with minimal effort [6].

3.2 From binary code to LLVM IR
As shown in Figure 1, the translation process begins by parsing
the binary image and loading its segments into memory. Then,
the program’s global data is scanned in search of pointer-sized
values pointing to an address in the executable segment. Each target
address (or jump target), is passed to QEMU, which translates the
basic block at the corresponding address into TCG instructions.
The sequence of TCG instructions are then expanded to equivalent
LLVM IR and collected into a set of basic blocks. These basic
blocks, in turn, are collected into a function, known as root.

Destination addresses of direct jumps observed during transla-
tion are registered as jump targets for further exploration. The pro-
cess proceeds iteratively until there are no known untranslated ad-
dresses. Then, as we will describe in more detail in the next section,
targets of indirect control flow transfers are recovered, and, if nec-
essary, fed back to QEMU. Once all the possible jump targets have
been recovered, the CFG is analyzed for the recovery of function
boundaries, leading to the desired output.

Note that the translation from TCG instructions to LLVM IR
is straightforward. In particular, each TCG register (i.e., each part
of the CPU state) is mapped onto a local variable in the root
function, which we call CPU State Variable (or CSV). In case of
recompilation, the register allocator takes care of lowering such
variables in the most efficient way.



3.3 Basic control-flow graph recovery
SET and OSRA [6] are two key analyses to obtain the jump targets
of indirect jumps. These analyses can be employed as a first step
towards the recovery of an accurate CFG, enabling further analyses,
such as the detection of function boundaries.

In the following, we present them, assuming that the directly
reachable portion of the CFG (i.e., the part obtained from direct
control-flow transfers) is available. Without loss of generality we
describe the analyses in the context of the LLVM environment
compiler framework.

Simple Expression Tracker. The Simple Expression Tracker (or
SET) is an analysis that collects literal values observed in the code.
A typical situation where SET is effective are direct jumps whose
destination is too far from the current PC to be encoded directly as
an in-instruction immediate, which in architectures such as MIPS
and ARM has a limited size. Therefore, these types of jumps are
often lowered to a jump through a register where the destination
address is materialized. For instance the following ARM code uses
two instructions to materialize the address to load (0x21024):

movw r3 , #4132 ; 0x1024
movt r3 , #2
ldr r3 , [r3]

The SET looks for instructions performing a write to a CSV
(e.g., a register) and tracks how the value is computed. To do so, the
definition of the stored SSA value is inspected: if it is an operation
employing at most a single non-constant operand, we register it
on the stack and proceed to inspect the non-constant operand. If
an operation with no non-constant operands (i.e., a constant) is
met, the stack in its current status is traversed from top to bottom
applying all the recorded operations one-by-one. The final result is
the value that would be written in the CSV.

Note that the operations supported by SET include memory
loads. This means that if, while traversing the stack to materialize a
value, a memory load is found, and the value materialized up to that
point is a pointer to global data, SET will read the corresponding
value from the program image and proceed.

OSRA. OSRA is a data-flow analysis that maps each SSA value
to an offset shifted range (OSR, hence the name, OSR Analysis).
An OSR represents the fact that the considered SSA value can
be expressed in terms of another SSA value x, multiplied by a
factor b and with an offset a added. Moreover, it associates x in
a specific basic block with a single, possibly negated, range [c, d]
and a signedness. We define x along with bound constraints and
signedness information a bounded value. Symbolically, an OSR
can be summarized as follows:

a+ b · x, with
{
x :

x ∈ [c, d]
x /∈ [c, d]

and x is signed
unsigned

}
The offset and the multiplying factor come into effect, respec-

tively, through add/subtract operations and multiply/divide/shift
operations. Information about the bounds of a bounded value are
enforced on targets of conditional jump instructions comparing an
SSA value associated with an OSR and a constant. Finally, the
signedness of the bounded value is inferred by inspecting the type
of instructions in which it is employed (e.g., signed division versus
unsigned comparison).

The results provided by OSRA are then employed by SET. Sup-
pose that SET, during its exploration, finds an instruction for which
OSRA can provide useful information, i.e., the OSR’s bounded
value is within a reasonably small range. In this case, SET will ma-
terialize each value the OSR can assume considering the bounds of
its bounded value and run it through the stack as explained before.

As an example, consider the following LLVM IR reporting the
tracked OSR in comments, and suppose we want to enumerate all
the possible values that can be stored in the PC:

%1 = call i32 user_input ()
%2 = shl i32 %1, 2 ; [0 + 4 * %1]
%3 = icmp ult i32 %1, 8 ; (%1 < 8, uint)
br %3, label %lower , label %exit

lower:
%4 = add i32 %2, 9 ; [9 + 4 * %1, %1 < 8, uint]
%5 = load i32 , i32 *%4
store i32 %5, i32 *@pc

The shl instruction affects the factor b, the add instruction the
offset a, while the comparison instruction enforces an upper bound
of 8 on %1 in the lower basic block. Note that, since the constraint
on %1 is unsigned (uint), we also know the lower bound, i.e., 0.

At this point, since OSRA cannot handle the load instruction
(except for loads from a CSV), SET is required to recover the
values of the PC. SET will start from the store instruction, record
the load and enumerate all the possible values of %4 provided by
OSRA. It will then perform a load from those values, interpreting
them as addresses, effectively producing all values that the PC can
assume.

4. REV.NG Design
The basic approach illustrated in Section 2 lifts binary code
into LLVM IR and recovers (rudimentary) information about the
control-flow graph. While the presented approach suffices for
cross-ISA binary translation (due to the option to fall back to an
“oracle” mapping table that mitigates imprecision in the analysis at
run-time), the precision is too low to accurately identify function
boundaries.

Recovering an accurate control-flow graph is a much more
ambitious and challenging process. For this reason, in the first
part of this section we substantially extend and increase the CFG
analysis to improve the accuracy. In the second part of the section
we describe the function boundary recovery process that is only
possible on an accurate CFG.

4.1 Handling of reaching definitions
OSRA propagates tracked values across load/store instructions.
Therefore, it is critical to know which definitions (i.e., store in-
structions) reach a certain load and viceversa. This information is
provided by our reaching definition analysis.

Here, we introduce three extensions to the basic reaching def-
inition analysis used in [6]: (i) merging reaching definitions, (ii)
path-sensitive merging, and (iii) conditional reaching definitions.
We also discuss how these improvements are integrated into OSRA.
These extensions improve the number of jump targets recovered
from indirect jumps in common scenarios encountered while ana-
lyzing binaries of different architectures, increasing the accuracy of
the recovered CFG.
Merging reaching definitions. One of the limitations of OSRA
consists in the loss of precision every time a load is reached by
multiple definitions. In this case, the load instruction is associated
with a > value, i.e., a self-referencing, unconstrained OSR. There-
fore, all constraints available through the reaching definitions are
lost, resulting in an over-approximation that reduces the accuracy
of the overall analysis.

Defining a merging policy for the OSRs associated with the
reaching definitions addresses this challenge.

Suppose a load instruction is reached by n reaching defini-
tions ri associated with an OSR in the form ai + bi × xi, with
xi ∈ [ci, di]. All the OSRs of the reaching definitions are consid-
ered. The merge is performed only if all the multiplying factors



%1 = call i32 user input()
store i32 %1, i32* r1 ; D1
%2 = icmp ugt i32 %1, 5
br i1 %2, label %3, label %4

store i32 6, i32* r1 ; D2

%5 = load i32, i32* r1

%1 > 5

%1 ≤ 5

%1 > 5

Figure 2. LLVM IR example of the need for path-sensitive merg-
ing. The branch instruction propagates the constraint %1 > 5 in
the true-branch and %1 ≤ 5 in the false-branch. The final ba-
sic block receives both constraints, resulting in useless information
about %1. However, from the perspective of the load%5, only the
constraint coming from the false-branch is relevant, since the store
in the true-branch aliases the load from r1.

bi are the same. If this is the case, ai/bi is added to the lower
and upper bounds (ci and di) of each bounded value. All the re-
sulting bounded values are then merged according to the or-policy
(i.e., computing the union of the constraints). If the resulting set
of ranges can still be represented with the expressive power of a
bounded value (i.e, as a single contiguous range, possibly negated),
then it is employed to build a new bounded value that will be asso-
ciated with an OSR referencing the load instruction itself. Finally,
an OSR, having a = 0 and ∀i, b = bi, will be assigned to the load
instruction.

Path-sensitive merging. Even in the presence of the above merge
policy, due to how constraints are propagated, some useful con-
straints known to hold on the path from the definition to the load
may not survive until they reach the load. Such a situation can
be explained by tracking the reaching definitions of the load %5
in Figure 2. Consider the definition D1 that uses %1. When the
control-flow splits due to a conditional branch we obtain two oppo-
site constraints about %1 on the successor basic blocks: %1 > 5
and %1 ≤ 5. When the two paths later merge again, those con-
straints cancel each other out. However, we are only interested in
the constraint on %1 along one of the two paths from %1 to the
load %5: the one on the false-branch. In fact, along the path that
goes through the true-branch we have D2, a definition of r1 alias-
ing D1.

To handle such cases, we need to make the merge policy path-
sensitive. The key idea of the path-sensitive merge policy is to visit,
in depth-first order, all the ancestors of the basic block containing
the instruction l loading the variable x and stop when a basic
block containing a definition d of x is met. When this happens,
all the constraints on the path from d to l on the value associated
to the OSR of d are considered. First, since all of them have to
hold on the path from d to l, they are and-merged together, i.e.,
the intersection of the constraints is computed. Then, the resulting
constraint is accumulated in a result variable through an or-merge
policy. Therefore, at the end of the process, result will contain a
constraint holding on all the paths from each definition of x to the
load d.

Algorithm 1 details how the path-sensitive merge policy is im-
plemented. First we initialize the result variable with an empty
constraint and create an empty stack si for each reaching defini-
tion i. Then, another stack ws is created to support our depth-first
exploration of the ancestors of the basic block l containing our tar-
get load l. ws contains a pair of basic blocks 〈a, b〉 which are used

Data: The basic block of the target load (l) and the set of basic
blocks of its reaching definitions (d = {di}).

Result: The merged constraint result.
result = ⊥;
create an empty constraints stack si for each reaching definition i;
create a stack ws of 〈basic block, basic block〉 pairs;
ws.push(〈l, firstPredecessor(l)〉);
while ws is not empty do
〈origin, cur〉 = ws.pop();
foreach reaching definition i do

cut si to the height of ws;
c = getConstraint(i, origin, cur);
si.push(c);

if cur is not the last predecessor of origin then
ws.push(〈origin, nextPredecessor(origin, cur)〉);

stop = false;
foreach di in d do

if di = cur then
tmp = >;
foreach constraint ck in si do

tmp = tmp and ck;

result = result or tmp;
stop = true;

if not stop then
ws.push(〈cur, firstPredecessor(cur)〉);

return result;

Algorithm 1: The path-sensitive merging algorithm for constraints.
firstPredecessor(a) returns the first predecessor of basic block a,
nextPredecessor(a, b) returns the next element in the list of pre-
decessors of a after b, while getConstraint(i, b, c) returns the con-
straint on the i-th reaching definition holding on the edge c → b
(i.e., from basic block c to basic block b).

to identify the edge b → a that needs to be explored next. ws is
initialized with the edge going from l to its first predecessor.

The algorithm keeps considering the top element of the stack
ws until all the paths from the reaching definitions i to l have been
explored. In each iteration, the next element to be visited is first
recorded on ws and then the cur → origin edge is considered.

First of all, all the stacks si are reset to the same height as ws.
Then, the constraints holding on cur → origin on each reaching
definition i are pushed onto the respective stack si. If cur contains
one of the reaching definitions i, all the constraints on the stack si
are and-merged and the result is accumulated in result (with an or
merge policy). On the other hand, if cur does not contain a reaching
definition we can proceed one level deeper in our exploration, and
the edge coming from the left predecessor of cur is registered on
the stack ws.

If we apply this approach to Figure 2, we first observe that D1
is expressed in terms of %1, therefore its stack sD1 will collect
constraints on %1. D2 does not need a stack, since it is a constant
definition. We start from the last basic block, proceed to its first
predecessor, push %1 > 5 on sD1 and find the definition D2.
Since the definition is constant, we directly or-merge it in result,
obtaining the constraint %5 = 6. Note that the constraint %1 > 5
is ignored, since it is not related to the value being stored in the
definition D2. At this point, we remove an element from the stack
sD1, proceed to the right predecessor, push %1 ≤ 5 on sD1 and
meet D1. By and-merging all the constraints on sD1 we obtain



100: cmp r2 , #0
104: addlt r2 , r2, #1
108: blt exit
10c: add r1 , r1, r2

1: lt = r2 < 0;
2: if (lt) { r2++; }
3: if (lt) { return; }
4: r1 = r1 + r2;

Figure 3. On the left, ARM assembly snippet with multiple con-
secutive instructions sharing the same predicate. On the right,
equivalent C pseudo-code.

%1 ≤ 5, which is in turn or-merged into result, leading to the
final constraint %1 ≤ 6, as expected.

To keep the algorithm simple, each edge is visited only once.
Note that our analysis only considers load instructions accessing a
CSV or the address pointed by a CSV plus a constant offset. As a
consequence, performing a conservative alias analysis is straight-
forward. Note also that employing the path-sensitive merging pol-
icy is resource demanding, and, therefore, we only employ it as a
fallback if the straightforward analysis is not successful.

Conditional reaching definitions. Depending on how reaching
definitions are computed, the accuracy of our system varies. In
particular, the naı̈ve implementation may lead to spurious reaching
definitions in ISAs heavily employing predicated instructions.

Consider the ARM assembly snippet on the left of Figure 3. The
r2 definition at 0x104 (the add instruction) should not reach the use
at 0x10c, since, if the addition is executed, the branch gets executed
too (they share the same predicate). However, a binary analysis
system has to consider each instruction on its own, therefore it
will interpret those instructions as illustrated in pseudo-C on the
right of Figure 3. In this situation, a traditional reaching definition
analysis would propagate the r2 definition in the body of the if
block to line 3. Then, since no other definition aliases it, it would
not only be further propagated to the body of the second if, but
also (incorrectly) to the next instruction, reaching the use at line 4.

For this reason, we created the condition numbering analysis
(CNA), which groups all conditional branch instructions that share
the exact same condition. CNA checks each pair of conditions
to verify if they compute the same operation on either the same
operands, or on operands reached by the same set of definitions.
Such a grouping mechanism is efficiently implemented through
a hash-map using an appropriate hash function considering the
involved operations and their operands.

The CNA’s results are then employed by the conditional reach-
ing definitions analysis. This analysis, along with tracking defini-
tions, records whether a condition identified by CNA (or its nega-
tion) holds in each basic block.

When a definition is propagated to the successors of a condi-
tional branch, the identifier of the branch’s condition is retrieved,
and, if present in the set of conditions known to hold in the basic
block containing the definition, it is propagated only to the true-
successor. Otherwise, if the negated condition is present, it is prop-
agated only to the false-successor.

In practice, going back to the example in Figure 3, the two lt
conditions are identified by the same integer, say 42. Therefore,
when propagating the definition at line 2 in line 3, the branch condi-
tion is inspected, and since it is also identified by 42, the definition
proceeds only towards the true-branch, preventing it from reaching
line 4.

4.2 Function boundaries recovery
The function boundary identification process is split into five steps
that we present in the following.

1. Identify call/return instructions. Since, by design, our analy-
ses have to be ISA-agnostic, we assume that the underlying IR used

for the analysis does not explicitly provide the concept of function
call or return instructions. For this reason, we redefined these two
concepts in an architecture-agnostic way.

Function call. A branch instruction preceded by an instruction
performing a store of a constant integer matching the next PC,
considering delay slots if necessary. This integer is the return
address.

Return. Any indirect branch instruction whose destinations are
either unknown or an address known to be a return address.

Note that these definitions are generic enough to handle all the
known actual implementations of function call instructions in real
ISAs. Specifically, the function call definition successfully captures
both architectures saving the return address in a register (e.g., lr
for ARM, ra for MIPS) or on the stack (e.g., x86). The first step
in the function boundary recovery process consists in scanning
the code for instructions matching the function call definition, and
then, once all the possible return addresses have been collected, for
instructions matching the return definition.
2. Identify initial candidate set. The second step collects an initial
set of candidate function entry points (or CFEPs). Specifically, we
have three initial types of CFEPs.

(a) Called jump targets. The most important and reliable source
of CFEPs are function calls, since they explicitly indicate that
their destinations are functions.

(b) Unused jump targets in global data. Global data can also be a
source of CFEPs, e.g., due to function pointers stored in global
data or C++ virtual tables. However, global data also contains
jump tables used to implement C switch statements. These
addresses do not represent pointers to a function and may lead
to a large number of false positives. For this reason, we only
consider the unused portion of global data. By unused we mean
that a specific interval in global data has never been accessed
by SET. In fact, as mentioned in Section 3.3, SET can read
global memory areas to materialize addresses contained in a
jump table, which are therefore blacklisted.

(c) In-code constants. The code itself can contain function point-
ers, for instance if a function pointer is materialized in a register
and then stored to memory. All the jump targets recovered by
SET are considered and filtered: we register only jump targets
that never end directly in the PC and that are never used as a
load address. The rationale behind these choices is that values
ending up in the PC will become part of the regular CFG of the
program and we can handle them in other ways, while if a load
is performed at a certain address, we assume that the target is
data, and not code.

We say that a CFEP has its address taken if it is of type (b) or (c).
3. Identify reachable basic blocks. Once a preliminary set of
CFEPs is available, for each one of them we follow the CFG and
associate each basic block reachable from there with the CFEP.
When we reach a call instruction we do not follow it, but we pro-
ceed to its return address, and when we reach a return instruction,
we stop our exploration. Moreover, when associating a basic block
with a CFEP, we also keep track of how we reached it, that is either
through regular control-flow or by proceeding to the return address
of a call instruction.

Once all the basic blocks reachable from a CFEP have been
identified, each branch instruction is inspected again to verify if it
is a skipping jump. A skipping jump is a jump instruction that has at
least a CFEP of the type (a) between its location and its destination.
This check is performed to identify if the branch instruction is
jumping over a basic block we reliably know to be the entry point of



caller1:
b tail_called

caller2:
b tail_called

type_a_1:
b lr

tail_called:
b lr

caller3:
mov r1 ,1
b mixed_called

type_a_2:
add r2,r2 ,2

mixed_called:
mov r3 ,3
b lr

Figure 4. ARM example of skipping jumps. tail called is a
valid CFEP, since it can be reached only through skipping jumps
(going on over the type (a) CFEP type a 1). On the other hand,
mixed called is discarded as a CFEP and its basic basic block is
considered part of caller3 and type a 2. In fact, mixed called
can be reached both through a skipping jump (coming from
caller3), but also through the fall-through path after the add in-
struction in type a 2.

a function. This type of instructions are often a hint for the presence
of a tail call, therefore we create a new CFEPs out of their targets
and process them as described.
4. Filter candidates. At this point we have sufficient information
to perform an evaluation of which CFEPs should be kept, and which
should instead be discarded. The criterion to keep or discard a
CFEP is expressed with a simple rule:

The CFEP is kept if it is reachable exclusively through call
instructions or skipping jumps.

In practice we want to keep all the CFEPs except those that are
reachable through the local CFG of another function (i.e., return
paths from a function call, fallthrough paths or jumps not going
over other CFEPs). This means that we preserve CFEPs whose
addresses are taken or are reachable only through tail calls, as
long as they do not appear to be part of the local CFG of another
function. On the other hand, we discard CFEPs which are reachable
both through the local CFG of a CFEP and skipping jumps, since
this is a strong hint that the skipping jump is not a tail call, but
simply a result of two functions sharing some code.

Figure 4 reports an example of a CFEP reachable only through
skipping jumps (tail called, on the left) and a CFEP reach-
able both through a skipping jump and function-local control-flow
(mixed called, on the right). The latter example, is a typical situa-
tion where two functions share the main part of their body but have
slightly different headers. In these situations, we deem it appropri-
ate to assign the basic blocks of the main part of the body to both
functions.
5. Finalize the set. The last step consists in promoting all the
jumps to the survived CFEPs to the status of function calls and
consequently recompute for each one of them the set of basic
blocks reachable from the entry point. The final result is a set of
functions, possibly sharing code.

noreturn functions. Consider the following ARM snippet:

main:
add r0 , r0, #3
bl exit

hello:
add r0 , r0, r1
bx lr

Note how the main function does not have a return instruction,
in fact it is not necessary since the exit function will never return.
In C terms, exit is known as a noreturn function.

While exploring the basic blocks reachable from main, if our
analysis does not identify exit as a noreturn function, we might

mistakenly assign basic blocks belonging to the hello function
to main. Therefore, identifying noreturn functions is paramout to
accurately recover function boundaries.
We detect the following types of noreturn functions:

Syscall wrappers. Before each syscall we inject an instruction
loading the CSV associated with the register holding the syscall
identifier. In this way, our reaching definition analysis will pro-
vide a list of all the reaching definitions. These definitions are
monitored by SET, and, in case we notice that one of them
writes a constant value corresponding to the identifier of a
noreturn syscall (such as exit), we mark its basic block as
a killer basic block.

Infinite loops. We mark all the basic blocks belonging to a loop
in the CFG of a function with no exit nodes (i.e., an infinite
loop) as killer basic blocks. Such a situation is typical in the
implementation of the abort function as a last chance to pre-
vent execution from proceeding, in case raising a signal does
not have the desired effect.

longjmp. Our analysis also looks for basic blocks that overwrite
the stack pointer register with a value that is neither obtained
as an offset from its previous value (e.g., sp = sp + 8) nor
loaded from a memory address relative to its value (e.g., sp =
load(sp−16)). Such a behavior typically identifies the longjmp
function and its derivatives. Such basic blocks are marked as
killer basic blocks too.

At this point, all the killer basic blocks are temporarily modified
to have a single successor: the sink. All the nodes post-dominated
by the sink are in turn marked as killer basic blocks. In practice this
means we reach the entry point of functions such as abort, exit,
execve, longjmp, and all their wrappers and correctly identify
them as noreturn functions.

5. Experimental results
The analysis framework and the set of analyses presented in the pre-
vious section have been implemented in a tool, REV.NG. REV.NG
is a C++ project composed of 8,011 SLOCs (according to the
sloccount tool) publicly released under a Free Software license.

REV.NG makes heavy use of LLVM (version 3.8) and the tiny
code generator (TCG) of QEMU (version 2.5.0). While the TCG
supports many different architectures1, to evaluate our prototype,
we focused on Linux binaries on three popular architectures:

MIPS. Using GCC 5.3.0 and clang 3.8 with musl [11].
ARM. Using GCC 5.3.0 and clang 3.8 with uClibc [5].
x86-64. Using GCC 4.9.2 and clang 3.8 with musl [11].

Our choice was guided by the diversity of their features such as
register size, presence of delay slots, support of predicate execu-
tion, CISC/RISC designs, endianness, and variable-length instruc-
tion encoding. To test the robustness of our approach, all the bi-
naries we employed were stripped of debugging information and
linked statically.

Note that statically linked binaries provide less information than
dynamically linked executables, since the dynamic table and the
dynamic symbols are missing. This also means that our tool han-
dles the C standard library, which is large, includes hand-written
assembly and other manually optimized pieces of code which are
not typically found in programs. Extending our work to support
dynamically linked programs consists in loading the main binary
and all its libraries and perform our analyses on the whole code

1 QEMU supports the Alpha, ARM, CRIS, x86, MicroBlaze, MIPS, Open-
RISC, PowerPC, RISC V, System Z, SuperH, SPARC and Unicore archi-
tectures and their 64-bit versions, where applicable.



corpus. In summary, using statically linked binaries, results in the
most challenging setting.

The only “structural” information we left available to the evalu-
ated tools was the section list, which allows distinguishing between
code and data regions. This distinction enables, e.g., REV.NG to ex-
clude spurious jump targets and function calls which would intro-
duce noise in our evaluation. Section information is preserved even
when striping an ELF binary. Symbols are only employed to col-
lect the ground truth: our tool never uses them to recover function
boundaries.

5.1 Accuracy of the recovered function boundaries
We built the 105 programs of the coreutils project for the three ar-
chitectures, including md5sum, ls, install, df, cp. The programs,
including the C standard library, have been compiled using GCC
and clang in three different configurations: optimized for perfor-
mance (-O2), aggressively optimized for performance (-O3) and
optimized for code size (-Os). Since uClibc does not support clang,
for ARM, the C standard library has been compiled using GCC in
all the configurations. Table 2b reports the average size of the code
section (.text) for each tested configuration.

Collecting ground truth for control-flow graphs is a challenging
task. In GCC, CFG information cannot be obtained, since the back-
ends implicitly generate basic blocks by printing strings of assem-
bly. We considered LLVM, but since each backend must be instru-
mented in non-trivial ways, it would have resulted in prohibitive
engineering effort. For this reason, we focused the evaluation on
the accuracy of the recovered function boundaries instead. Since an
accurate CFG is a requirement for recovering accurate information
about function boundaries, the presented results can be considered
a lower bound for the accuracy of the CFG itself.

The ground truth for function boundaries is easier to recover.
Specifically, we employed the STT FUNC ELF symbols from the bi-
naries, which provide the starting address and size for each func-
tion. From these ranges we excluded constant pools, since they
should not be translated, and nop instructions, since they are mostly
used for function and instruction alignment purposes.

We compare our results against related work by letting the tools
produce a CFG. Then, starting from each entry point, the CFG is
explored, and each basic block reachable from there is recorded
as part of that function. Since one of our goals was to assess the
quality of the CFG, we ignored the basic blocks that were assigned
to a function but that were not reachable from the entry point, since
this means that the tool assigned a basic block to a function but
could not understand how it takes part of the CFG of the function.

We compared REV.NG with IDA Pro 6.6 using a custom
IDAPython script, the most recent version of angr (as of November
2016) employing the CFGFast CFG recovery option [17], and BAP
0.9.9, which implements the ByteWeight approach [2], with the
--phoenix option and collecting the CFG data from the GraphViz
output. We employed the latest available ByteWeight signatures
and we extended BAP to output the size of basic blocks. Note that
BAP does not support MIPS.

Table 1 reports the results of our experiments. The most im-
portant information needed to assess the quality of the results is
the Jaccard index, which we computed for each detected func-
tion against its best match in our ground truth. The index is com-
puted comparing the set of the basic blocks assigned to the function
against the actual set of basic blocks, according to the ground truth.
The Jaccard index provides a concrete measure of the accuracy of
the match, penalizing missing or extra basic blocks. Table 1 reports
another interesting metric reported in the Matched column, that is
the percentage of matched functions, ignoring the quality of the
match.

The results in terms of accuracy of REV.NG are very close to
those of IDA Pro, and sensibly better than those of BAP and angr in
all the tested configurations. The difference between IDA Pro and
REV.NG comes from few functions that only IDA Pro identifies. By
performing manual inspection of the functions detected by IDA Pro
but not by REV.NG, we verified that in most cases it is dead code,
i.e., code whose address is not taken and has no direct control-flow
transfers pointing to it. This is due to the fact that the heuristics
implemented in IDA Pro can detect function prologues. However,
since in all inspected cases the difference was due to dead code, we
do not consider this a limitation but a design choice.

Note that we already tried to mitigate this problem by compiling
our code using the -ffunction-sections GCC option, along with
-Wl,--gc-sections, which is supposed to minimize the amount
of dead functions. However, hand-written assembly functions are
not pruned.

In addition to dead code, we found additional sources of inac-
curacy in the CFG, which affect both REV.NG and IDA Pro:

Aggressively optimized nested switch. In certain x86-64 func-
tions using nested switch statements, REV.NG was unable to
track the size of the jump tables used by the inner switch state-
ment. Since the starting address of the jump table was available,
we could devise a heuristic to recover it. However to provide
coherent results, we decided not to do so.

Jump table addresses spilled on the stack. In certain situations,
e.g., in MIPS, GCC can spill the starting address of a jump table
on the stack in the function prologue because it might be used
multiple times across the function. While REV.NG implements a
basic mechanism to track stack values, doing so across function
calls is non-trivial, since during the CFG recovery phase we
have no information about function calls.

In our (non-exhaustive) exploration, we did not find major in-
accuracies in the CFG that IDA Pro handled and REV.NG did not.
On the contrary, we found several examples where REV.NG is more
precise than IDA Pro. The next section discusses such an example
as a case study.

Looking at BAP’s results, we found that (i) some functions
were missing several instructions in the function prologue and (ii)
a series of spurious functions in the middle of actual functions
manipulating the stack (e.g., for variable-length arrays). Tail calls
and indirect jumps due to switch statements also appeared to be
handled poorly.

For what concerns angr, despite often matching the most func-
tions compared to the other tools, the accuracy of the matching is
lower. The main issues are related to mishandled predicated return
instructions, code after noreturn function calls forced to a new
function in all cases, and incomplete handling of certain indirect
jumps due to switch statements. It is worth noting that the angr
project was hand-tuned for the x86 architecture, which we did not
evaluate.

In conclusion, REV.NG results are comparable or sensibly better
compared to the other evaluated tools, proving the effectiveness of
our approach.

Memory usage and processing time. The last set of rows in Ta-
ble 1 reports, for each tool, the peak memory usage (RSS column)
averaged over all the 105 processed binaries. As the table shows,
REV.NG memory usage is mostly comparable to other tools on x86-
64, but on ARM and MIPS our tool results to be more resource de-
manding. This is due to a limitation of our current implementation.
Specifically, OSRA propagates each constraint indefinitely, lead-
ing to a considerable memory overhead. Our development branch
addresses this issue by limitating the propagation of constraints
on a SSA value up to the farthest instruction employing it in an



x86-64 MIPS ARM

IDA REV.NG BAP angr IDA REV.NG angr IDA REV.NG BAP angr

Ja
cc

ar
d

in
de

x

G
C

C

-O2 97.98 98.00 84.47 90.92 96.37 94.30 84.95 96.56 95.60 79.10 67.13

-O3 98.35 96.72 85.31 91.06 95.17 93.16 82.94 96.41 95.60 79.08 66.65

-Os 98.16 98.77 87.03 93.08 97.10 94.79 88.82 95.92 94.08 81.67 66.38

cl
an

g -O2 98.39 98.31 85.84 92.05 96.41 92.48 78.50 94.62 94.49 78.34 65.98

-O3 98.34 97.77 82.73 91.90 96.31 91.65 78.22 94.64 94.53 78.16 63.43

-Os 97.83 98.44 83.70 91.01 96.52 92.66 81.07 94.01 93.38 80.84 65.89

M
at

ch
ed

(%
)

G
C

C

-O2 94.56 98.37 83.51 93.76 93.09 98.13 93.32 85.59 88.77 80.31 97.27

-O3 93.25 98.43 83.30 94.59 92.33 97.58 95.44 84.18 87.90 79.35 97.47

-Os 95.31 97.90 83.39 93.15 92.60 97.03 93.21 88.22 87.82 78.23 97.37

cl
an

g -O2 94.31 98.83 67.42 94.29 84.91 83.26 78.26 84.01 86.92 77.37 97.20

-O3 94.27 98.78 59.79 94.64 85.66 83.35 78.33 83.45 86.38 77.46 94.41

-Os 94.91 98.65 59.20 93.85 86.35 84.50 79.06 86.91 85.65 76.87 96.60

R
SS

(M
iB
) G
C

C

-O2 227.88 248.59 284.62 297.63 195.86 628.95 201.24 198.62 463.88 264.71 261.58

-O3 228.67 289.81 286.67 297.03 197.72 4325.39 1017.87 199.01 568.37 280.59 273.94

-Os 227.08 229.48 261.51 256.15 196.02 784.30 223.17 198.24 369.03 235.64 259.80

cl
an

g -O2 226.67 215.32 200.39 213.04 196.63 549.36 233.53 198.73 401.64 268.06 244.27

-O3 227.07 236.36 177.09 204.82 196.19 584.53 207.99 198.99 439.32 282.41 508.11

-Os 226.47 743.53 149.52 734.89 196.06 574.46 224.67 198.29 1293.56 245.84 676.03

Table 1. Comparison of the experimental results obtained by IDA Pro, REV.NG, BAP, and angr on the 105 coreutils binaries compiled using
GCC and clang for x86-64, MIPS and ARM. Three different optimization levels have been employed: -O2, -O3, and -Os. Note that BAP does
not support MIPS. The Matched rows represent the percentage of functions that have been matched at least partially, ignoring the quality of
the match. Jaccard index is the average Jaccard index of each detected function against its best match in the set of original functions. The
average is weighted over the size of the function and over the size of the .text section of each program. Finally, RSS is the average (over all
the binaries) of the maximum resident set size (i.e., peak memory usage).

x86-64 MIPS ARM

IDA 5.17 s 8.06 s 5.39 s

REV.NG 44.57 s 222.11 s 119.53 s

BAP 35.33 s n.a. 25.48 s

angr 384.15 s 273.83 s 147.82 s

(a)

x86-64 ARM MIPS

GCC

-O2 115.12 kiB 98.50 kiB 115.12 kiB

-O3 161.12 kiB 105.01 kiB 161.12 kiB

-Os 123.81 kiB 89.11 kiB 123.81 kiB

clang

-O2 138.72 kiB 102.56 kiB 138.72 kiB

-O3 125.51 kiB 106.03 kiB 125.51 kiB

-Os 126.59 kiB 95.12 kiB 126.59 kiB

(b)

Table 2. Table (a) reports the time spent (in seconds) to collect the control-flow graph and the function boundaries of the
ls binary, compiled with -O2 using GCC for x86-64, MIPS and ARM. The presented results are averaged over 10 runs.
Table (b) reports the average size (in kilobytes) of the .text section of a coreutils program compiled using the specified configuration.



memset:
copy_loop:

cmp r2 , #8 ; A
blt remaining ; B
; ...
sub r2 , r2, #8 ; C
cmp r2 , #8 ; D
subge r2 , r2, #8 ; E
bge copy_loop ; F

remaining:
add pc , pc, r2, lsl #2 ; Z
nop
strb r1 , [r3], #1
strb r1 , [r3], #1
strb r1 , [r3], #1
strb r1 , [r3], #1
strb r1 , [r3], #1
strb r1 , [r3], #1
strb r1 , [r3], #1
mov pc , lr

Figure 5. uClibc ARM implementation of memset. r2 contains
the size of the buffer. copy loop is a (partially omitted) unrolled
loop copying 8 bytes at a time, while remaining takes care of
copying the bytes left over by copy loop. Each one of the 7 strb
instructions copies a single byte; “add pc, ...” jumps to one of
them depending on how many bytes are left to copy.

OSR. In our preliminary testing of such a solution on the ls binary,
the memory consumption is reduced from 1.78GiB to 899MiB on
MIPS and from 1.19GiB to 476MiB on ARM.

Since the continuous integration system where we run our tests
is composed by servers featuring different hardware specifications,
Table 1 does not report timing results. Instead, we collected tim-
ing results on a single machine with 32GiB of RAM and an Intel
i7-6820HQ CPU, with 4 physical cores clocked at 2.7GHz. We
ran each one of the four tools 10 times against the ls binary com-
piled for MIPS, ARM and x86-64. Table 2a reports the results. As
expected, tools such as IDA Pro and BAP, which employ heuris-
tics or machine learning techniques, are notably faster compared to
REV.NG. On the other hand our prototype implementation outper-
forms angr. Note however that the detailed information we collect
can serve as a basis for more sophisticated analyses whose pur-
poses goes beyond recovering the CFG or the function boundaries.
In fact, if we compare the time taken by the IDA Pro’s Hex-Rays
Decompiler to analyze the whole binary, we get more comparable
results. In particular, the Hex-Rays decompiler took approximately
37 s to analyze ls compiled for x86-64 and 27 s for the ARM ver-
sion. Note also that the previously mentioned development branch
of REV.NG reduces the analysis time for ls from 44.57 s to 31.59 s
on x86-64, from 222.1 s to 15 s on MIPS and from 119.53 s to
50.53 s on ARM.

5.2 Case study: the buggy memset
Figure 5 shows a simplified version of the ARM memset implemen-
tation included in uClibc [5]. It is a hand-optimized implementation
that copies 8 bytes at a time (see the copy loop label), and then
copies the (at most 7) leftover bytes one by one (see the remaining
label).

We consider the recovery of the CFG of this function interesting
for several reasons. Specifically, it would be beneficial to prove that
instruction Z can only reach one of the 7 strb instructions or the
return instruction. As we will see, most of the analyses presented
in Section 3.3 have to be employed.

First of all, r2 cannot be expressed in terms of a single value. In
fact, its usage in Z can be affected by the definition in C, E or any

other definition of r2 in the callers of memset. A merge policy with
multiple reaching definitions must therefore be leveraged.

Second, to have an accurate set of definitions of r2 reaching
Z, we need to handle predicate instructions correctly. If the naı̈ve
reaching definition approach is employed, the definition in E is
propagated on both successors of F, effectively preventing the def-
inition in C from reaching Z.

Third, if the adopted merge policy is not path-sensitive, the r2
use in Z sees two constraints on the r2 definition in C: r2 < 8,
through the path CDZ, and r2 ≥ 8, through the path CDEFABZ. This
makes the definition of r2 in C unbounded in Z, preventing the anal-
ysis from proving that r2 is lower than 8 in all cases. However, us-
ing the proposed path-sensitive merge policy, the constraint r2 ≥ 8
is ignored: going backward through the CDEFABZ path, the defini-
tion in E prevents the analysis from reaching C and taking into ac-
count the constraint associated to that path. In conclusion, REV.NG
was able to correctly recover all the jump targets, unlike all the
other tools we tested.

The last reason why this memset is relevant consists in a bug it
contains and that we discovered through REV.NG. All the compar-
isons performed by this function are signed. Therefore, a malicious
user in control of the size parameter of memset (r2) can control the
program counter by simply passing a negative number. This bug
was recently fixed in uClibc-ng [4].

6. Related work
Traditional techniques used to identify function start points employ
manually crafted patterns and then use recursive disassembly to
identify the set of bytes belonging to a function body. Such tech-
niques are adopted in current tools, both commercial and research-
oriented, such as IDA Pro [8], Dyninst [9, 7], as well as in other
disassemblers [21], and angr [16, 17].

angr [16, 17] adopts an approach similar to ours, since it em-
ploys VEX, Valgrind’s IR, to perform their analysis. However,
VEX is only available for a subset of the architecture handled by
QEMU. Most importantly, the largest part of their effort for accu-
rate recovery of CFG and function boundaries relies on symbolic
execution, which hinders the scalability of the approach.

Rosenblum et al. [13] employed machine learning to address
function boundary identification, overcoming variation in the func-
tion start due to compiler-related effects such as optimization or
scheduling. Basically, they proposed to automatically generate the
set of function start patterns from a large corpus of binaries, instead
of crafting it manually.

ByteWeight [2] refines this idea, leveraging machine learning
classification to label each byte of a program as a function start or
not. It employs weighted prefix trees of function start sequences in
place of a pattern collection, followed by static analysis (recursive
disassembly combined with value set analysis [1]) to detect the re-
maining bytes of the function. Shin et al. [15] aim at improving
precision and speed of recovery over ByteWeight employing recur-
rent neural networks.

For all of the above mentioned machine learning-based ap-
proaches, the main goal is to reconstruct a set of probable start
patterns. Our technique is fundamentally different, in that it relies
on code pointers to identify function starting points. We leverage
data-flow analyses that can provide more fine-grained and precise
information about the tracked values with respect to value set anal-
ysis, as shown in [6].

7. Conclusions and future works
Recovering CFG and function information from binaries is an
important technology that enables further analyses like static bi-



nary instrumentation, security analysis, reverse engineering, or
retrofitting defense mechanisms.

We design a set of analyses that statically recover the CFG and
the function boundaries of a binary with high accuracy, without re-
lying on ISA-specific heuristics. While heuristics can be very effec-
tive (as shown by IDA Pro), they are not portable to other architec-
tures and require vast manual effort. Developing ISA-independent
analyses simplifies (or even removes) any porting efforts while re-
taining overall comparable results. Such approaches meet the sweet
spot between black box analysis employing machine learning and
hard-coding ISA-specific heuristics.

In the future, we plan to (i) automatically detect the calling
convention employed by individual functions (i.e., which registers
are clobbered and which ones are preserved) and (ii) infer the stack
frame layout (i.e., location and usage of local variables, register
spill areas, and function parameters). This will allow us to further
increase the accuracy and leverage our tool for additional analyses.

Acknowledgements
We thank the anonymous reviewers for their constructive feedback
on this work. The work was supported, in part, by the National
Science Foundation under grants number CNS-1513783 and CNS-
1657711. REV.NG is available as Free Software at https://rev.
ng/.

References
[1] Gogul Balakrishnan and Thomas Reps. Compiler Construction: 13th

Int. Conf., CC 2004, chapter Analyzing Memory Accesses in x86 Exe-
cutables, pages 5–23. Springer Berlin Heidelberg, Berlin, Heidelberg,
2004.

[2] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and
David Brumley. BYTEWEIGHT: Learning to Recognize Functions
in Binary Code. In Proceedings of the 23rd USENIX Conference on
Security Symposium, SEC’14, pages 845–860, Berkeley, CA, USA,
2014. USENIX Association.

[3] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J.
Schwartz. BAP: A Binary Analysis Platform. In Proceedings of
the 23rd International Conference on Computer Aided Verification,
CAV’11, pages 463–469, Berlin, Heidelberg, 2011. Springer-Verlag.

[4] Lucian Cojocar. Commit fixing the memset bug in uClibc-ng, 2016.
http://bit.ly/2cx2Lp2.

[5] Erik Andersen. uClibc, 2012. https://www.uclibc.org/.

[6] Alessandro Di Federico and Giovanni Agosta. A jump-target iden-
tification method for multi-architecture static binary translation. In
Proceedings of the 2016 International Conference on Compilers, Ar-
chitecture and Synthesis for Embedded Systems (to appear), CASES
’16, Piscataway, NJ, USA, Oct 2016. IEEE Press.

[7] Laune C. Harris and Barton P. Miller. Practical analysis of stripped bi-
nary code. SIGARCH Comput. Archit. News, 33(5):63–68, December
2005.

[8] Hex-Rays. IDA Pro. http://bit.ly/1gybdzm, retrieved Feb. 2016.

[9] Xiaozhu Meng and Barton P. Miller. Binary Code is Not Easy. In
Proceedings of the 25th International Symposium on Software Testing

and Analysis, ISSTA 2016, pages 24–35, New York, NY, USA, 2016.
ACM.

[10] Mathias Payer, Antonio Barresi, and Thomas R. Gross. Fine-Grained
Control-Flow Integrity Through Binary Hardening. In Detection of
Intrusions and Malware, and Vulnerability Assessment - 12th Interna-
tional Conference, DIMVA 2015, Milan, Italy, July 9-10, 2015, Pro-
ceedings, 2015.

[11] Rich Felker. musl. https://www.musl-libc.org/, 2016.

[12] RISC-V Foundation. riscv-qemu, 2016. https://riscv.org/
software-tools/riscv-qemu/.

[13] Nathan Rosenblum, Xiaojin Zhu, Barton Miller, and Karen Hunt.
Learning to analyze binary computer code. In Proceedings of the 23rd
National Conference on Artificial Intelligence - Volume 2, AAAI’08,
pages 798–804. AAAI Press, 2008.

[14] Bor-Yeh Shen, Jiunn-Yeu Chen, Wei-Chung Hsu, and Wuu Yang.
LLBT: An LLVM-based Static Binary Translator. In Proc. of the 2012
Int. Conf. on Compilers, Architectures and Synthesis for Embedded
Systems, CASES ’12, pages 51–60, New York, NY, USA, 2012. ACM.

[15] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. Recognizing
functions in binaries with neural networks. In Proceedings of the 24th
USENIX Conference on Security Symposium, SEC’15, pages 611–
626, Berkeley, CA, USA, 2015. USENIX Association.

[16] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. Firmalice-Automatic Detection of
Authentication Bypass Vulnerabilities in Binary Firmware. In NDSS,
2015.

[17] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. SoK: (State of)
The Art of War: Offensive Techniques in Binary Analysis. In IEEE
Symposium on Security and Privacy, 2016.

[18] Trail of Bits, Inc. MC-Semantics. http://bit.ly/2geNQEJ, 2016.

[19] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Li-
onel Sambuc, Asia Slowinska, Herbert Bos, and Cristiano Giuffrida.
PathArmor: Practical ROP protection using context-sensitive CFI. In
ACM CCS, 2015.

[20] Victor van der Veen, Enes Goktas, Moritz Contag, Andre Pawlowski,
Xi Chen, Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athana-
sopoulos, and Cristiano Giuffrida. A Tough Call: Mitigating Ad-
vanced Code-Reuse Attacks At The Binary Level. In Proceedings
of the 37th IEEE Symposium on Security and Privacy (Oakland), San
Jose, CA, USA, May 2016. IEEE.

[21] Giovanni Vigna. Static Disassembly and Code Analysis, pages 19–41.
Springer US, Boston, MA, 2007.

[22] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres,
Stephen McCamant, Dawn Song, and Wei Zou. Practical Control
Flow Integrity & Randomization for Binary Executables. In IEEE
Security and Privacy, 2013.

[23] Mingwei Zhang and R. Sekar. Control Flow Integrity for COTS Bi-
naries. In Proceedings of the 22Nd USENIX Conference on Security,
SEC’13, pages 337–352, Berkeley, CA, USA, 2013. USENIX Asso-
ciation.

https://rev.ng/
https://rev.ng/
http://bit.ly/2cx2Lp2
https://www.uclibc.org/
http://bit.ly/1gybdzm
https://www.musl-libc.org/
https://riscv.org/software-tools/riscv-qemu/
https://riscv.org/software-tools/riscv-qemu/
http://bit.ly/2geNQEJ

	Introduction
	Challenges for binary analysis
	Challenges in CFG recovery
	Challenges in the recovery of function boundaries

	First steps: binary lifting and a basic CFG
	An ISA-independent binary analysis framework
	From binary code to LLVM IR
	Basic control-flow graph recovery

	rev.ng Design
	Handling of reaching definitions
	Function boundaries recovery

	Experimental results
	Accuracy of the recovered function boundaries
	Case study: the buggy memset

	Related work
	Conclusions and future works

