
VTrust: Regaining Trust on Virtual Calls

Chao Zhang
UC Berkeley

chaoz@berkeley.edu

Scott A. Carr
Purdue University

carr27@purdue.edu

Tongxin Li
Peking University

litongxin@pku.edu.cn

Yu Ding
Peking University

dingelish@pku.edu.cn

Chengyu Song
Georgia Institute of Technology

csong84@gatech.edu

Mathias Payer
Purdue University

mathias.payer@nebelwelt.net

Dawn Song
UC Berkeley

dawnsong@cs.berkeley.edu

Abstract—Virtual function calls are one of the most popu-
lar control-flow hijack attack targets. Compilers use a virtual
function pointer table, called a VTable, to dynamically dispatch
virtual function calls. These VTables are read-only, but pointers to
them are not. VTable pointers reside in objects that are writable,
allowing attackers to overwrite them. As a result, attackers can
divert the control-flow of virtual function calls and launch VTable
hijacking attacks. Researchers have proposed several solutions to
protect virtual calls. However, they either incur high performance
overhead or fail to defeat some VTable hijacking attacks.

In this paper, we propose a lightweight defense solution,
VTrust, to protect all virtual function calls from VTable hijack-
ing attacks. It consists of two independent layers of defenses:
virtual function type enforcement and VTable pointer sanitization.
Combined with modern compilers’ default configuration, i.e.,
placing VTables in read-only memory, VTrust can defeat all
VTable hijacking attacks and supports modularity, allowing us
to harden applications module by module. We have implemented
a prototype on the LLVM compiler framework. Our experiments
show that this solution only introduces a low performance
overhead, and it defeats real world VTable hijacking attacks.

I. INTRODUCTION

Control-flow hijacking is the dominant attack vector to gain
code execution on current systems. Attackers utilize memory
safety vulnerabilities in a program and its libraries to tamper
with existing data or prepare their own data structures in
a target process’ memory. When used by the program, the
tampered data will redirect benign control-flow to attacker
controlled locations. Attackers usually continue by reusing
existing code sequences, e.g., Return Oriented Programming
(ROP [1]–[3]) or Jump Oriented Programming (JOP [4]),
to gain full code execution capabilities on the victim sys-
tem, despite existing defenses like Data Execution Prevention
(DEP [5]), Address Space Layout Randomization (ASLR [6]),
or stack canaries [7].

Many defense mechanisms have been proposed to pro-
tect programs against control-flow hijacking attacks, including
memory safety solutions [8]–[10] and Control-Flow Integrity
(CFI) solutions [11]–[23]. Memory safety solutions stop mem-
ory corruption and provide a strong security guarantee, but

with a high performance overhead (often larger than 30%).
Recent work has shown CFI is a practical approach. Re-
searchers have created implementations of CFI that were incor-
porated into GCC and LLVM [23]. The most recent operating
system Windows 10 has deployed a coarse-grained CFI by
default [24]. CFI solutions typically either provide a coarse-
grained protection, or incur a high performance overhead.

A control-flow hijack attack usually targets return instruc-
tions, indirect jumps and indirect calls1 to control the program
counter. . Out of these three, indirect calls, which are frequently
used for virtual calls in programs written in C++, are receiving
increasing attention from attackers. For example, over 80% of
attacks against Chrome utilize use-after-free vulnerabilities and
virtual function calls [25], whereas about 91.8% of indirect
calls are virtual calls [23]. More than 50% of known attacks
targeting Windows 7 exploit use-after-free vulnerabilities and
virtual calls [26].

Modern compilers use a table (called VTable), consisting of
virtual function pointers, to dynamically dispatch virtual calls.
Attackers may tamper with these VTables, or pointers to them,
and launch VTable hijacking attacks [27], including VTable
corruption attacks that corrupt writable VTables, VTable injec-
tion and VTable reuse attacks that overwrite VTable pointers
with references to fake or existing VTables (or even plain
data). Modern compilers place VTables in read-only sections,
defeating VTable corruption attacks by default. But VTable
injection attacks are still one of the most popular attacks, and
VTable reuse attacks are also practical and hard to defeat [28].

Researchers have proposed several defenses against VTable
hijacking attacks. SafeDispatch [29] resolves the set of legit-
imate virtual functions (or VTables) for each virtual function
call site at compile time, and validates the runtime virtual
function pointer (or VTable) against this legitimate set. It
requires an exact class hierarchy analysis, and involves a heavy
runtime lookup operation. Moreover, it requires recompilation
of all modules when a new module is added to the application
or the inheritance hierarchy changes. FCFI (aka VTV [23])
also validates the runtime VTable against a legitimate set. It
supports incremental compilation by updating class hierarchy
information at runtime, but also incurs high performance over-
head, especially when the class inheritance graph is complex.
VTint [27] uses binary rewriting to protect the integrity of
VTables, and blocks corrupted or injected VTables from being
used, but fails to protect against VTable reuse attacks. The
research paper COOP [28] shows that VTable reuse attacks
are practical and even Turing-complete in real applications.

1 In rare cases, attackers may hijack the program via other instructions,
e.g., iret. Such attacks are uncommon in the real world.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23164

(a) Single layer of defense for applications
 without dynamically generated code

VTab
le

In
teg

rit
y E

nfor
cem

en
t

Virt
ual

Func T
yp

e E
nfor

cem
en

t

Target Applications

(without
dynamically-

generated
code)

VTable Reuse

VTable Injection

VTable CorruptionVTable
Hijacking

layer 1layer 0

VTab
le

In
teg

rit
y E

nfor
cem

en
t

Virt
ual

Func T
yp

e E
nfor

cem
en

t

VTab
le

Poin
ter

 San
itiz

ati
on Target Applications

(with
dynamically-

generated
code)

VTable Reuse

VTable Injection

VTable CorruptionVTable
Hijacking

(b) Two layers of defense for applications
 with dynamically generated code

layer 1 layer 2layer 0

Fig. 1. Illustration of VTrust’s overall defense. The layer 0 defense (i.e., placing VTables in read-only sections to protect their integrity) is
deployed by modern compilers by default, and thus provides an extra layer of defense for free. The layer 1 defense enforces virtual functions’
type at runtime. It defeats all VTable reuse attacks, and also defeats VTable injection attacks if there are no writable code sections. The layer
2 defense enforces the validity of VTable pointers. It defeats VTable injection attacks even if there are writable code sections.

In this paper, we propose a lightweight solution VTrust
to protect virtual calls from all VTable hijacking attacks. It
first validates the validity of virtual function pointers, and
then optionally validates the validity of VTables. As shown
in Figure 1, it consists of two layers of defense: (1) virtual
function type enforcement and an optional layer (2) VTable
pointer sanitization. In the first layer, we instrument virtual
calls with an additional check to match the runtime target
function’s type with the one expected in the source code.
Each virtual function call site is enforced to invoke virtual
functions with the same name and argument type list, and
a compatible class relationship. Ideally, this layer is able to
defeat all VTable hijacking attacks, if we can check virtual
functions’ type at runtime, e.g., by utilizing RTTI (RunTime
Type Information). However, this would cause a very high
performance overhead [30].

Our solution encodes the virtual functions’ type infor-
mation into hash signatures, and matches the signatures at
runtime. It provides a fine-grained protection against VTable
hijacking attacks. Essentially, it is a C++-aware fine-grained
CFI policy. As far as we know, all existing signature-based
CFI solutions do not utilize the name of virtual functions and
its associated class information to protect virtual calls, causing
a loss of precision. On the other hand, taking function name
and class information into consideration is not a trivial task.
We are the first to present such a C++-aware precise signature-
based CFI implementation for virtual calls.

Unlike other CFI solutions [11], VTrust supports separate
compilation. The signatures can be computed within each mod-
ule, without any dependency on external modules, allowing
us to harden applications module by module. It introduces a
very low performance overhead, e.g., 0.31% for Firefox and
0.72% for SPEC2006. It is able to defeat all VTable reuse
attacks, including the COOP attack [28]. It is also able to
defeat all VTable injection attacks, if target applications do
not have writable code (e.g., dynamically generated code).
Given that modern systems are protected by DEP, attackers
cannot overwrite read-only code to forge virtual functions with
correct signatures. Thus this layer of defense is practical and
useful in the real world, because (1) most applications do not
have writable code, and (2) forging signatures in writable code
is hard due to defenses like ASLR and JIT spraying [31]
mitigations. We strongly recommend deploying this defense
in practice.

For applications with writable code, attackers may launch
VTable injection attacks, as shown in Figure 1(b). Traditional
signature-based CFI solutions fail to defeat this type of attacks.
We provide an extra optional layer of defense, to defeat VTable
injection attacks that are launched by forging virtual functions
with signatures in writable code memory. In this layer, we
ensure that each VTable pointer points to a valid VTable
at runtime by sanitizing the writable and untrusted VTable
pointers. More specifically, we encode legitimate VTable point-
ers when initializing objects and decode them before virtual
function calls. In this way, it blocks illegal (forged) virtual
functions from being used, by blocking illegal VTables from
being used. Even if attackers can forge virtual functions with
correct signatures to bypass the first layer of defense, they
cannot call them because VTables are all sanitized.

Since this layer of defense changes the representation of
VTable pointers, it ensures we can protect all uses of VTable
pointers, e.g., RTTI lookup or virtual base objects indexing,
or corner cases like custom virtual calls written in assembly.
Traditional solutions, e.g., SafeDispatch [29] and FCFI [23],
only cover regular virtual call instructions and are unable
to identify these attack surfaces or protect them from being
exploited.

We implemented a prototype on the LLVM compiler
framework and tested the prototype on the SPEC CPU2006
benchmark [32], and the browser Firefox. The first layer and
the second layer of defense introduce an overhead of about
0.31% and 1.80% respectively for Firefox, and an overhead
of about 0.72% and 1.40% respectively for SPEC CPU2006.
We also evaluated VTrust against several real world exploits
targeting browsers, as well as exploits targeting some real
world CTF (Capture The Flag) challenge programs. It showed
VTrust is able to defeat them all.

In summary, our VTrust defense solution has the following
key advantages:

• This solution is effective. It provides a fine-grained
protection for virtual calls and defeats all different
VTable hijacking attacks. Case-studies show that it
defeats real world exploits.

• The defense is efficient. For applications without
dynamic generated code, it introduces about 0.72%
performance overhead. For other applications, it in-
troduces an overhead of 2.2%.

2

code section (before hardening)heap/stack read-only data section
(default layer 0)

Sub::vf1

...

Sub::vfN

VTable for Sub::Base1

 foo:
 ; read vtptr from Base1 object.
 ; ECX points to the runtime object,
 ; it may be an object of class Sub.
 mov eax, [ecx]

 ; get vf4() from vtable
 mov edx, [eax+0x0C]

 ; call Base1::vf4()
 call edx

vtptr

data_fields

...

object of class Sub

vtptr

data_fields

...

Sub::vg1

...

Sub::vgM

VTable for Sub::Base2

C++ source code

class Base1{
 virtual void vf1(); ... virtual void vfN();
}

class Base2{
 virtual void vg1(); ... virtual void vgM();
}

class Sub: public Base1, public Base2{
 virtual void vf1(); ... virtual void vfN();
 virtual void vg1(); ... virtual void vgM();
}

void foo(Base1* obj){
 obj->vf4();
}

int main(){
 Base1* obj = new Sub();
 foo(obj);
}

code section (after hardening with VTrust)

 foo:
 ; read vtptr from Base1 object.
 ; ECX points to the runtime object,
 ; it may be an object of class Sub.
 mov eax, [ecx]

 ; VTable pointer sanitization (layer 2)
 validate_vtptr(eax)

 ; get vf4() from vtable
 mov edx, [eax+0x0C]

 ; Function type enforcement (layer 1)
 match_type(edx)

 ; call Base1::vf4()
 call edx

vtptr

data_fields

...

object of class Base1 Base1::vf1

...

Base1::vfN

VTable for Base1

(a) (b) (c) (d) (e)

Fig. 2. Illustration of a virtual function call Base1::vf4(), including the source code (a), the runtime memory layout (b and c) and the
executable code (d), as well as the executable code after deploying VTrust’s defense (e). The layer 2 defense is only necessary for applications
with writable code sections. The layer 1 defense is sufficient for most applications.

• It has modularity support, allowing us to harden appli-
cations module by module. Whenever a new module
is added, or the class inheritance tree grows, we do
not need to recompile other modules.

• Its program analysis process is lightweight and fast.
Unlike other solutions, VTrust does not require the
whole class inheritance graph of the applications.

The remainder of this paper is organized as follows: we
describe the threat model in Section II. The design and
implementation of our multi-layer defense solution is described
in Section III and Section IV. We evaluate the performance and
security of VTrust in Section V, compare our approach with
related work in Section VI, and conclude in Section VII.

II. THREAT MODEL

We assume a powerful yet realistic attacker model. Our
model gives the attacker full control over all writable memory
and allows arbitrary reads from any readable memory. While
being conservative, this assumption is realistic as an attacker
may use a vulnerability repeatedly, e.g., spawning threads to
attack other threads.

A. Defense Mechanisms

We assume that protections against code injection and code
corruption are in place (e.g., through DEP/NX bits for non-
executable regions). All current operating systems make use
of DEP. We also assume that attackers cannot remap memory
regions (e.g., setting a VTable region writable, or setting a data
region executable) to bypass DEP.

Our defense mechanism protects virtual calls only, we
therefore assume auxiliary protections for return instructions,
indirect jump instructions and any other indirect call instruc-
tions are deployed in the application. For example, we assume
that the compiler uses fixed base addresses and bound checks
when compiling jump tables (e.g., for switch statements). In
other words, we assume indirect control transfers except virtual
function calls are all well-protected. Attackers cannot hijack
the control flow until they reach the virtual function calls. In
addition, non-control-data attacks [33], [34] that may lead to
control-flow hijacking are out of the scope of this paper.

B. Attack Surface

As specified in the C++ ABI [35], all virtual functions
are dispatched through VTables. As shown in Figure 2(d),
a virtual function is dispatched in three steps: (i) read the
VTable pointer from the object, (ii) dereference the VTable
pointer (plus the target function’s index) to get the target virtual
function pointer, and (iii) invoke the target virtual function by
indirectly calling the function pointer. The latter two steps may
be encoded in one instruction, e.g., call [eax+0x0C].

The VTable mechanism enables virtual function dispatch,
access to the base class object, and runtime type information
(RTTI). However, it also introduces an attack surface. Objects
are usually allocated at runtime and stored in writable memory
(e.g., on the heap or stack), so the VTable pointers are
untrusted and may be overwritten by attackers. As a result,
the target virtual functions read from VTables are untrusted
and may be hijacked.

Any successful attack against virtual function calls must
either (i) corrupt a VTable or (ii) a VTable pointer, to change
the target virtual function pointer. VTable corruption attacks
modify VTables directly, overwriting function pointers in VTa-
bles with attacker-controlled values. For this attack vector the
adversary directly controls the target of the virtual function
call. Modern compilers place VTables in read-only sections,
defeating this kind of attacks by default. The alternate form of
attack corrupts the VTable pointer, forcing the program to load
the VTable from an alternate location. For this attack vector,
the attackers indirectly control the target virtual function calls.

There are two flavors of the latter attack: VTable injection
attacks and VTable reuse attacks, depending on where the
overwritten VTable pointers point to. In VTable injection
attacks, the adversary injects a surrogate virtual table that is
populated with attacker-controlled virtual function pointers. In
VTable reuse attacks, the attacker reuses existing VTables out
of context (e.g., using a different class’ VTable or using an
offset to a VTable), or even reuses existing data as VTables.

In practice, VTable injection attacks are the most frequently
used VTable hijacking attack vector. Attackers can craft ar-
bitrary VTables containing invalid virtual function pointers

3

pointing to code gadgets (e.g., ROP gadgets) or dynamically
generated code sequences (e.g., JIT spraying). Combined with
ROP, VTable injection is very easy to launch and reliable.

In VTable reuse attacks, attackers reuse existing VTables
or data that looks like VTables (i.e., an array of function
pointers). The attacker redirects a virtual call of a class A
through attacker-chosen VTables to any function of any class
B or any other existing code in memory as long as there is
a pointer pointing to that code. This attack is a form of call-
oriented programming (through virtual call gadgets).

VTable reuse attacks can bypass defenses like VTint [27].
As shown in one recent CTF (Capture The Flag) event [36], a
defense similar to VTint is deployed on one challenge binary,
and many teams have successfully bypassed this defense by
launching VTable reuse attacks.

Researchers also proved VTable reuse attacks are realistic.
The COOP (Counterfeit Object-oriented Programming) attack
proposed by Schuster et.al. [28] introduces a specific type of
VTable reuse attack. By stitching several virtual functions,
attackers may execute arbitrary code. COOP shows that this
attack is (i) practical in real applications (e.g., Firefox), and
(ii) Turing complete for realistic conditions.

This attack surface is even larger in applications that
have writable code (e.g., dynamic generated code). In these
applications, even if there are no legitimate VTables or virtual
functions in dynamic code memory, attackers may forge them
in the dynamic code memory and launch VTable injection and
VTable reuse attacks.

Moreover, VTable pointers are not only used in virtual
calls. Attackers can overwrite VTable pointers to hijack the
RTTI lookup or virtual base object indexing operations. Unlike
existing defenses, VTrust protects these other uses from attacks
too.

III. VTRUST DESIGN

In this section, we will describe the design of VTrust. We
start with an overview of the defense solution, then explain
the design of each defense layer.

A. Overview of VTrust

VTrust uses two layers of defenses to protect the integrity
of virtual function calls in-depth, as shown in Figure 1 and 2.

a) virtual function type enforcement: VTrust ensures
that the actual runtime type of a virtual function call matches
the static type declared in the source code. In this way,
attackers cannot divert virtual calls to invalid functions or
code. For a particular virtual call site, only functions with the
correct type can be invoked, and thus VTable reuse attacks
(including the COOP attack) are infeasible. It also stops all
VTable injection attacks, if attackers cannot forge functions.

b) VTable pointer sanitization: VTrust sanitizes VTable
pointers at runtime to enforce VTables’ validity. So, even if
attackers can tamper with the VTable pointers, they can only
make them point to the beginning of existing VTables. It thus
defeats VTable injection attacks. It also stops most VTable
reuse attacks, since attackers can only reuse existing VTables,
not part of them or plain data.

The combination of these two layers of defense can protect
applications from all VTable hijacking attacks. For applica-
tions without dynamically generated code, code pages will
not be writable. This stops the attacker from creating her
own VTables and functions with forged signatures. In this
configuration, VTrust’s first layer of defense, virtual function
type enforcement, is sufficient to protect against all VTable
hijacking attacks.

B. Virtual Function Type Enforcement

As a first layer of defense, we enforce that the runtime
target virtual function matches the type expected in the source
code. According to the C++ specification, the derived class
will override the parent class’ virtual function if and only if
it defines a function with the same name, parameter type list
(but not the return type), constant and volatile qualifiers, and
same reference qualifiers. Moreover, for each particular virtual
function call site, the object has a statically declared type (i.e.,
class), and only virtual functions defined in this class or its
sub-classes can be invoked.

VTrust provides a precise protection for virtual calls. It
enforces that each virtual call site’s static type to matches
the invoked virtual function’s dynamic type. For the types to
match, all of the criteria from the C++ specification’s virtual
function override requirement must match in addition to the
function’s class information. Otherwise, the control-flow will
be blocked.

More concretely, for a particular virtual function call site,
all legitimate runtime target virtual functions meet the follow-
ing requirements:

• The function name must be the same, except for virtual
destructor functions and virtual calls that use class
member function pointers. The destructor functions
always have the same name as the class name (except
the leading character ∼). The class member function
pointer may be bound to virtual functions with differ-
ent names.

• The argument type list must be identical, except for
the hidden argument this pointer that references the
runtime object on which the virtual function works;

• The qualifiers must be identical, including the con-
stant, volatile, and reference qualifiers.

• The class relationship must be compatible. The run-
time virtual function must belong to a derived class
of the static class declared on the virtual function call
site. For example, for a virtual call site that expects a
virtual function from a specific static class Foo, only
virtual functions belonging to classes derived from
Foo can be invoked at runtime.

Omitting any requirements here would expose more attack
surface. For example, if we only consider the class information,
then attackers may launch attacks (e.g., COOP) to make
VTable pointers pointing to the middle of legitimate VTables,
to invoke any virtual function of any compatible class.

On the other hand, any virtual function that meets these
requirements can be legally invoked at a particular virtual call

4

sites, per the C++ specification. So we cannot further reduce
the set of legitimate transfer targets, without breaking the
program’s functionality. In other words, this layer of defense
provides the most fine-grained protection for virtual calls.

This layer also provides a strong protection against VTable
hijacking attacks. It prevents the attacker from invoking any
virtual function whose type does not match the call site type.
Even if attackers can control VTable pointers and make them
point to existing VTables or data (i.e., VTable reuse attacks)
or even to attacker-controlled VTables (i.e., VTable injection
attacks), they cannot invoke arbitrary virtual functions. Instead,
they have to either (1) reuse existing virtual functions with
correct type, or (2) find someway of forging the virtual function
and the type. However, the first bypass is not exploitable, since
it is legitimate control flow. The second bypass does not work,
if target programs do not have writable code.

In the following, we will discuss some design choices, as
well as the advantages and limitations of this solution.

1) Fast Runtime Matching: It would be slow to validate
the type (including name, argument type list and so on)
byte by byte at runtime, especially for validating whether a
class is derived from another class. To facilitate the runtime
type check, we encode the virtual function’s type information
into a word-sized signature. A simple comparison between
the expected signature (a constant) and the runtime target
function’s signature (a memory value) is sufficient to validate
the function’s type.

More specifically, the signatures are statically computed (i)
per virtual function based on the function’s prototype and (ii)
at the call sites based on the available call-site information. For
each virtual function, we will place the signature together with
its code. For each virtual function call site, we will instrument
a security check, to match the target function’s signature with
the one expected on this call site. As the signature generation
happens at compile time, VTrust can statically ensure that there
are no collisions with other functions.

This signature-based type check provides a good runtime
performance, better than existing solutions including SafeDis-
patch [29], FCFI [23] and RockJIT [37]. In general, they have
to check whether the runtime VTable or function is in a pre-
computed set. As a result, they need to do a slow lookup
operation for each virtual call site.

2) Complex Inheritance Support: When generating the
signature for a virtual function, we need to decide its owner
class. A virtual function definition may be shared between
several classes inherited from a same ancestor. But we can
only place one signature with the function. So we choose the
top-most primary ancestor that defines this virtual function’s
interface as the owner class.

Assuming a virtual call site expects a virtual function
Foo::func(), and the virtual function func() is first
defined in class Bar among Foo’s all ancestors, then this
virtual call site will use Bar as the owner class to compute
the expected signature. For the function Foo::func(), it
also will use Bar as the owner class to compute its signature.

3) Modularity Support.: To compute the signatures, we
only need the ancestor information for the target class. As

a result, we can generate signatures for virtual call sites and
virtual functions when compiling one single module. We can
simply analyze one module at a time, and extract the virtual
function’s type and compute signatures based on the type. This
process is simple and fast. Moreover, it has natural modularity
support, allowing us to compile target applications module
by module. When the class inheritance changes or a new
module is added, the default incremental compilation model
is sufficient to update everything.

On the other hand, solutions like SafeDispatch and FCFI
all need the descendant classes information for each class to
perform the checks. It thus requires a whole-program analysis,
either by compile-time analysis or runtime merging, to get
the knowledge of the complete class hierarchy. As a result,
our solution has a better compile-time analysis speed and
modularity support.

4) Dynamic Loading Support: Our defense supports dy-
namic loading. Whether or not a new library is loaded, each
virtual function’s signature and each virtual call site’s expected
signature will not change. In other words, even if the class
inheritance graph may change, our solution remains effective
without the need to update any runtime information.

Solutions like FCFI (aka VTV) have to load runtime
information to update the class inheritance hierarchy, when
loading a new module. However, this process can be done
with initializer functions themselves, without modifying the
dynamic loader.

5) Limitations: Similar to traditional signature-based CFI
solutions, this layer of defense is also vulnerable if attackers
can forge code with correct signatures, i.e., the target appli-
cation has writable code. Our solution VTrust can defeat this
kind of attack, by deploying an extra layer of defense: VTable
pointer sanitization.

Moreover, the way we determine a virtual function’s owner
class also leaves some attack surface. For example, suppose (1)
class Grand is Parent’s primary base class, (2) Parent is
Child’s primary base class, and (3) the virtual function func
is first defined in Grand, then for a virtual call site which re-
quires Child::func, the virtual functions Grand::func
and Parent::func are also allowed, since they share a
same top-most primary base class Grand. In practice, this
should leave only a small attack surface, as all these vir-
tual functions (e.g., Grand::func, Parent::func and
Child::func) by design should perform a similar action
(i.e., generating similar output and side-effects for the same
input) but only in different ways. FCFI also has a similar attack
surface [38].

Furthermore, similar to SafeDispatch and FCFI, our solu-
tion also faces a compatibility issue when an external unhard-
ened library is loaded into the process (e.g., by invoking the
system call dlopen). For unhardened libraries, there are no
signatures associated with its virtual functions, and the security
checks we added to the current application will fail if the
external virtual function is used. We also deploy a fail-safe
error handler similar to the one used in FCFI. If an unhardened
library is used, we build a whitelist of target virtual functions.
When the security check fails, the error handler will go through
this whitelist, checking whether the target virtual function is
in the list. If not, a security violation alert is thrown.

5

In summary, this layer of defense defeats all VTable reuse
attacks, including the COOP attack. It can also defeat all
VTable injection attacks if target applications have no writable
code. Essentially, it is a C++-aware fine-grained CFI policy.
Comparing with other solutions for C++ programs, it is much
faster in compile-time analysis and runtime execution. It also
has natural modularity support without added complexity, as
well as a good dynamic loading support. So, we strongly
recommend deploying this layer of defense in practice.

C. VTable Pointer Sanitization

As discussed in the previous section, for applications
supporting dynamic code generation, attackers may bypass the
first layer of defense by launching VTable injection attacks and
utilizing dynamically generated code to forge virtual functions
with correct types (i.e., signatures). As a result, we introduce a
second layer of defense, to limit the source of virtual functions.
More specifically, we sanitize the VTable pointers to enforce
that they point to valid VTables, and thus only existing virtual
functions can be invoked on a particular virtual call site.

One straightforward solution is to enforce the integrity
of VTable pointers. But unlike VTables themselves, VTable
pointers cannot be set to read-only, because these pointers are
usually members of objects that are on the writable heap or
stack. In order to enforce their integrity, we have to track data-
flow at runtime, and prevent all memory write operations from
overwriting VTable pointers. Obviously, this solution results in
unacceptable performance overhead.

Instead, we enforce the validity rather than the integrity
of VTable pointers. Our solution enforces the runtime VTable
pointers to be valid, even if attackers have tampered with
them. Existing defenses all fall into this category. VTint [27]
checks whether the target VTable is read-only and T-VIP [39]
works in a similar way. They both fail to defeat some attacks
(e.g., COOP). SafeDispatch [29] and FCFI [23] check whether
the runtime VTable is in a pre-computed legitimate VTable set,
introducing high performance overhead.

We propose a novel solution to enforce VTable pointers’
validity in this paper, by encoding VTable pointers into VTable
indexes when initializing them and decoding VTable indexes
when they are accessed (e.g., for virtual calls). In this way,
even if attackers can control the VTable pointers in objects,
these pointers will first be decoded before being used in virtual
calls. As a result, only valid VTables can be used to perform
the virtual calls.

A straightforward encoding and decoding solution works
in this way: we maintain a whitelist of all legitimate VTable
pointers, encode each VTable pointer to an index of this
whitelist when assigning VTable pointer to objects, and decode
the VTable pointers (i.e., indexes) that are read from the
runtime objects to the original pointers by using the whitelist.
This solution is simple and can defeat all VTable injection
attacks. However, it does not support shared libraries. For
example, when a VTable is defined in a shared library, its
pointer can hardly be encoded to a unique index, because this
library may be used in different applications, i.e., this VTable
pointer may be recorded in several whitelists.

Instead, we use a separate whitelist (denoted as local
VTMap) for each single library, as well as a global map

lib_idx local_idx

Low High

local_map1_size

local_map1_addr

...

local_mapN_size

local_mapN_addr

vtable1_ptr

vtable2_ptr

...

vtableM_ptr

... ...

global_vtmap

One copy of global VTMap local VTMap for each library

virtual_func1

virtual_func2

...

virtual_funcK

...

VTable Pointer

VTable Index

Fig. 3. VTable pointer sanitization solution. Each VTable pointer
will be encoded to a VTable index consistinf of a lib_idx
and a local_idx. A global VTable pointer map (pointed by
global_vtmap) will be used to decode VTable indexes.

(denoted as global VTMap) to perform the VTable pointer
encoding and decoding. As shown in Figure 3, each VTable
pointer will be encoded into a VTable index (i.e., an integer
of the bit width same as the platform), consisting of two sub-
indexes of the same bit width: (1) a lib_idx that represents
the index (to the global VTMap) of the library that uses this
VTable; and (2) a local_idx that represents the index (to the
local VTMap) of the VTable inside the library. When decoding
a VTable index, we use its lower half (i.e., lib_idx) to
retrieve the local VTMap’s address from the global VTMap,
then use its upper half (i.e., local_idx) to retrieve the
VTable pointer from the local VTMap.

When compiling a single library, we can build the local
VTMap for it, and assign an index local_idx to each
VTable that is used in current library. These indexes are all
statically assigned, so that the library can be shared among
different applications without modifications. Then we can
statically compute the library’s index lib_idx, either by
(1) manually specifying or (2) automatically scanning existing
libraries indexes and computing a different one.

The global VTMap of each application must be initialized
at runtime. Whenever a library is loaded, its local VTMap’s
address will be registered in this global VTMap, at the specific
entry numbered with lib_idx. We also store the size of
the local VTMap into the global VTMap, for further bound
checks when accessing the local VTMaps. As a result, this
solution provides a good support for incremental compilation
and dynamic loading. Similar to virtual function type enforce-
ment, it may cause incompatibility issues when working with
unhardened libraries that have VTables.

This layer essentially provides a whiltelist protection.
Although attackers may overwrite the VTable pointers, the
pointers will be decoded (and therefore validity checked)
before being used in virtual calls. As a result, this defense
defeats VTable injection attacks. We emphasize that, this layer
of defense also provides partial protection against VTable reuse
attacks, even if the first layer of defense is absent. It enforces
that only legitimate VTables can be used for virtual calls. So
attackers can only reuse existing VTables, rather than any other
data or the middle of existing VTables on which the COOP
attack is based. However, in theory, attackers may still launch
some VTable reuse attacks by only reusing existing VTables.
Therefore, both defense layers are needed to prevent attacks.

6

LLVM Opt

*.cpp LLVM IR

(metadata)

Clang/
Clang++

LLVM IR

(checks)

LLVMgold.so

*.obj

LLVM CodeGen

VTLib.so

*.cpp VTable
metadata
Collector

VTLib.cpp

executable/
libraries

ld.gold

layer 1:
VFunc Type
Enforcement

(part 2)

layer 2:
VTable
Pointer

Sanitization

layer 0
double
check

layer 1:
VFunc Type
Enforcement

(part 1)

Fig. 4. Illustration of VTrust’s workflow. The first layer of defense is implemented as an compile-time optimization pass and a code generation
step. The second layer of defense is implemented as a link-time optimization pass.

a) Limitations: Our solution for selecting lib_idx
can avoid conflicts when all code is compiled on the same
machine. If code is compiled on different machines, it is not
possible to statically determine a unique lib_idx by manual
specification or by scanning for other libraries. This is an
engineering challenge we plan to address in future work.

One possible solution is to have the library loader resolve
the conflicts like it does for relocation. In fact, conflicts should
not be that common in practice, as the number of possible
values of lib_idx is much larger than the number of libraries
a typical application links against. Another solution is to use
the library name rather lib_idx to index the local VTMap,
which eliminates the conflicts but makes the runtime decoding
a little slower.

b) Alternative VTable Pointer Sanitization Solutions:
We also tested a range check solution to validate VTable
pointers. It records all legitimate VTable sections’ address
ranges, updates this information when libraries are loaded and
unloaded, and validates whether the runtime VTable falls in
any of these address ranges. However, this alternative is not
precise as the VTable encoding and decoding solution we
discussed earlier, and also has a higher performance overhead.

IV. IMPLEMENTATION

We have implemented a prototype of VTrust using the
LLVM [40] compiler suite version 3.4 for x64. Figure 4 shows
the workflow of VTrust. In general, there are four steps in our
implementation.

First, we collect VTable related information of the current
compilation unit in the compiler frontend (i.e., Clang++),
including all virtual functions, all VTable constants, all virtual
call instructions, as well as all VTable assignment and read
operations. It is worth noting that we do not need to collect
the class inheritance information during the compilation, unlike
SafeDispatch [29] and FCFI [23].

This information is kept in the form of LLVM metadata
and function attributes, and passed to the optimizer and linker.
Some optimizations may remove or replace some LLVM
instructions, e.g., the instruction combination optimization.
When instructions are removed, some LLVM metadata may be
discarded, which causes problems in our link-time analysis. In
our prototype, we keep multiple copies of metadata in different
instructions when compiling, as well as in the compilation
module. During the link-time analysis, we will perform a cross

verification to detect such metadata missing issues, and recover
the metadata automatically based on other copies.

Second, we instrument type signature checks before virtual
call instructions (i.e., the first layer of defense) when perform-
ing compile-time optimization.

Third, we utilize LLVM’s link-time optimization support
(based on the linker’s gold plugin feature) to deploy our second
layer of defense. More specifically, we encode and decode the
VTable pointers before use.

Finally, we instrument type signatures before the body of
each virtual function (for the first layer of defense) during
code generation. We also verify that all VTables are placed in
read-only sections (i.e., layer 0 defense).

We also provide a runtime library VTLib.so for some
runtime APIs used by the security checks that we instrumented.
All the hardened modules are then linked together by the gold
linker, generating the final executable or libraries.

A. Virtual Function Type Enforcement

In the first layer of defense, VTrust will enforce that each
runtime virtual function has a matching type (i.e., the name,
argument type list, qualifiers, and class information) with the
one expected on a virtual call site. To make the runtime check
more efficient, we encode the type information into a word-
sized hash value. This hash value is used as the signature
for each virtual function, and is compared before the virtual
function call site. If they do not match, a security violation is
detected and the program is terminated.

For each virtual function, we collect its type information
from the frontend, compute its signature, and embed this
signature right before the function body when generating the
native code for this function.

For each virtual function call site, we collect the expected
type and compute the expected signature. VTrust will then
instrument a security check before this virtual call to match
the function’s runtime signature against the expected one.

Computing the signature based on a type information is
easy, but collecting the type information is not. The qualifiers
and argument list type are deterministic. However, the virtual
function name and the class information are not.

• First, we cannot get a meaningful function name for
virtual destructor functions. The derived class’ virtual

7

C++ source code

typedef void (Base::*base_fptr)(void);

void test_foo(Base* obj, base_fptr fptr){
 (obj->*fptr)();
}

void main(){
 Base* obj1 = new Base();
 base_fptr fptr = &Base::foo1;
 test_foo(obj1, fptr); // virtual call #1

 Base* obj2 = new Sub();
 fptr = &Base::foo2;
 test_foo(obj2, fptr); // virtual call #2

 obj2->foo2(); // virtual call #3
}

(a)

executable code (virtual function body)

 dd signature_without_name
 dd signature1
Base::foo1:
 ...
 ret

(b)

 dd signature_without_name
 dd signature2
Base::foo2:
 ...
 ret

executable code (virtual call site)

test_foo:
 ...
 ; assume EAX is the target virtual function
 cmp [eax-8], signature_without_name
 jnz ERROR
 call eax ; virtual call #1 and #2
 ...
 ret

(c)

main:
 ...
 ; assume EAX is the target virtual function
 cmp [eax-4], signature2
 jnz ERROR
 call eax ; virtual call #3

 ret

Fig. 5. Illustration of the class member function pointer issue and solution. Here, virtual functions Base::foo1 and Base::foo2 have
a same function type but different name. We instrument an extra signature that is computed without function name before the function body.
For virtual call sites that use class member function pointers, we compare this special signature instead of the signature with function names.

destructor function will overload the parent class’
virtual destructor function, i.e., they use the same
slot in the VTables. But they have different function
names. For example, assuming Foo is derived from
Bar, then their virtual functions use a same slot in the
VTable, but with different names: ∼Foo and ∼Bar.

• Second, we cannot use the virtual function’s owner
class’ information (e.g., name) to compute the signa-
ture. For a virtual function call site, we only know a
static class. At runtime, the target virtual function may
belong to another class. These two classes are often
different and their names do not match.

• Third, we cannot get a meaningful function name for
virtual call site that uses class member function point-
ers. As shown in Figure 5, the virtual call in function
test_foo does not have a meaningful name.

For the first two issues, similar to choosing owner class for
virtual functions as discussed in section III-B2, we choose the
destructor name of the top-most primary ancestor class among
all its ancestors that defined virtual destructors.

Algorithm 1. VTable Building and Type Collection Algorithm
(Python-style pseudocode). Text in orange is the code we instru-
mented to collect type information for virtual functions.

1 addVTableMethods(TgtClass):
BaseClass = PrimaryBase(TgtClass)
recursive invocation

4 addVTableMethods(BaseClass)
all overrider virtual functions
for overrider in TgtClass:

7 updateVTableEntry(overrider)
oldFunc = get_overriden_func(overrider)
if isVirtualDestructor(overrider):

10 ancestorFuncName = get_func_name(oldFunc)
register_func_name(overrider, ancestorFuncName)

ancestorClassName = get_class_name(oldFunc)
13 register_class_name(overrider, ancestorClassName)

all new virtual functions
for newFunc in TgtClass:

16 appendVTableEntry(newFunc)
if isVirtualDestructor(newFunc):

register_func_name(newFunc, ’˜’+TgtClass)
19 register_class_name(newFunc, TgtClass)

For each virtual function in a class, there is one slot in the
per-class VTable. If a derived class overrides a virtual function,
then the overrider takes the slot at the same offset in the VTable
of the derived class. The text in black in Algorithm 1 shows the
basic VTable building algorithm used in LLVM. In general, the
primary base class initializes the VTable first, and the derived
class then updates the VTable slots with overrider functions
and extends it with new functions.

Based on this basic algorithm, for each virtual function, we
can easily retrieve the function name and class name of the
top-most primary class that defines this function. As shown in
Algorithm 1, for each overrider function, we use the overridden
function’s name and class information. It is worth noting that,
we use the information from the top-most primary class that
first defines the virtual function, not from the top-most primary
class of the static class (declared in the virtual call site). These
two may be different since an object may contain several
VTables, due to multiple inheritance.

In this way, we can compute the signature of the type
without the complete class inheritance tree. We can collect
all the information when the compiler builds the VTable. It
makes our compile-time analysis very fast. Moreover, if the
programmer extends the class inheritance tree in the future,
we do not need to recompile existing modules.

For the third issue, we instrument special security checks
for virtual call sites that use class member functions. It reads
the signature from a different offset to the function body,
which is computed without the function name information.
This signature still has the class information, as well as the
function prototype information, and thus is strong enough.

B. VTable Pointer Sanitization

In the second layer of defense, VTrust will sanitize VTable
pointers at runtime, to enforce they are valid. More specifically,
we will encode VTable pointers when they are assigned to
objects, and decode them when they are used.

1) VTable Pointer Encoding: When analyzing a module
(i.e., a library or executable since we are working on link-
time optimization), we discover all VTable pointer assignment

8

operations, including (1) assigning VTable pointers to runtime
created objects in constructor functions; (2) filling VTable
construction tables (VTT, an auxiliary data structure for com-
plex class inheritance) with VTable pointers; (3) assigning
VTable pointers to static typeinfo objects that are used
for RTTI; and (4) assigning VTable pointers to some constant
static objects. It is worth noting that, for the latter three cases,
there are no assignment instructions. Instead, the compiler will
directly put the VTable pointer at the proper location.

For each of these VTable pointer assignments, we will
replace the pointer with a (statically computed) constant index.
As discussed in Section III-C, this index consists of two parts:
an index local_idx to the local library’s VTMap, and the
index lib_idx to the global VTMap. We use the order of
each VTable pointer in the library as its local_idx, and
use the build order of each library as its lib_idx (after
scanning existing libraries and fixing conflicts). As a result,
we can compute the constant index for each VTable pointer at
link-time. After encoding, the VTable pointer of each runtime
object will be a constant integer.

We create a global VTMap array, which will at runtime
hold all loaded libraries’ local VTMaps’ addresses, in the
support library VTLib.so for each application. For each
library, we add an initialization function and a local VTMap
array. The local VTMap stores addresses of all VTables used
in the current library. The initializer function is invoked
automatically when the library is loaded, and registers the local
VTMap to the global VTMap. More specifically, it updates the
global VTMap’s lib_idx-th entry to store the size of the
local VTMap and its runtime address. This runtime update
operation temporarily maps the global VTMap as writable
when loading a library. Most applications only load libraries
during initialization, therefore the risk of being attacked during
this short time window is low.

2) VTable Pointer Decoding: After encoding the VTable
pointers, we have to decode them at runtime, when the object’s
VTable pointer is read out and used for (1) accessing virtual
function pointers for virtual calls; (2) accessing offsets of
virtual base objects; or (3) accessing RTTI information.

To decode VTable pointers, we first parse the VTable
index that is read from the runtime object into two parts:
local_idx and lib_idx. Then we use the library index
lib_idx to access the global VTMap, and get the library’s
local VTMap’s address and size.

If the lib_idx is larger than the global VTMap’s size,
or the local_idx is larger than local VTMap’s size, we
raise a security violation exception and terminate the pro-
gram. Otherwise, the local_idx is used to access the local
VTMap, to get the value of the VTable pointer. Finally, this
decoded pointer is used for virtual calls. In this way, even if
attackers can overwrite the runtime VTable pointers, e.g., by
exploiting use-after-free vulnerabilities, only VTables in the
local VTMaps can be used in virtual calls after decoding.

This solution changes the representation of VTable pointers
and will cause incompatibility issues if some libraries are not
instrumented. But it covers all VTable uses and protects them
from attacks. For example, if there are custom virtual calls
written in assembly, as shown in the evaluation, traditional
defenses may fail to protect them.

TABLE I. VIRTUAL CALL RELATED STATISTICS FOR SPEC CPU2006
BENCHMARKS WRITTEN IN C++. THE UNIT M STANDS FOR MILLIONS, AND

B STANDS FOR BILLIONS.

Runtime Profiling Static Count
#inst iCall iJump Return vtbl. vcall

444.namd 39M 1.17% 37.74% 61.08% 3 2
447.dealII 43B 1.01% 27.33% 71.66% 115 200
450.soplex 144M 3.78% 41.03% 55.19% 51 495
453.povray 29B 24.30% 2.43% 73.27% 48 112
471.omnetpp 22B 11.19% 18.63% 70.18% 127 1431
473.astar 15B 32.95% 0.07% 66.98% 2 0
483.xalanc. 36B 24.42% 7.81% 67.78% 29 4284

V. EVALUATION

We evaluate our prototype implementation on the SPEC
CPU2006 benchmarks and the open source browser Firefox,
to test our prototype’s runtime performance and security.

A. Virtual Call Statistics

First, we measure the attack surface of VTable hijacking
attacks by gathering virtual call related metrics for these
benchmarks, Our results show that a large attack surface exists
in real applications. Consequently, defenses like our solution
VTrust should be deployed as soon as possible.

1) Statistics for SPEC2006: Table I shows the total number
of runtime indirect control flow transfers for SPEC CPU2006
benchmarks that include C++ code, and the static count of
VTables and virtual calls. At runtime, there are 1% to 33%
of instructions are indirect calls. So, it is important to deploy
defenses like VTrust to harden these applications.

We also found that, the proportion of return instructions is
high for all benchmarks, calling for an efficient stack protection
mechanism (which is orthogonal to our work).

Moreover, we found that many indirect control flow trans-
fers at runtime only have a single target. In our runtime
profiling, an average of 26% indirect calls, 85% of indirect
jumps, and 44% of return instructions only have one runtime
target. Such a high number of control transfers with a single
target indicates that a localized caching strategy, e.g., devir-
tualization and inline caching [41], might be an interesting
future opportunity for optimization. This optimization not only
improves the runtime performance, but also reduces some
attack surfaces. FCFI [23] showed the devirtualization can
greatly improve the runtime performance.

2) Statistics on Firefox: Table II shows parts of the VTable-
related information in the browser Firefox. We collect these
information during compile-time optimization, and thus only
libraries or executables are evaluated. The data of all object
files are not included here. There are 39 libraries and executa-
bles in Firefox, and only 12 of them are listed in this table.

Columns 2-4 shows the VTable related information. The
second column shows the count of VTables in each library
(or executable). The library libxul.so has 15,801 VTables,
indicating that there are thousands of classes in Firefox.

The third column shows the count of VTable pointer
assignments. VTable pointers are usually assigned to runtime
created objects in the constructor functions. In each constructor

9

TABLE II. VTABLE-RELATED STATISTICS OF FIREFOX,
INCLUDING THE COUNT OF (1) VTABLES, (2) VTABLE POINTER
ASSIGNMENTS, (3) VTABLE POINTERS READ OPERATIONS, AND
(4) CALL INSTRUCTIONS, AS WELL AS THE RATIO OF INDIRECT
CALLS TO CALL INSTRUCTIONS, AND THE RATIO OF VIRTUAL

CALLS TO INDIRECT CALLS.

library/ VTable Call Instruction
executable # assign read call iCall vCall
makeconv 173 470 1831 62625 6.66% 42.85%

genrb 173 473 1831 68429 6.35% 41.10%
icuinfo 173 470 1844 66600 6.35% 42.40%

genccode 173 470 1831 61037 6.81% 42.95%
gencmn 173 470 1831 61051 6.81% 42.95%
icupkg 175 476 1845 63197 6.89% 41.36%

pkgdata 175 476 1845 64363 6.75% 41.43%
gentest 174 471 1846 66640 6.35% 42.42%

gennorm2 179 478 1837 61831 6.78% 42.73%
gendict 174 472 1831 60896 6.83% 42.94%

js 1420 1991 3626 262502 23.26% 5.87%
libxul.so 15801 26212 72874 1720021 15.21% 27.48%

function, it may assign multiple VTable pointers to the objects
due to multiple inheritance. The library libxul.so has 26,212
VTable pointer assignment operations, indicating that Firefox
has thousands of constructors. For each VTable pointer assign-
ment, the optional second layer of VTrust statically encodes
the pointer to a constant index before it is assigned to the
object.

The fourth column shows the count of VTable pointer read
operations. Before accessing VTables (e.g., for virtual calls
or RTTI), the VTable pointers will be read from the objects
first. VTrust will decode these pointers at runtime. The library
libxul.so has 72,874 VTable pointer read operations.

Most of these VTable pointer read operations are used for
virtual calls. As shown in this table, there are 71,892 virtual
calls (=1,720,021*15.21%*27.48%), close to the count of
VTable pointer read operations. The remaining three columns
in the table show the count of call instructions, the ratio of
indirect calls to call instructions, and the ratio of virtual calls
to indirect calls. It shows that about 40% of indirect calls are
virtual calls, which is very high.

From this table, we can see that there is a large attack
surface in Firefox. Attackers can find a lot of useful VTables
and virtual call sites to launch VTable hijacking attacks. As
the paper [28] discussed, it is practical to launch COOP attack
in Firefox.

B. Performance Overhead

We have evaluated the performance overhead of VTrust on
the SPEC CPU2006 benchmarks and the Firefox web browser.

1) Runtime Performance on SPEC2006: To evaluate the
performance overhead of VTrust we applied it to the SPEC
CPU2006 benchmarks that are written in C++. There are seven
C++ benchmark programs in the SPEC CPU2006 suite. We ran
the benchmarks under Ubuntu 14.04 LTS on a computer with
an Intel Core i7-3770 with eight cores @ 3.40 GHz Processor
and 16 GB RAM.

Our current prototype implementation of VTable pointer
sanitization only works with the C++11 compatible library
libcxx provided by LLVM, which has some compatibility
issues with the 471.omnetpp and 447.dealII benchmarks. All

0.00%	

1.00%	

2.00%	

3.00%	

4.00%	

5.00%	

6.00%	

xa
lan
c.	

ast
ar	

om
ne
tpp
	

so
ple
x	

de
alI
I	

na
md
	

po
vra
y	

Ge
o.M

ea
n	

TypeEnforce	

VTableSanCze	

Fig. 6. Performance overhead of VTrust on SPEC CPU2006,
when enabling only the first layer of defense (virtual function type
enforcement), or only the second layer (VTable pointer sanitization).

other benchmarks and configurations work well. The overhead
for virtual function type enforcement is very low, on average
0.72%. The worst case’s overhead is about 2.7%. The average
overhead for VTable pointer sanitization is 1.4%, and the worst
is 5.2%. The average overhead of these two layers together is
2.2%, and the worst case is 8.0%.

2) Performance on Firefox: We also measure the perfor-
mance overhead on a Firefox (version 34.0). We use six popu-
lar browser benchmarks, including Microsoft’s LiteBrite [42],
Google’s Octane [43], Mozilla’s Kraken [44], Apple’s Sun-
spider [45], RightWare’s BrowserMark [46] and Peace-
Keeper [47], to test browsers’ performance on JavaScript
execution, HTML rendering and HTML5 support.

We tested the browser using Ubuntu 14.04 on a computer
with an Intel Core i7 with 12 cores @ 3.7 GHz Processor and
16GB RAM. We tested the performance overhead of VTrust’s
first and second layer separately.

As shown in Figure 7, the first layer of defense (i.e., virtual
function type enforcement) introduces negligible performance
overhead. On average, the performance overhead is about
0.31%. In the worst case, its performance overhead is about
1.05%. The overhead is so small that in some cases it is even
negative. We attribute these fluctuations to caching effects,
code layout, or system noise.

The second layer of defense (i.e., VTable pointer sani-
tization) introduces higher performance overheads. It has a
performance overhead of about 1.81% on average. In the worst
case, it introduces a performance overhead of 3.21%.

For applications with dynamically generated code (e.g.,
Firefox), we enforce both layers of VTrust. The performance
overhead is close to the accumulation of the overheads of the
first layer and the second layer. For example, if we enable both
of these two defenses, it introduces an average performance
overhead of 2.2%, close to the sum of the standalone virtual
function type enforcement’s overhead 0.31% and the overhead
of VTable pointer sanitization 1.81%.

a) Practical Experience with Firefox: Firefox uses
some tricks to support multiple platforms, and interac-
tions between JavaScript and C++ code. It implements sev-
eral special virtual functions nsXPTCStubBase::StubNN,
where NN is a number ranging from 0 to 249, by
using inline assembly code with mangled names (e.g.,

10

-‐0.50%	

0.00%	

0.50%	

1.00%	

1.50%	

2.00%	

2.50%	

3.00%	

3.50%	

Lit
eB
rit
e	

Kra
ke
n	

Su
ns
pid
er	

Bro
ws
erm

ark
	

Oc
tan
e	

Pe
ac
eK
ee
pe
r	

Ge
o.M

ea
n.	

TypeEnforce	

VTableSaniHze	

Fig. 7. Performance overhead of VTrust on Firefox, when enabling
only the first layer of defense (virtual function type enforcement), or
only the second layer (VTable pointer sanitization).

__ZN14nsXPTCStubBase6StubNNEv). The linker auto-
matically resolves these virtual functions by name at runtime.
So, the frontend compiler (e.g., Clang/Clang++) does not
know the existence of these functions. As a result, VTrust
fails to include signatures before these functions, causing false
alarms when they are used at virtual call sites that have been
instrumented with the first layer of defense. As a workaround,
we modify the security violation handler to check whether
the target is in the set of special virtual functions (for this
application), when a security violation is detected.

Moreover, Firefox also has a special virtual call site, which
is simulated in a special function NS_InvokeByIndex. This
function will get an object and a method index as arguments,
then do a simulated virtual function call: (1) it reads the
VTable pointer from the argument object; (2) it reads the
function pointer from the VTable using the method index;
and (3) it calls the target method. This in fact is a virtual
function call site, but the compiler frontend is not aware of
it. As a result, VTrust fails to instruments checks, including
the second layer of defense, for this call site. At runtime,
encoded VTable pointers will be used here, and will then
cause compatibility issues. We can identify this kind of corner
cases, and instrument them with VTrust. It is worth noting that,
all other existing defenses, including FCFI and SafeDispatch,
fail to identify this kind of corner cases, leaving them still
vulnerable to VTable hijacking attacks.

C. Performance Comparison

Among all existing solutions that provide a strong protec-
tion against VTable hijacking attacks, FCFI [23] has the lowest
performance overhead. Other solutions, e.g., SafeDispatch,
vfGuard and RockJIT, introduce a much higher performance
overhead, which will be discussed in Table IV.

For the worst case SPEC benchmarks astar and
xalanc, FCFI introduces a performance overhead of 2.4%
and 19.2% respectively, while VTrust introduces a comparable
performance overhead of 3.7% and 7.9% respectively when
enabling both two layers of defenses. An important point is
that while the FCFI paper reports a “lower bound” of 4.7%
overhead on xalanc, this is not a valid comparison to VTrust.
FCFI’s “lower bound” configuration uses profile guided opti-
mization (PGO), devirtualization, and replaces the bodies of
the FCFI library functions with stubs. We do not consider
PGO practical for complex software or a fair technique for

benchmarks with a small number of input datasets, like the
SPEC CPU2006 benchmarks. In fact, the FCFI authors admit
Chrome cannot be built with with PGO and devirtualization.
For the browser benchmark sunspider and octane, FCFI
introduces an overhead of 1.6% and 2.6% respectively when
deployed on Chrome, while VTrust introduces an overhead of
2.8% and 1.5% respectively. So, VTrust introduces a similar
performance overhead as FCFI.

FCFI validates the runtime VTable against a legitimate
set that is updated when loading libraries are loaded. This
validation needs to (1) dynamically update the legitimate set
for each virtual call when a library is loaded, (2) resolve the
split-set problem when a VTable set is created, and (3) perform
a slow set lookup operation to validate the runtime VTable.
Since the library loading usually finished before benchmark
testing, and thus its overhead is not easy to evaluate. Moreover,
when the legitimate set’s size is large, which is the common
case for classes with many derived classes, it will take a longer
time to do the runtime lookup.

Our solution VTrust has a negligible overhead of library
loading. It only validates the signatures of target functions,
and decodes the VTable pointers before they are used. It costs
a constant time for each virtual call, and is faster than FCFI
in general. More important, for applications without dynamic
code, VTrust only validates the signatures of target functions,
which is much faster. So, in general, VTrust is faster than
existing solutions.

D. Memory Overhead

We evaluated the memory overhead on Firefox in two sce-
narios: after a cold start and after running a sample benchmark.

After a cold start, the original Firefox uses about 130MB
memory (resident set size, RSS). The hardened version Firefox
uses about 133MB memory. The absolute memory overhead is
about 4MB, and the relative memory overhead is about 3.1%.

Most of the memory overheads are from (1) the instru-
mented security checks including the type enforcement checks
and VTable pointer decoding instructions, (2) the instrumented
local VTMaps and the global VTMap that are used for VTable
pointer encoding and decoding, (3) the instrumented signatures
before each virtual function’s body, and (4) the runtime sup-
porting library VTLib.so, introduced by VTrust.

For example, there are 71892 virtual calls in the library
libxul.so, and each virtual call costs about 40 bytes for the
security checks. As a result, the security checks in this library
takes about 2.9MB. Moreover, there are 15801 VTables in this
library, taking about 128KB memory.

After running Firefox for a while, e.g., after testing the
Kraken benchmark, the original Firefox uses about 299MB
memory. The hardened Firefox uses about 303MB memory.
The absolute memory overhead is still 4MB, close to the mem-
ory overhead in the cold start scenery. The relative memory
overhead drops to 1.3%. Our solution VTrust does not use
runtime allocated memory, so its absolute memory overhead
stays constant.

11

TABLE III. PUBLIC VTABLE HIJACKING EXPLOITS AGAINST FIREFOX.

CVE-ID Exploit Type Vul App Protected
CVE-2013-1690 VTable injection FF 21 YES
CVE-2013-0753 VTable injection FF 17 YES
CVE-2011-0065 VTable injection FF 3 YES

E. Case Studies

1) Real World VTable Injection Attacks: To evaluate the
effectiveness of VTrust, we choose three public real world
vtable hijacking exploits. These exploits are publicly available
and all target the popular browser FireFox by exploiting use-
after-free vulnerabilities. They all inject fake vtables and hijack
the control flow. This is the most common VTable hijacking
attack seen in practice. Table III shows details for these
exploits, including the CVE-ID, target Firefox version, and
the type of the exploits.

Experiments are carried out in a virtual machine running
Ubuntu 14.04. For each exploit, we download the vulnerable
Firefox’s source code and compile it with VTrust. After
hardening Firefox, we drive the browsers to access malicious
URLs containing exploits. Results show that all the exploits we
collected are blocked. Therefore, VTrust successfully protects
applications from VTable injection attacks.

2) Real World VTable Reuse Attacks: Since it is much eas-
ier to launch VTable injection attacks than VTable reuse attacks
and no defenses against these attacks have been deployed, there
are few VTable reuse attacks in real world. We found only
one such case, besides the COOP attack published recently. In
a recent Capture The Flag event [36], there is one challenge
program (i.e., zhongguancun) that deploys a similar defense
as VTint [27]. It checks if the runtime VTable is writable. If
yes, it terminates the program. The only way to hijack its
control flow is through VTable reuse attacks.

More specifically, this challenge program allocates a large
buffer on the heap, and several objects close to this buffer.
When passing a negative number to the program, it will over-
flow the buffer on the heap. By exploiting this vulnerability,
attackers are able to overwrite the adjacent objects that have
VTable pointers. They then overwrite this VTable pointer with
a pointer to read-only memory, to bypass the deployed defense.

In fact, attackers can overwrite this VTable pointer to
reference an offset in an existing VTable (i.e., a COOP attack).
In this way, attackers can invoke a virtual function out of
context. On the other hand, the program contains a virtual
function that writes arbitrary content to the memory pointed
by the function argument, allowing attackers to implement
write-what-where primitives. Finally, attackers can overwrite
control data, e.g., function pointers in the Global Offset Table,
to hijack the control flow.

Several teams have solved this challenge, showing that
VTable reuse attacks are feasible. The research paper
COOP [28] also shows that VTable reuse attacks are practical
in larger applications, e.g., Internet Explorer and Firefox.

To evaluate our solution’s effectiveness against VTable
reuse attacks, we collected several public exploits for this
CTF challenge. Then we get the source code of the challenge
from the author, and recompile the challenge using our tool

VTrust. Finally we modify all these exploits to fit our new
environment, and test them against the hardened challenge
program. The result shows that all these exploits are blocked
when the overwritten VTable pointer is used for virtual calls.

VI. RELATED WORK

A. Control-Flow Hijacking Defense

Control-flow hijacking attacks (including VTable hijacking
attacks) usually utilize memory safety bugs to modify the
program state by tampering with code pointers (e.g., return
addresses and function pointers), causing the control-flow to
divert when the broken code pointers are used.

Effective defense mechanisms against these attacks can be
classified on when they stop an attack [50]: (i) at the memory
safety level by, e.g., checking bounds of memory access [8],
[51]–[53] or enforcing temporal safety on memory [9], (ii)
when code-pointers are written (i.e., protecting a subset of
data) [10], or (iii) when corrupted data is used in a computation
like for Control-Flow Integrity (CFI) [11]–[23].

Memory safety-based defenses result in fairly high over-
head as many memory read and write operations must be
protected with additional guards. Some tools reduce the over-
head by restricting protection to write operations only [54].
Code-Pointer Integrity [10] restricts the protection in another
dimension by protecting a subset of all pointers: code pointers
and any data structure that references code pointers.

CFI protects against control-flow hijacking attacks by
adding guards before indirect control-flow transfers, which
restricts each indirect control-flow transfer to the set of valid
targets as determined by a static analysis (usually a type-
based points-to analysis). CFI can stop attacks such as return-
to-libc [55] and ROP [2]. HyperSafe [13] enforces a fine-
grained CFI policy for virtual machine managers. Recent
approaches [17], [19] directly rewrite binaries and provide a
coarse-grained CFI protection.

However, CFI faced several adoption hurdles: the fine-
grained CFI solutions usually do not support separate com-
pilation, few of them provide precision protection for C++
programs, and many of them induce fairly high overhead.
Relaxed implementations can be circumvented [56]–[58]. Our
solution VTrust provides a fine-grained CFI for only virtual
calls. It does not rely on a whole-program analysis and
provides modularity support.

B. VTable hijacking Defense

Researchers also proposed some specific virtual call pro-
tection solutions. Table IV shows a brief comparison between
these solutions and our solution VTrust, including the effec-
tiveness of each defense, the support of incremental building
(i.e., modularity support), dynamic loading of external libraries
(i.e., mixed code) and dynamic generated code (i.e., writable
code), as well as the performance of compile-time class
hierarchy analysis and runtime overhead.

The VTint [27], T-VIP [39] solutions are binary-rewriting
based defense mechanisms. VTint places VTables in a special
read-only section and adds instrumentation before virtual calls
to check if the runtime target VTable is in this read-only

12

TABLE IV. COMPARISON BETWEEN DEFENSES AGAINST VTABLE HIJACKING ATTACKS, INCLUDING WHETHER THEY CAN (1) DEFEAT VTABLE
HIJACKING, AND SUPPORT (2) INCREMENTAL BUILDING (I.E., MODULARITY), (3) EXTERNAL LIBRARIES, AND (4) WRITABLE CODE (I.E., DYNAMIC

GENERATED CODE). THIS TABLE ALSO SHOWS THE COMPARISON OF (5) SPEED OF CLASS HIERARCHY ANALYSIS, (6) SOURCE CODE DEPENDENCY, AND
(7) PERFORMANCE OVERHEAD. THE ABBREVIATION SD STANDS FOR SAFEDISPATCH, FCFI STANDS FOR FORWARD EDGE CONTROL-FLOW INTEGRITY. IN
THE dynamic loading COLUMN, Y/N MEANS THE DEFENSE SUPPORTS LOADING HARDENED OR ANALYZED LIBRARIES, BUT NOT UNHARDENED ONES.

defense able to defend? incremental external writable class hierarchy source code performance
solution VTable injection VTable reuse building libraries code analysis speed dependency overhead

VTint [27] y partial N/A y y N/A N 2%
T-VIP [39] y N N/A y y N/A N 2.2%

vfGuard [48] y partial N/A Y/N y N/A N 18.3%
original CFI [11] partial partial N/A Y/N N N/A N 16%

VTGuard [49] N y y Y/N N N/A y < 0.5%
SD-vtable [29] y y N Y/N y slow y 30%

SD-method [29] y y N Y/N y slow y 7%
RockJIT [37] y y y Y/N y slow y 10.8%

FCFI-VTV [23] y y y Y/N y fair y about 3%
VTrust y y y Y/N y fast y 0.72% or 2.2%

section. It can defeat all VTable injection attacks, but only
a few VTable reuse attacks (i.e., reusing existing data rather
than VTables). Attackers may reuse existing VTables to launch
attacks [28] to bypass it. T-VIP works in a similar way, but
does not provide any protection against VTable reuse attacks.
They both introduce a low performance overhead, and are able
to protect applications with writable code.

VfGuard [48] is another binary level defense. It filters
virtual functions at runtime based on some features, e.g.,
the index of the function inside a VTable. It uses dynamic
instrumentation tool PIN [59] to validate these filters, and thus
has a high performance overhead. Since the filters used by
vfGuard are permissive, it only provides a partial protection
against VTable reuse attacks. Moreover, all these three binary
solutions rely on some heuristics to identify VTable related
operations in programs, and may also cause false negatives in
some cases, i.e., some virtual calls are not protected.

The original CFI [11] also provides some protection against
VTable hijacking. However, it cannot defeat all VTable hijack-
ing attacks, because it does not utilize the type information of
virtual functions. Moreover, it does not support writable code
and incurs a higher performance overhead.

VTGuard [49] is a lightweight source code level defense,
similar to stack canaries, that instruments secret cookies at
the end of legitimate VTables. Its performance overhead is
extremely low. However, it is vulnerable to information leakage
attacks. Attackers may leak the secret cookies and inject fake
VTables with correct cookies. So, it cannot defeat VTable
injection attacks, nor protect applications with writable code.

SafeDispatch [29], RockJIT [37] and FCFI [23] work on
programs’ source code too. SafeDispatch resolves the set
of legitimate VTables (or virtual functions) for each virtual
function call by performing a class hierarchy analysis (CHA)
at compile-time, and validates the runtime VTable (or virtual
function) against this set. It requires a heavy compile-time class
hierarchy analysis, which prevents the incremental compila-
tion. It uses a set lookup operation that is slow to perform the
security check, introducing a high performance overhead.

RockJIT is based on a fine-grained signature-based CFI

solution MCFI [22] that only protects C code, and extends it
to Just-in-Time compiled code and virtual calls. RockJIT also
performs a CHA analysis like SafeDispatch, and introduces a
very high performance overhead as well. Unlike SafeDispatch,
it supports separate compilation by emitting the class hierarchy
information into each module and combining them at link time.
However, it also has to rebuild the whole program, when the
class hierarchy changes. VTrust only uses signature matching
(i.e., type enforcement) to protect virtual calls, without the
requirement of class hierarchy information, which provides a
better compatibility and performance.

FCFI proposes several methods to protect indirect call and
jump instructions. Its method VTV also validates if the target
VTable is in a legitimate set. But it only analyzes parts of
the class hierarchy information when compiling, and utilizes
the runtime initializer functions to update the overall class
hierarchy. In this way, it supports incremental building with
a faster class hierarchy analysis.

However, it also needs a slow runtime set lookup operation
to perform the security check. The performance overhead not
only depends on the count of virtual calls, but also the size
of the legitimate VTabe set. In applications with complex
class hierarchy, the performance overhead would be higher.
Moreover, it needs to perform an extra check each time a new
VTable set is created, to overcome the split-set problem [23],
causing a high overhead when loading a new library.

FCFI’s overhead ranges from 2.4% to 19.2% for SPEC
applications, and from 1.6% to 8.4% for the Chrome browser
when testing different benchmarks. Our solution VTrust in-
troduces an average overhead of 0.72% and 0.31% for SPEC
and Firefox respectively, when only enabling the first layer.
Even with the extra second layer of defense, the average
overhead of VTrust is about 2.2%, comparable with FCFI.
FCFI also introduces a profile guided optimization to perform
devirtualization, i.e., translating virtual calls to direct calls.
This optimization helps improve the overall performance a lot.
It can also be adopted by other defenses, such as VTrust.

Our solution VTrust uses the signature matching to en-
force virtual functions’ type and provide a most fine-grained

13

CFI protection, and an optional extra layer of defense to
validate VTable pointers’ validity in case target applications
have writable code allowing attackers to forge functions with
correct signatures. It does not need any global class hierarchy
information, and thus it has a faster static analysis and natural
modularity support. Its performance overhead is also better
than most of existing solutions. Moreover, the overhead of each
security check instrumented by VTrust is constant, irrelevant
to the class hierarchy. It is also able to identify corner cases,
and provides a complete protection against VTable hijacking
attacks.

All six of these source code level defenses support dynam-
ically loaded libraries. When a hardened library is dynamically
loaded into the process, the runtime class hierarchy is updated,
so the newly loaded virtual functions are allowed to be
called. However, if an unhardened library is loaded into the
process, all these solutions may cause false positives because
the class hierarchy is missing the classes from the loaded
library. Usually, a special fallback failure function that tracks a
whitelist can be embedded in the security check to catch such
false positives.

VII. CONCLUSION

VTable hijacking attacks are one of the most critical threats
to modern applications written in C++. Few solutions have
been deployed in practice. We propose a lightweight compiler-
based two-layer defense VTrust, to defeats all VTable hijacking
attacks. The first layer enforces that the runtime target virtual
function matches the type expected in the source code. The
second layer enforces that each VTable pointer references a
valid VTable. Modern compilers usually place VTables in read-
only sections, forming a default layer of defense (i.e., layer 0).

Combined with the layer 0, the first layer protects appli-
cations from all VTable hijacking attacks if target applica-
tions have no dynamically generated code (e.g., just-in-time
compiled code). Combined with the second layer, it blocks
all VTable hijacking attacks even if there is dynamically
generated code. Evaluating the performance of our prototype
implementation shows that we achieve low overhead for stan-
dard benchmarks and browsers. A security evaluation using
existing VTable hijacking exploits shows that our prototype
successfully protects against attacks. We strongly recommend
deploying the first layer of defense in practice, because it pro-
vides a very low performance overhead, and a good modularity
support and a strong security enhancement.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their construc-
tive suggestions on this work. This material is based upon
work supported, in part, by the National Science Foun-
dation under Grant No. CNS-1513783 and CNS-1464155,
DARPA award HR0011-12-2-005 and FA8750-14-C-0118, and
FORCES (Foundations Of Resilient CybEr-Physical Systems),
which receives support from the National Science Foundation
(NSF award numbers CNS-1238959, CNS-1238962, CNS-
1239054, CNS-1239166). It is also supported, in part, by the
National Science Foundation of China under Grant 61402125
and 61572149.

REFERENCES

[1] Nergal, “The advanced return-into-lib(c) exploits,” Phrack, vol. 11,
no. 58, p. http://phrack.com/issues.html?issue=67&id=8, 2007.

[2] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86),” in CCS: ACM Confer-
ence on Computer and Communications Security, 2007.

[3] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-Oriented Programming without Returns,” in
CCS: ACM Conference on Computer and Communications Security,
2010.

[4] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-Oriented
Programming: a new class of code-reuse attack,” in ASIACCS: ACM
Symposium on Information, Computer and Communications Security,
2011.

[5] A. van de Ven and I. Molnar, “Exec Shield,” https://www.redhat.com/
f/pdf/rhel/WHP0006US Execshield.pdf, 2004.

[6] PaX-Team, “PaX ASLR (Address Space Layout Randomization),” http:
//pax.grsecurity.net/docs/aslr.txt, 2003.

[7] E. Hiroaki and Y. Kunikazu, “ProPolice: Improved stack-smashing
attack detection,” IPSJ SIG Notes, pp. 181–188, 2001.

[8] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “SoftBound:
Highly Compatible and Complete Spatial Memory Safety for C,” in
PLDI: Conference on Programming Languages Design and Implemen-
tation, 2009.

[9] ——, “CETS: Compiler Enforced Temporal Safety for C,” in ISMM:
International Symposium on Memory Management, 2010.

[10] V. Kuzentsov, L. Szekeres, M. Payer, G. Candea, D. Song, and R. Sekar,
“Code pointer integrity,” in OSDI: Usenix Symposium on Operating
Systems Design and Implementation, 2014.

[11] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-Flow
Integrity,” in CCS: ACM Conference on Computer and Communications
Security, 2005.

[12] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula,
“XFI: Software guards for system address spaces,” in OSDI: Usenix
Symposium on Operating Systems Design and Implementation, 2006.

[13] Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity,” in Proceedings of the 2010
IEEE Symposium on Security and Privacy, ser. SP ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 380–395. [Online].
Available: http://dx.doi.org/10.1109/SP.2010.30

[14] P. Philippaerts, Y. Younan, S. Muylle, F. Piessens, S. Lachmund, and
T. Walter, “Code pointer masking: Hardening applications against code
injection attacks,” in DIMVA: Conference on Detection of Intrusions
and Malware and Vulnerability Assessment, 2011.

[15] T. Bletsch, X. Jiang, and V. Freeh, “Mitigating Code-reuse Attacks
with Control-flow Locking,” in ACSAC: Annual Computer Security
Applications Conference, 2011.

[16] B. Zeng, G. Tan, and U. Erlingsson, “Strato: A Retargetable Framework
for Low-level Inlined-reference Monitors,” in Usenix Security Sympo-
sium, 2013.

[17] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and
randomization for binary executables,” in Proceedings of the 2013
IEEE Symposium on Security and Privacy, ser. SP ’13. Washington,
DC, USA: IEEE Computer Society, 2013, pp. 559–573. [Online].
Available: http://dx.doi.org/10.1109/SP.2013.44

[18] C. Zhang, T. Wei, Z. Chen, L. Duan, S. McCamant, and L. Szekeres,
“Protecting Function Pointers in Binary,” in ASIACCS: ACM Symposium
on Information, Computer and Communications Security, 2013.

[19] M. Zhang and R. Sekar, “Control flow integrity for cots binaries,” in
Proceedings of the 22Nd USENIX Conference on Security, ser. SEC’13.
Berkeley, CA, USA: USENIX Association, 2013, pp. 337–352.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2534766.2534796

[20] B. Niu and G. Tan, “Monitor Integrity Protection with Space Efficiency
and Separate Compilation,” in CCS: ACM Conference on Computer and
Communications Security, 2013.

[21] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete Control-
Flow Integrity for Commodity Operating System Kernels,” in IEEE
Symposium on Security and Privacy, 2014.

14

http://phrack.com/issues.html?issue=67&id=8
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://dx.doi.org/10.1109/SP.2010.30
http://dx.doi.org/10.1109/SP.2013.44
http://dl.acm.org/citation.cfm?id=2534766.2534796

[22] B. Niu and G. Tan, “Modular Control-flow Integrity,” in PLDI: Confer-
ence on Programming Languages Design and Implementation, 2014.

[23] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing Forward-Edge Control-Flow In-
tegrity in GCC & LLVM,” in Usenix Security Symposium, 2014.

[24] Microsoft, “Visual Studio 2015 Preview: Work-
in-Progress Security Feature.” [Online]. Avail-
able: http://blogs.msdn.com/b/vcblog/archive/2014/12/08/
visual-studio-2015-preview-work-in-progress-security-feature.aspx

[25] C. Tice, “Improving function pointer security for virtual method dis-
patches,” in GNU Tools Cauldron Workshop, 2012.

[26] Microsoft, “Software vulnerability exploitation trends: Exploring
the impact of software mitigations on patterns of vulnerability
exploitation (2013),” http://download.microsoft.com/download/
F/D/F/FDFBE532-91F2-4216-9916-2620967CEAF4/Software%
20Vulnerability%20Exploitation%20Trends.pdf, 2013.

[27] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song, “VTint:
Protecting Virtual Function Tables’ Integrity,” in NDSS: IS Network
and Distributed System Security Symposium, 2015.

[28] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty of
preventing code reuse attacks in c++ applications,” in Oakland, 2015.

[29] D. Jang, Z. Tatlock, and S. Lerner, “SAFEDISPATCH: Securing C++
Virtual Calls from Memory Corruption Attacks,” in 20th Annual Net-
work and Distributed System Security Symposium, 2014.

[30] B. Lee, C. Song, T. Kim, and W. Lee, “Type casting verification:
Stopping an emerging attack vector,” in 24th USENIX Security Sympo-
sium (USENIX Security 15). Washington, D.C.: USENIX Association,
Aug. 2015, pp. 81–96. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/lee

[31] M. Athanasakis, E. Athanasopoulos, M. Polychronakis, G. Portokalidis,
and S. Ioannidis, “The Devil is in the Constants: Bypassing Defenses in
Browser JIT Engines,” in the Network and Distributed System Security
Symposium (NDSS), 2015.

[32] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, pp. 1–17, Sep. 2006.

[33] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-
data attacks are realistic threats,” in Usenix Security Symposium, 2005.

[34] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic
generation of data-oriented exploits,” in 24th USENIX Security Sympo-
sium (USENIX Security 15). Washington, D.C.: USENIX Association,
Aug. 2015, pp. 177–192. [Online]. Available: http://blogs.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/hu

[35] “Itanium C++ ABI,” http://mentorembedded.github.io/cxx-abi/abi.html.
[36] BlueLotus Team, “Bctf challenge: bypass vtable read-only checks,”

https://github.com/ctfs/write-ups-2015/tree/master/bctf-2015/exploit/
zhongguancun, 2015.

[37] B. Niu and G. Tan, “Rockjit: Securing just-in-time compilation using
modular control-flow integrity,” in Proceedings of the 21st ACM Con-
ference on Computer and Communications Security. ACM, 2014.

[38] I. Haller, E. Gkta, E. Athanasopoulos, G. Portokalidis, and
H. Bos, “ShrinkWrap: VTable Protection without Loose Ends.”
ACM Press, 2015, pp. 341–350, 00000. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2818000.2818025

[39] R. Gawlik and T. Holz, “Towards automated integrity protection of
C++ virtual function tables in binary programs,” in ACSAC: Annual
Computer Security Applications Conference, 2014.

[40] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Symposium on Code
Generation and Optimization, 2004.

[41] U. Hölzle, C. Chambers, and D. Ungar, “Optimizing dynamically-
typed object-oriented languages with polymorphic inline caches,” in
ECOOP’91 European Conference on Object-Oriented Programming.
Springer, 1991, pp. 21–38.

[42] Microsoft IE, “LiteBrite: HTML, CSS and JavaScript Performance
Benchmark,” http://ie.microsoft.com/testdrive/Performance/LiteBrite/,
2014.

[43] Google, “Octane JavaScript benchmark suite,” https://developers.
google.com/octane/, 2014.

[44] Mozilla, “Kraken 1.1 javascript benchmark suite,” http:
//krakenbenchmark.mozilla.org/, 2014.

[45] Apple, “Sunspider 1.0.2 javascript benchmark suite,” https://www.
webkit.org/perf/sunspider/sunspider.html, 2014.

[46] RightWare, “Browsermark 2.1 benchmark,” http://browsermark.
rightware.com/, 2014.

[47] FutureMark, “Peacekeeper: HTML5 browser speed test,” http://
peacekeeper.futuremark.com/, 2014.

[48] A. Prakash, X. Hu, and H. Yin, “vfguard: Strict protection for virtual
function calls in cots c++ binaries,” in Symposium on Network and
Distributed System Security (NDSS), 2015.

[49] M. R. Miller, K. D. Johnson, and T. W. Burrell, “Using virtual table pro-
tections to prevent the exploitation of object corruption vulnerabilities,”
2014, uS Patent 8,683,583.

[50] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal War in
Memory,” in IEEE Symposium on Security and Privacy, 2013.

[51] D. Dhurjati and V. Adve, “Backwards-compatible array bounds
checking for c with very low overhead,” in Proceedings of the 28th
International Conference on Software Engineering, ser. ICSE ’06.
New York, NY, USA: ACM, 2006, pp. 162–171. [Online]. Available:
http://doi.acm.org/10.1145/1134285.1134309

[52] H. Patil and C. Fischer, “Low-cost, concurrent checking of pointer
and array accesses in c programs,” Softw. Pract. Exper., vol. 27, no. 1,
pp. 87–110, Jan. 1997. [Online]. Available: http://dx.doi.org/10.1002/
(SICI)1097-024X(199701)27:1〈87::AID-SPE78〉3.0.CO;2-P

[53] J. Seward and N. Nethercote, “Using valgrind to detect undefined value
errors with bit-precision,” in Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ser. ATEC ’05. Berkeley,
CA, USA: USENIX Association, 2005, pp. 2–2. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1247360.1247362

[54] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing
Memory Error Exploits with WIT,” in IEEE Symposium on Security
and Privacy, 2008.

[55] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings
of the 11th ACM Conference on Computer and Communications
Security, ser. CCS ’04. New York, NY, USA: ACM, 2004, pp. 298–
307. [Online]. Available: http://doi.acm.org/10.1145/1030083.1030124

[56] E. Göktaş, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out Of
Control: Overcoming Control-Flow Integrity,” in IEEE Symposium on
Security and Privacy, 2014.

[57] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching
the Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow
Integrity Protection,” in Usenix Security Symposium, 2014.

[58] N. Carlini and D. Wagner, “ROP is Still Dangerous: Breaking Modern
Defenses,” in Usenix Security Symposium, 2014.

[59] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in ACM Sigplan
Notices, vol. 40. ACM, 2005, pp. 190–200.

15

http://blogs.msdn.com/b/vcblog/archive/2014/12/08/visual-studio-2015-preview-work-in-progress-security-feature.aspx
http://blogs.msdn.com/b/vcblog/archive/2014/12/08/visual-studio-2015-preview-work-in-progress-security-feature.aspx
http://download.microsoft.com/download/F/D/F/FDFBE532-91F2-4216-9916-2620967CEAF4/Software%20Vulnerability%20Exploitation%20Trends.pdf
http://download.microsoft.com/download/F/D/F/FDFBE532-91F2-4216-9916-2620967CEAF4/Software%20Vulnerability%20Exploitation%20Trends.pdf
http://download.microsoft.com/download/F/D/F/FDFBE532-91F2-4216-9916-2620967CEAF4/Software%20Vulnerability%20Exploitation%20Trends.pdf
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lee
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lee
http://blogs.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
http://blogs.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/hu
http://mentorembedded.github.io/cxx-abi/abi.html
https://github.com/ctfs/write-ups-2015/tree/master/bctf-2015/exploit/zhongguancun
https://github.com/ctfs/write-ups-2015/tree/master/bctf-2015/exploit/zhongguancun
http://dl.acm.org/citation.cfm?doid=2818000.2818025
http://ie.microsoft.com/testdrive/Performance/LiteBrite/
https://developers.google.com/octane/
https://developers.google.com/octane/
 http://krakenbenchmark.mozilla.org/
 http://krakenbenchmark.mozilla.org/
https://www.webkit.org/perf/sunspider/sunspider.html
https://www.webkit.org/perf/sunspider/sunspider.html
http://browsermark.rightware.com/
http://browsermark.rightware.com/
http://peacekeeper.futuremark.com/
http://peacekeeper.futuremark.com/
http://doi.acm.org/10.1145/1134285.1134309
http://dx.doi.org/10.1002/(SICI)1097-024X(199701)27:1<87::AID-SPE78>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1097-024X(199701)27:1<87::AID-SPE78>3.0.CO;2-P
http://dl.acm.org/citation.cfm?id=1247360.1247362
http://doi.acm.org/10.1145/1030083.1030124

	Introduction
	Threat Model
	Defense Mechanisms
	Attack Surface

	VTrust Design
	Overview of VTrust
	Virtual Function Type Enforcement
	Fast Runtime Matching
	Complex Inheritance Support
	Modularity Support.
	Dynamic Loading Support
	Limitations

	VTable Pointer Sanitization

	Implementation
	Virtual Function Type Enforcement
	VTable Pointer Sanitization
	VTable Pointer Encoding
	VTable Pointer Decoding

	Evaluation
	Virtual Call Statistics
	Statistics for SPEC2006
	Statistics on Firefox

	Performance Overhead
	Runtime Performance on SPEC2006
	Performance on Firefox

	Performance Comparison
	Memory Overhead
	Case Studies
	Real World VTable Injection Attacks
	Real World VTable Reuse Attacks

	Related work
	Control-Flow Hijacking Defense
	VTable hijacking Defense

	Conclusion
	References

