
libdetox: A Framework for Online Program Transformation

Mathias Payer
mathias.payer@nebelwelt.net

Purdue University

Abstract
Software is commonly available in binary form. Yet, the
consumer would often like to gather information about the
application, e.g., what functionality is available and needed
or what security mechanisms are active. In secure environ-
ments, the code must also be hardened against attacks. So
far, existing binary analysis and translation mechanisms
are often ad-hoc and only target one aspect of the problem.

We propose libdetox, a principled framework for contin-
uous binary analysis and instrumentation. Our framework
builds on an efficient binary translator and a trusted program
loader to enable the collection of vast information which is
later used for binary hardening. We present several runtime
monitors such as a shadow stack, control-flow integrity,
system call monitor, or on-the-fly patch application.

Introduction
Software often exists only in binary form (e.g., COTS soft-
ware or legacy code), prohibiting code consumers from
analyzing, modifying, or hardening the binary. Binary anal-
ysis recovers some of the information that is lost during the
compilation process and enables debugging or further code
transformation on the consumer side. Leveraging the recov-
ered information, code transformations can extend or enrich
the original binary to, e.g., add new functionality, remove
existing functionality, or harden the binary against attacks.

Binary translation enables principled modification of
binary code. All binary translation mechanisms must
support the non-trivial identity translation where the
functionality of the binary remains unchanged. Building
on identity translation, transformations can improve the
code in different ways, e.g., for profiling, debugging,
functionality extension, or hardening. Binary hardening
increases the resilience of an application against different
attack vectors, thereby improving the security of the system.
Binary defense mechanisms either rely on runtime monitors
to detect attacks or “patch” code to mitigate vulnerabilities.
Runtime monitors, while detecting the attack, still allow
denial of service attacks as compromised execution states

cannot be recovered (e.g., a defense that detects code
pointer corruption cannot recover the “correct” value as
other data of the application may be corrupted as well).

Two fundamental approaches exist for binary analysis
and transformation: static and dynamic. Both techniques
come with trade-offs. Dynamic techniques profit from con-
crete values and allow on the fly code discovery but struggle
with coverage as only executed code is analyzed. Static
techniques struggle with accuracy due to, e.g., aliasing
but achieve high coverage. The overhead for instrumented
programs is slightly higher for dynamic binary rewriting
due to the translation and analysis overhead in addition to
the instrumentation overhead. As a rule of thumb, static
techniques work well for complex analyses that can tolerate
some imprecision due to aliasing while dynamic techniques
achieve higher precision at slightly higher runtime
cost. Combining the advantages of both, static-dynamic
approaches offload complex analyses to a static component
while increasing the precision dynamically.

Focusing on the dynamic component for now, we lever-
aged dynamic binary translation to enable more precise and
stronger defense mechanisms that support realistic software
like OpenOffice, video players, as well as full sets of
standard benchmarks like SPEC CPU2006. Our framework
for ongoing dynamic binary program analysis and transfor-
mation uses a table-based dynamic binary translator ideally
suited for simple analyses. The proposed analyses only
require “peephole” information about the last few basic
blocks and context information that, e.g., the loader pro-
vides through symbol, segment, or module information. We
argue that complicated analyses result in prohibitive over-
head due to resources needed to construct the intermediate
representation (IR) and running the actual analysis.

The binary translator itself must be protected, as the
translator executes in the same process and address space
as the main application. An adversary may attack not just
the translated (and hardened) application but the binary
translator and the supporting runtime system [13]. A lean
and small runtime system that uses a simple translator with-
out a high-level IR and overly complex analyses decreases
this attack surface and can be protected efficiently.

1

mathias.payer@nebelwelt.net


System Call InterfaceSystem Call InterfaceKernel

User 

libdetox
Domain

App.
Domain

ELF
Files

Loads
ELF
files

/bin/<exe>

Loader

libc.so.6

lib*

Code Cache

read only readable + executable

main() printf()

func*()

main'
func1()
func2()
...

func2'
printf'

libdetoxlibdetox

Binary Translator

translate()

CFT Verifier

Run-time
ICT 
validation.

Figure 1: Overview of the lockdown framework, includ-
ing the dynamic translator, the secure loader, and the
control-flow transfer verification module.

Building on the translation framework [7, 6], we
designed a set of runtime monitors that harden the executed
binary. To protect the control-flow of the application, we en-
force stack integrity through a shadow stack [8], protecting
against return-oriented programming attacks [12, 11] and
enforce control-flow integrity [1] for binaries at runtime [3].
We introduce a trusted loader [10] that protects the loader
(and its data structures) from an adversary. A system
call monitor enforces a policy on the level of individual
per-process system calls [8] and injects a file metadata
monitor to protect POSIX programs against the inherent
time-of-check-to-time-of-use attacks when working with
file names to file descriptor mapping [9].

Our contributions are (i) a framework for continuous
program analysis and transformation at low overhead, (ii)
a description of a set of program analyses, and (iii) a set of
defense mechanisms based on runtime monitors and code
transformations that run on this platform.

Binary Translation
Dynamic binary translation is often falsely associated with
high overhead. Instead of translating machine code to a
high-level IR, our open-source dynamic binary translator
uses ISA specific translation tables. A table-based translator
limits the achievable instrumentation complexity but
results in negligible translation cost [6, 7]. Each decoded
instruction is mapped to a function that abstracts the
translation and, for same-ISA translation, most instructions
can be copied verbatim. Control-flow changing instructions
need special care with direct control-flow transfers being
adjusted accordingly and indirect control-flow transfers
being replaced with a lookup in a data-structure that maps
between translated and untranslated code.

The current prototype implementation, shown in Figure 1,
targets x86, other ISAs can be supported by adjusting the

core translator (about 100 lines of code for x86) and gener-
ating the corresponding translation tables. The binary trans-
lation framework is implemented in about 20 kLoC. The
binary translator uses 13 kLoC whereas the translation ta-
bles are about 5 kLoC, the trusted loader replacement of the
standard loader uses another 4 kLoC, and the remaining LoC
are used for the different code transformations and defenses.

Dynamic Binary Analysis
The lack of a high-level IR may at first seem restrictive,
yet our framework allows a wide spectrum of analyses.
Just by tracking translated instructions, we recover all
executed basic blocks currently in the code cache. An
execution-guided analysis distinguishes code from data
as only code will be translated, recovering a precise
control-flow graph (for executed code paths). In addition,
with a simple counter we detect hot code paths, with several
optimizations leveraging these counts. On the interface
to the operating system we observe all executed system
calls, their parameters, and the corresponding context and
call stack of the application [8]. This information is the
baseline for a set of runtime monitors that we developed.
Other analyses are possible, depending and driven by the
requirements of the runtime monitor or defense.

Runtime Monitors
Leveraging our framework, we have developed a set
of runtime monitors that protect applications against
control-flow hijack attacks and (coarse grained) data-only
attacks, namely a shadow stack [8], a forward-edge CFI
mechanism [3], a system call policy framework [8], and
a file authentication mechanism [9].

Return-oriented programming is a common attack
vector where an adversary modifies the return address to
point to so-called gadgets, short sequences of code, often
allowing arbitrary code execution. As we have shown in our
control-flow bending work [2], CFI without stack integrity
can be mitigated. A shadow stack leverages the relationship
between function calls and returns and builds a secondary
stack of “expected” return targets. When the function
returns, observed and expected return addresses are com-
pared, terminating the application if they mismatch. In our
framework, the shadow stack reduces the overhead of binary
translation with the side effect of enforcing stack integrity.
We translate call instructions into pushes of the current in-
struction pointer to the regular stack and to the shadow stack,
a second push of the translated address to the shadow stack,
and a branch to the translated target. Return instructions
are then translated into a comparison and a branch.

For forward branches (e.g., indirect function calls), our

2



binary-only CFI policy leverages information from the
trusted loader [10] to enforce a precise CFI policy based
on imported and exported symbols [3]. Source-based CFI
mechanism rely on function prototypes to increase the
precision of the protection. Precise function type recovery
in binaries is a challenging (and currently unsolved)
problem. We leverage the context of functions to increase
the CFI precision. Instead of, e.g., allowing all functions as
targets as other binary-CFI mechanisms do [14, 15], we use
the set of imported and exported functions to further narrow
the set of valid targets to few exported functions available
in a library. As we show in a case study [3] on nginx, the
increased precision suffices to mitigate control-flow hijack
attacks while weaker policies fail. As our performance
evaluation shows, the majority of programs results in single
digit overhead with an average overhead of below 20%.

In addition to these control-flow guards we have also
developed a (i) coarse-grained system call authorization
mechanism that validates individual system calls depending
on the arguments and the context (call stack) of the
application and (ii) a file authentication mechanism that
protects against POSIX TOCTTOU race conditions when
an application is mapping files to file descriptors [9].

Code Transformation
Code transformations allow modification of the code
before, during, or after it is executed. We have developed a
mechanism for on-the-fly application of security patches [4].
In a case study on the Apache web server, we found that
45 out of the 49 patches do not change data structures and
our system can patch the code at runtime without restarting
the server, permanently closing the vulnerability [5]. Our
system dynamically replaces the code of the application
and flushes any translated code blocks. Both the patched
and the unpatched code then go through the same hardening
process to further enforce stack integrity and CFI. While
the current system allows hot patching of security updates,
we identify code removal as a challenging extension of
our work to reduce the total attack surface. If only a small
subset of code is executable (i.e., not all features of the
original binary are available), then an adversary has only
access to a further restricted set of targets.

Conclusion
Continuous program transformation and binary hardening
allows modification of binaries post-compilation and
post-distribution. Binary rewriting has many different ap-
plications, e.g., gathering information for forensic analysis,
debugging, or binary hardening to protect applications
against unknown or future attack vectors. Existing binary

analysis tools are often limited and ad-hoc. We have de-
veloped libdetox, a framework for dynamic binary analysis
that leverages a simple, table-based binary translator to
achieve low overhead. Our framework supports several
binary analyses, from CFG recovery to function analysis
and calling context. Building on our translation framework
and the gathered information we design several binary hard-
ening mechanisms to, among others, enforce stack integrity,
control-flow integrity, and allow on-the-fly security updates.

The source code of the libdetox framework is available
at https://github.com/HexHive/libdetox.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow

integrity. In CCS: ACM Conf. on Computer and Communication
Security, 2005.

[2] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross.
Control-Flow Bending: On the Effectiveness of Control-Flow
Integrity. In SEC: USENIX Security Symposium, 2015.

[3] M. Payer, A. Barresi, and T. R. Gross. Fine-Grained Control-Flow
Integrity through Binary Hardening. In DIMVA’15: 12th Confer-
ence on Detection of Intrusions and Malware and Vulnerability
Assessment, 2015.

[4] M. Payer, B. Bluntschli, and T. R. Gross. DynSec: On-the-fly code
rewriting and repair. In HotSWUp’13: Workshop on Hot Topics in
Software Upgrades, 2013.

[5] M. Payer and T. Gross. Hot-Patching a Web Server: a Case Study
of ASAP Code Repair. In PST’13: Proc. Conf. on Privacy, Security,
and Trust, 2013.

[6] M. Payer and T. R. Gross. Requirements for Fast Binary Translation.
In AMAS-BT’09: 2nd Workshop on Arch. and Microarch. Support
for Binary Translation, 2009.

[7] M. Payer and T. R. Gross. Generating low-overhead dynamic binary
translators. In SYSTOR’10: Proc. 3rd Annual Haifa Experimental
Systems Conf., 2010.

[8] M. Payer and T. R. Gross. Fine-grained user-space security through
virtualization. In VEE’11: Proc. 7th Int’l Conf. Virtual Execution
Environments, 2011.

[9] M. Payer and T. R. Gross. Protecting Applications Against
TOCTTOU Races by User-Space Caching of File Metadata. In
VEE’12: Proc. 8th Int’l Conf. Virtual Execution Environments, 2012.

[10] M. Payer, T. Hartmann, and T. R. Gross. Safe loading - a foundation
for secure execution of untrusted programs. In S&P’12: Proc. Int’l
Symp. on Security and Privacy, 2012.

[11] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit hardening
made easy. In SEC: USENIX Security Symposium, 2011.

[12] H. Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In CCS: ACM
Conf. on Computer and Communication Security, 2007.

[13] C. Song, C. Zhang, T. Wang, W. Lee, and D. Melski. Exploiting
and Protecting Dynamic Code Generation. In NDSS: Network and
Distributed System Security Symposium, 2015.

[14] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou. Practical Control Flow Integrity & Random-
ization for Binary Executables. In Oakland: IEEE Symp. on Security
and Privacy, 2013.

[15] M. Zhang and R. Sekar. Control flow integrity for COTS binaries.
In SEC: USENIX Security Symposium, 2013.

3

https://github.com/HexHive/libdetox

	Introduction
	Binary Translation
	Dynamic Binary Analysis
	Runtime Monitors
	Code Transformation
	Conclusion

