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Abstract—There is a significant body of work devoted to
testing, verifying, and certifying the correctness of optimizing
compilers. The focus of such work is to determine if source
code and optimized code have the same functional semantics.
In this paper, we introduce the correctness-security gap, which
arises when a compiler optimization preserves the functionality
of but violates a security guarantee made by source code.
We show with concrete code examples that several standard
optimizations, which have been formally proved correct, in-
habit this correctness-security gap. We analyze this gap and
conclude that it arises due to techniques that model the state
of the program but not the state of the underlying machine.
We propose a broad research programme whose goal is to
identify, understand, and mitigate the impact of security errors
introduced by compiler optimizations. Our proposal includes
research in testing, program analysis, theorem proving, and the
development of new, accurate machine models for reasoning
about the impact of compiler optimizations on security.

I. REFLECTIONS ON TRUSTING COMPILERS

Security critical code is heavily audited and tested, and in
some cases, even formally verified. Security concerns have
also led to hardware being designed with inbuilt security
primitives. In this scenario, a compiler is the weak link
between source code that provides security guarantees and
hardware that is beginning to provide security guarantees.
Concerns that compiler optimizations may render void the
guarantees provided by source code are not new. Nearly
half a century of work has been devoted to proving the
correctness of compilers [16], [36], [42]. In fact, the question
of whether a compiler can be trusted was raised prominently
by Ken Thompson in his Turing award lecture [55].

In this paper, we highlight and study a situation, which
we call the correctness-security gap, in which a formally
sound, correctly implemented compiler optimization can
violate security guarantees incorporated in source code.
We make these assumptions to focus on the relationship
between optimizations and security rather than design or
implementation bugs in compilers.

A well-known example of the correctness-security gap is
caused by an optimization called dead store elimination.
The code below is derived from CWE-14 [1] and CWE-
733 [2]. It contains a function crypt(), which we assume
receives a key through a secure, protected channel. The
function manipulates the key and scrubs the value of the

key from memory before returning to the caller. Scrubbing
is performed to avoid the key persisting in memory and
eventually being discovered by an attacker or being captured
in a memory dump.

crypt(){
key = 0xC0DE; // read key
... // work with the secure key
key = 0x0; // scrub memory

}

The variable key is local to crypt(). In compiler
optimization terminology, the assignment key = 0x0 is
a dead store because key is not read after that assignment.
Dead store elimination will remove this statement in order
to improve efficiency by reducing the number of assembler
instructions in the compiled code. Dead store elimination
is performed by default in GCC if optimization is turned
on [20]. This optimization is sound and has been proved
formally correct using different techniques [7], [34].

To see why the optimization is problematic, consider a
situation in which the method crypt() has been subjected
to an extensive security audit and assume that all statements
within crypt() execute with well defined semantics. There
may however be weaknesses elsewhere in the application.
The source code is designed to be secure against exploits
that access values that persist in memory. The compiled
code does not preserve this guarantee despite dead store
elimination being a sound optimization and despite the code
in crypt() having well-defined semantics.

The example above illustrates a gap between the guar-
antee provided by the compiler and the expectations of a
developer. The compiler guarantees that the code before and
after compilation computes the same function. The developer
has additionally assumed that the optimized code will leave
a system’s memory in the same state as the unoptimized
code. There has been much debate about (i) whether a
compiler should preserve security guarantees incorporated in
source code, (ii) whether it is the developer’s responsibility
to understand the impact of compiler optimizations on their
code, and (iii) whether the behaviour above qualifies as
a compiler bug. See the mailing list archives of the GNU
compiler collection (GCC) [58], [22], [54], [59] and Linux
kernel [56], [26] for examples of such exchanges.



A. The Gap between Correctness and Security

The literature contains further examples of compiler bugs
that affect the correctness and security of operating system
kernels and user applications [45], [46], [47], [29], [30], [31],
[62], [51]. Given the large number of optimizations imple-
mented in compilers and the volume of work on compiler
correctness, we find it natural to ask two questions: (i) What
are other examples of formally sound, widely implemented
compiler optimizations that may violate a security guarantee
in source code? (ii) Given that these optimizations have been
proved correct, why does the proof of functional equivalence
not translate into a proof of security equivalence? In this
paper, we study these two questions. We give examples
of standard compiler optimizations and scenarios in which
optimizations introduce vulnerabilities into code. We also
examine the structure of compiler correctness proofs and
propose a model for studying the gap between correctness
and security.

The intuition behind our analysis stems from a few
observations. The semantics used for reasoning about source
code or intermediate representations is based on details from
a language standard. For example, in the bug report in [59],
a GCC developer emphasises that GCC 3.2 only attempts to
preserve the semantics of C as specified by ISO 9899. In
particular, aspects of compiled code such as the memory
footprint, the size of activation records, stack usage, or
time and power consumption are often not specified by
the language standard. Consequently, even if source code
has been designed to defend against attacks that exploit
vulnerabilities in these aspects of a computer system, an
optimizing compiler is not guaranteed to preserve those
defense mechanisms.

Formal techniques for compiler correctness attempt to
establish an equivalence between the states at the beginning
and end of a code unit before and after an optimization is
applied. To precisely identify the gap between the correct-
ness guarantees available about compiler optimizations and
the security guarantees we would like to have, we examine
the details of compiler correctness proofs. The most detailed
semantics considered when reasoning about compiler op-
timizations is the small-step operational semantics of the
source and machine code. Certain proof techniques consider
a more abstract, denotational semantics. The small-step
operational semantics accounts for the state of a program but
not the state of the underlying machine. Optimizations may
change the state of the underlying machine in addition to the
state of the program. If ignoring this difference is crucial to
the correctness proof, we have a situation in which there is
a potential gap between correctness and security.

We emphasise that the observation that a compiler can
violate a security guarantee in source code is not new to
this paper. We also emphasise that we are not claiming
optimizing compilers are buggy because they violate criteria

they were not designed to satisfy. Rather, we take the view
that the relationship between optimizations and security
constraints loosely resembles the relationship between opti-
mizations and modern memory models. Most optimizations
were historically designed assuming a memory model that
guaranteed a property called sequential consistency. When
relaxed memory models became prevalent [5], the correct-
ness of these optimizations had to be re-evaluated [4], [21].
Testing and formal analysis tools were developed to discover
instances in which existing optimizations produced incorrect
results. Mechanisms such as barriers and fence insertion
were developed to adapt existing optimizations to new
architectures. Similarly, our work is an early step towards
understanding which security guarantees are violated by
existing compiler optimizations and how these optimizations
can be adapted to provide the desired guarantees.

Another perspective on our work is provided by the
weird machines paradigm [8]. Exploit generation research
can be viewed as a constructive proof that a system’s
runtime enables the construction and execution of a weird
machine. Defenses against exploits can be understood as
eliminating gadgets essential for constructing or deploying
such a machine. A compiler optimization that introduces
a correctness-security gap is one that reintroduces into the
runtime a gadget the developer presumes to have eliminated.

B. Problem and Contribution

We study two problems in this paper. The first problem
is to identify compiler optimizations that are sound with
respect to the standard semantics of a program but are un-
sound if security is taken into account. The second problem
is to analyze the cause of this discrepancy. We make the
following contributions towards solving these problems.

1) We identify instances of the correctness-security gap
involving standard, formally verified optimizations
such as dead code elimination, code motion, common
subexpression elimination, function call inlining, and
peephole optimization.

2) We analyze the structure of existing compiler correct-
ness proofs to identify why the correctness-security
gap arises. We show that a more refined machine
model, combined with existing proof techniques al-
lows for this gap to be eliminated and for security
violations to be detected.

3) We identify open problems that must be tackled to
address the gap between correctness and security in
theory and in practice.

Note that there are simple strategies to eliminate security
bugs introduced by optimizations. An extreme option is to
disable all optimizations and require that the compiled code
execute in lockstep with the source. This approach leads
to an unacceptable performance overhead (e.g., 5x [38]).
Another option is to avoid certain incorrect transformations
using the volatile keyword. A number of security bug



reports show that developers do not always use such mech-
anisms correctly and that even compilers do not compile
volatile correctly [18]. Moreover, using volatile is
not a solution for many optimizations that we consider.

The paper is organised as follows. We begin with a brief
review of compiler optimization terminology in Section II
and then presents instances of the correctness-security gap in
Section III. We recall the structure of compiler correctness
arguments in Section IV. In Section V we analyze the
gap and show how it could be avoided using a language
semantics that considers the state of the machine in which
code executes. Section VI discusses research directions for
detecting and defending against such behaviour, as well as
implementing such detection. We conclude in Section VIII
after reviewing related work in Section VII.

II. A COMPILER OPTIMIZATION PRIMER

This section contains a recap of compiler optimization
terminology. This section is included to keep the paper self-
contained and is not intended to be comprehensive. See
standard textbooks for more details [6], [39].

The structure of an optimizing compiler is shown in
Figure 1. The clear boxes represent data and shaded boxes
represent processing steps. A compiler takes source code as
input and generates target code. The target code may run on
a processor, in a virtual machine, or in an interpreter. The
internal operation of a compiler can be divided into four
phases consisting of syntactic processing, semantic checks,
analysis and transformation, and code generation.

The syntactic processing phase takes source code repre-
sented as a string as input and generates an Abstract Syntax
Tree (AST). A lexer turns source code into a sequence of
tokens. A parser turns this sequence into an AST. The
syntactic processing phase rejects programs that contain
syntax errors. Semantic checks are then applied, in what is

Source Code Lexing Parsing

Semantic
Checks AST

Intermediate Representation

Transformation Analysis

Executable Code Generation

Figure 1. The architecture of an optimizing compiler.

sometimes called the static semantics phase. These checks
ensure that the program satisfies restrictions of the program-
ming language such as a type discipline and conventions for
declaration and use of variables and libraries.

The analysis and transformation phase operates on one or
more intermediate representations (IR) of a program. An IR
typically has a small set of instructions, is independent of
the target architecture and may even be independent of the
source language. Intermediate representations used by GCC
include RTL, GIMPLE, and GENERIC, while the LLVM infras-
tructure uses its own IR. Analysis of the IR is used to deduce
information about the program such as identifying code that
is never executed, variables whose values never change,
computations that are redundant, etc. The results of analysis
are used to perform architecture independent optimizations.
The IR obtained after transformation is supposed to represent
a program that contains less redundancy and is more efficient
than the source. One transformation may enable others, so
a series of analysis and transformations are performed with
details depending on the compiler implementation.

The final phase in compilation is code generation, in
which the IR is translated into either byte code or machine
code. If machine code is generated, the compiler may
perform architecture specific analysis and transformations
to further optimize the code.

Compiler Correctness: We give an intuitive definition
of a compiler bug here and provide formal definitions in
Section IV. A compiler has a bug if the behaviour of the
compiled code deviates from that of the source code as
specified in the language standard. Compiler correctness
is concerned with finding or proving the absence of bugs
in compilers. Much work on compiler correctness focuses
on architecture independent optimizations because errors in
these optimizations have the widest impact.

III. A SECURITY-ORIENTED ANALYSIS OF
OPTIMIZATIONS

In this section we present examples of code that performs
secure operations and identify optimizations that violate the
security guarantees in source code. All the optimizations we
consider respect a specific language specification and have
often been formally verified. Our examples use C syntax but
are applicable to other languages as well.

We identify three classes of security weaknesses in-
troduced by compiler optimizations: (i) information leaks
through persistent state, (ii) elimination of security-relevant
code due to undefined behaviour, (iii) introduction of side
channels. For each class above, we present examples of
code that has been designed to defend against an attack in
that class and identify a compiler optimization that weakens
or eliminates this defense. These examples highlight gaps
between the expectations of a developer and guarantees
provided by a compiler.



The security violations we discuss can, in princi-
ple, be circumvented using language mechanisms such
as the volatile keyword, inserting memory barri-
ers, or using inline assembler. Code compiled with Mi-
crosoft Visual C compiler can avoid some violations using
#pragma optimize("", off). We believe that pro-
gramming in this manner is undesirable for several reasons.

First, it amounts to a developer adopting an adversarial
view of the compiler and defending code against compiler
optimizations. This in turn complicates software design
and implementation and requires knowledge of compiler
internals. Moreover, experience indicates that developers
misunderstand the semantics, performance, and security
implications of volatile and related mechanisms. In
fact, even compiler writers misunderstand and incorrectly
implement such mechanisms [18].

A second reason is that problems due to the gap be-
tween security and correctness arise in existing software,
as witnessed by existing CWEs and CVEs [15], [1], [2].
Changing existing practice still leaves open the problem
of detecting such security issues in existing code. Finally,
such mechanisms may lead to coarse-grained optimizer
behaviour, where either all optimizations are turned off in a
region of code, or all optimizations are applied.

We argue for a more nuanced analysis of compiler opti-
mizations. Understanding the context in which an optimiza-
tion causes a security violation can lead to the design of
protection mechanisms that combine the security guarantees
provided by source code with performance improvements
provided by a compiler.

A. Persistent State

A persistent state security violation is triggered when data
lingers in memory across developer enforced boundaries.
A compiler optimization that manipulates security critical
code may cause information about a secure computation
to persist in memory thereby introducing a persistent state
violation. We identify dead store elimination, code motion,
and function call inlining as optimizations that can lead to
persistent state security violations.

1) Dead Store Elimination: A store is an assignment
to a local variable. A store is dead if a value that is
assigned is not read in subsequent program statements. Dead
Store Elimination leads to improved time and memory use,
especially if a dead store occurs in a loop or function that
is called repeatedly.

Operations that scrub memory of sensitive data such as
passwords or cryptographic keys can lead to dead stores.
Instances of dead-store elimination removing code intro-
duced for security [26], [56], [59] have lead to the dead-store
problem being classified as CWE-14 [1] and CWE-733 [2].

Listing 1 contains a function that accepts a password from
the user and stores it in memory during the calculation of a
hash. After the computation, the password is removed from

1 char *getPWHash() {
2 long i; char pwd[64];
3 char *sha1 = (char*)malloc(41);
4 // read password
5 fgets(pwd, sizeof(pwd), stdin);
6 // calculate sha1 of password
7 ...
8 // overwrite pwd in memory
9 // Alternative (A) : use memset

10 memset(pwd, 0, sizeof(pwd)); // (A)
11 // Alternative (B) : reset pwd in a loop
12 for (i=0; i<sizeof(pwd); ++i)
13 pwd[i]=0; // (B)
14 // return only hash of pwd
15 return sha1;
16 }

Listing 1. Both (A) and (B) are opportunities for dead store elimination.

memory using either (A) memset or (B) a for loop that
resets each character in the password. Since the variable
pwd is dead, the lines (A) and (B) may be removed by an
optimization.

Dead store elimination is a well known, sound optimiza-
tion. It does not change the functionality of the code, but
does affect parts of the state that are relevant for secu-
rity. Microsoft libraries provide a SecureZeroMemory()
function to defend against this problem.

2) Function Call Inlining: Function call inlining, also
called inline expansion, replaces a function call site with
the body of the function being called. Function call inlining
merges the stack frames of the caller and the callee and
avoids executing the prologue and epilogue of the callee.
This optimization eliminates the time and space overheads of
calling a function but increases the size of the caller’s body.
which in turn affects the instruction cache. The performance
implications of inlining are not simple, but it may enable
optimizations such as code motion, constant propagation,
copy propagation, or constant folding and the cumulative
effect of these optimizations can improve performance.
LLVM and GCC both apply inlining using heuristics based
on function length and hotness of code.

Listing 2 illustrates how function call inlining can affect
security-sensitive code. Let getPWHash() be the function
in Listing 1 and compute() be a function using a password
hash. If the call to getPWHash is inlined, the stack frames
of getPWHash() and compute() are merged.

Consider a scenario in which getPWHash() has been
audited and the developer believes the contents of the stack
frame during the execution of getPWHash() are secure.
After inlining, the local variables of getPWHash, which
contain sensitive information and lived in a secure stack
frame, will now be alive for the lifetime of compute()



char *getPWHash() {
// code as in Listing 1

}
void compute() {

// local variables
long i, j;
char *sha;
// computation
...
//call secure function
sha=getPWHash();
...

}

Listing 2. A candidate for function inlining.

1 // Code before optimization
2 int secret = 0;
3 if (priv)
4 secret = 0xFBADC0DE;

1 // After applying code motion
2 int secret = 0xFBADC0DE;
3 if (!priv)
4 secret = 0;

Listing 3. A candidate for code motion.

and be included in an insecure stack frame.
Inlining increases the longevity of variables in a stack

frame and can eliminate the boundaries between certain
stack frames. If a developer uses function boundaries (hence
stack frames) to implement trust-separated domains, security
guarantees provided by the code can be violated by inlining
because the compiler is not guaranteed to respect these
boundaries. A naive defense would be to execute a cleanup
function that overwrites the upper portion of a stack frame
so that secure variables have the same lifetime before and
after a transformation.

3) Code Motion: Code Motion allows the compiler to
reorder instructions and basic blocks in the program based
on their dependencies. For example, code in a loop that is
independent of the rest of the loop can be hoisted out of
the loop, eliminating redundant computation. If a compiler
proves that a statement does not affect a block of subsequent
statements, the statement can be executed after that block.
Symmetrically, a statement not affected by a block of
preceding statements can be executed before that block.

We show how code motion introduces a persistent state
vulnerability. Consider the code before optimization in
Listing 3. If a compiler concludes that the if branch
is part of a hot path, meaning that it will be executed
often, the code can be transformed so that the assignment
secret = 0xFBADC0DE; is performed by default with-

out first evaluating a branch condition.
Suppose the flag priv is set to true if the code is exe-

cuting in a trusted environment with appropriate privileges.
In the code before transformation, the check if (priv)
ensures the assignment of the secret value happens in a
secure execution environment. After code motion, the secret
value is always assigned because this code structure leads
to better performance. As with inlining, the compiler is
not required to respect the security-related assumptions the
developer makes and consequently, the compiled code does
not provide the same security guarantees as the source.

Code motion, like inlining, affects the layout of stack
frames, the liveness of variables, and the timing of indi-
vidual execution paths through the control flow graph. This
optimization affects security guarantees concerning trust
domains and execution times.

Persistent State Discussion: We showed how dead store
elimination can remove memory scrubbing code, function
call inlining can extend the lifetime of secure variables,
and code motion can eliminate security checks. In all these
examples, the source code attempted to prevent sensitive data
from being accessible after a secure computation. The opti-
mization allowed data from a secure computation to persist
in memory longer than intended. Even if an application has
no direct pointer to the secure data, the information may still
be accessible using an out-of-bounds pointer or a memory-
safety violation triggered elsewhere in the code.

B. Undefined Behaviour

The term undefined behaviour refers to situation in which
the behaviour of a program is not specified. Language spec-
ifications deliberately underspecify the semantics of some
operations for various reasons such as to allow working
around hardware restrictions or to create optimization op-
portunities. Examples of undefined behaviour in C are using
an uninitialized variable, dividing by zero, or operations that
trigger overflows. Consult these papers and blog posts for
detailed discussions of undefined behaviour [17], [24], [29],
[30], [31], [45], [46], [47].

Language specifications leave it to the developer to avoid
undefined behaviour but do not restrict what a compiler
should do to executions that trigger undefined behaviour.
Compilers may opportunistically assume that the code fol-
lowing a computation that triggers undefined behaviour
can be deleted [29], [48]. Such deletions are permitted by
the language standard. This flexibility is intended to allow
for more performance optimizations but is a double-edged
sword that can lead to security issues [30], [60].

We say that an undefined behaviour violation occurs if
assumptions about undefined behaviour are used to eliminate
security checks and make code susceptible to an attack.
Listing 10 shows a function that takes an integer variable
nrelems as input and that allocates an array of nrelems



1 int *alloc(int nrelems) {
2 // Potential overflow.
3 int size = nrelems*sizeof(int);
4 // Comparison that depends on
5 // undefined behaviour.
6 if (size < nrelems) {
7 exit(1);
8 }
9 return (int*)malloc(size);

Listing 4. Undefined behaviour in signed integer overflows.

integers. The function attempts to determine if an over-
flow occurs in a multiplication expression. Signed integer
overflow is undefined according to the C/C++ language
specification so the compiler removes the overflow check
(lines 6 to 8). In this deliberately simple example, the
code after the check terminates execution. More generally,
eliminating such code can expose the application to exploits
based on a buffer overflow or memory allocation bugs.

Undefined Behaviour Discussion: There has been much
debate about whether the developer or the compiler should
be responsible for preventing vulnerabilities introduced by
undefined behaviour [58], [61]. It is beyond debate that
optimizations based on undefined behaviour have introduced
exploitable vulnerabilities in the Linux kernel [12], [51],
[56], in particular, CVE-2009-1897 [15]. Due to these se-
curity implications, GCC and Clang generate warnings for
some but not all instances of undefined behaviour [31], [3].
Tools like STACK [60], which is based on LLVM, and [24],
which is based on an executable semantics for C [19], detect
a wider range of undefined behaviours.

C. Side Channel Attacks

A side channel leaks information about the state of the
system. Side channel attacks allow an attacker external to
the system to observe the internal state of a computation
without direct access to the internal state. We say that a side
channel violation occurs if optimized code is susceptible to
a side channel attack but the source code is not.

On most platforms, the number of processor cycles re-
quired provides a way to measure and compare the time
complexity of instructions. For example, floating point divi-
sion takes longer than integer addition and moving a value
into a register takes less time than loading a value from
memory. Accurately estimating such timing is a subtle task
that requires considering the memory hierarchy and possible
cache misses on multiple levels.

Attackers can use timing information to infer security
sensitive data such as cryptographic keys [10], [27], [41],
[43]. To counter side-channel attacks based on timing, imple-
menters of cryptographic algorithms take care to ensure that
the number of instructions executed is the same regardless

of data such as a cryptographic key or the message to
be encrypted. Such code is deliberately written with in-
line assembler to defend against side channel violations
introduced by compiler optimizations.

1) Common Subexpression Elimination: An expression
is a common subexpression of two different statements
if it occurs in both. If the variables in a subexpression
common to a set of statements have the same value in each
of those statements, that subexpression can be calculated
once and all occurrences of the subexpression can be re-
placed with a pre-calculated value. Common Subexpression
Elimination (CSE) is an optimization that discovers and
eliminates subexpressions of identical value from different
statements. For example, x + y is a common subexpression
in y = x + y + z; and z = x + y - 2z;. If the
variables x and y have the same value in both the assign-
ments, a new variable and assignment s = x + y; can
be introduced and the two assignments can be rewritten to
y = s + z; and z = s - 2z;. This optimization can
improve the performance of code especially if the common
subexpression is complex or is evaluated in a loop.

CSE affects the timing of instructions and consequently,
defenses against timing side channels. Listing 5 contains a
simple example in which the developer has ensured that both
branches of the if statement perform the same amount of
computation. CSE allows for code in the else branch to be
simplified so that instead of a multiplication and addition
operation being performed three times, a multiplication and
addition is performed once followed by a single multiplica-
tion. An attacker who can measure these timing differences
would be able to observe which branch is taken. A more
sophisticated timing analysis may also reveal the kinds of
operations being performed.

2) Strength Reduction: The strength of an expression is
a measure of how processor intensive it is to evaluate. The
strength of an expression can be reduced if it can be written
using simpler operations. For example, certain multiplication
or exponentiation operations can be replaced by bit ma-

1 int crypt(int k*){
2 int key = 0;
3 if (k[0]==0xC0DE){
4 key=k[0]*15+3;
5 key+=k[1]*15+3;
6 key+=k[2]*15+3;
7 } else {
8 key=2*15+3;
9 key+=2*15+3;

10 key+=2*15+3;
11 }
12 return key;

Listing 5. Before optimization.

1 int crypt(int k*){
2 int key = 0;
3 if (k[0]==0xC0DE){
4 key=k[0]*15+3;
5 key+=k[1]*15+3;
6 key+=k[2]*15+3;
7 } else {
8 // replaced by
9 tmp = 2*15+3;

10 key = 3*tmp;
11 }
12 return key;

Listing 6. After CSE.



1 int crypt(int k){
2 int key = 0x42;
3 if (k==0xC0DE){
4 key=key*15+3;
5

6 } else {
7 key=2*15+3
8 }
9 return key;

Listing 7. Before optimization.

1 int crypt(int k){
2 int key = 42;
3 if (k==0xC0DE){
4 key=(key<<4) \
5 -key+3;
6 } else {
7 key=33;
8 }
9 return key;

Listing 8. After strength reduction.

nipulation operations. Strength reduction has performance
benefits especially for idiomatic expressions in loops.

The function crypt in Listing 7 encrypts and returns
a value passed as an argument. The developer has ensured
that both branches of the conditional have one multiplication
and one addition operation. After strength reduction, the
expression in the if branch is modified to use a bit-shift
and addition operation, while the else branch is simplified
to a constant value. An attacker with access to an appro-
priate timing channel can observe more about the difference
between the two branches after the optimization than before.
Similar to CSE, strength reduction can increase the amount
of information available via timing side-channels because it
replaces expressions evaluated at runtime with static values
or modifies the time-complexity of a computation.

3) Peephole Optimizations: Peephole optimizations are
one of the last phases performed by compilers before
emitting code. Compilers examine instructions through a
small, sliding window and use pattern matching to reorder
or exchange instructions to improve some form of perfor-
mance (e.g., to reduce cache misses, increase throughput,
or improve branch behaviour). Similar to CSE and strength
reduction, peephole optimization may create a timing based
side channel that is explicitly eliminated in source code.

Side Channel Discussion: If code is written with a
specific timing cost model in mind, almost every optimiza-
tion, and the three presented in particular, will destroy the
timing guarantees in source code. An outside observer can
exploit these timing differences to extract information about
operations performed by the application.

Some developers writing security-critical code are aware
of the impact of compiler optimizations. Timing guarantees
are enforced by writing inline assembler because compilers
typically do not modify such code. This approach foregoes
the benefits of programming in a high-level language and
leads to code that is not portable and not readable. Moreover,
optimizations can still enable side channels based on cache
hierarchies [9] or virtual machines [63].

IV. A VIEW OF COMPILER CORRECTNESS

The optimizations in the previous section have all been
formally shown to be correct. In this section and the next,
we examine correctness proofs to identify the gap between
functional correctness and security requirements. In this
section, we present a high-level summary of the arguments
used for showing the correctness of an optimization.

Program Semantics: We consider a small-step operational
semantics for programs. A state of a program is a valuation
of all entities that affect execution. We assume that the
semantics of a language defines a set of state changes JstK ⊆
States ×States for each statement st . A labelled transition
system is a tuple (States,Rel , `) consisting of a set of states
States , a transition relation Rel ⊆ States × States and a
labelling function ` : Rel → Stmt that maps (s, t) to st if
st is the statement causing the state change. The labelling
function associates a program statement with each transition.
We assume that the semantics of a program P is a labelled
transition system, denoted JP K.

Observational Equivalence: An attacker typically has an
incomplete view of a system and can access part of a pro-
gram’s state at certain stages in execution, but may not have
access to the entire state. We now formalise observations an
attacker can make about a program.

An observation space (vis, obs) is a pair of functions vis :
States → B and obs : States → Obs , where vis(s) is true
if a part of s is visible to the attacker and obs maps a state
s to an observation if vis(s) is true.

Example 1. This example illustrates how different observa-
tions can be formalised. Consider the two programs below.
Assume that all states are visible but the attacker can only
observe the last bit (parity) of a variable. This attacker cannot
distinguish between the programs below. If an attacker has a
side channel that counts the number of statements executed,
the two programs are still indistinguishable.

1 // Prog 1
2 int main(){
3 int x = 5;
4 int y = x+1;
5 }

Listing 9. Program 1

1 // Prog 2
2 int main(){
3 int x = 3;
4 int y = x+3;
5 }

Listing 10. Program 2

Consider another situation where only the final state of
the program is visible but an attacker can access the entire
state. Such an attacker can distinguish between the programs
above because the programs terminate with different values
for x. If, however, the attacker can only see the value of y,
the programs become indistinguishable. y

We formalise observations of an execution. Let (S,E, `)
be a transition system. An execution is a sequence of states
that is either an initial state s0 or the concatenation π · s
of an execution π that ends in state r, provided (r, s) is



in E. Let Exec be the set of executions. An observation
of an execution is a partial function obs : Exec → Obs∗

that is defined on an execution π if some state on π is
observable. The observation of s is obs(s) if vis(s) is true.
The observation of π · s is obs(π) if s is not visible, and is
obs(π) · obs(s) otherwise.

Definition 1. A transition system P is observationally
subsumed by Q if for every execution π of P , if obs(π)
is defined, there exists an execution τ of Q such that
obs(τ) is defined and obs(π) = obs(τ). P and Q are
observationally equivalent if P observationally subsumes Q
and Q observationally subsumes P .

Observational equivalence formalises that the attacker
cannot distinguish between the two systems. It does not
guarantee that a system is secure, only that the two systems
provide the same security guarantees.

At a high level, a compiler maps between programs in
different languages. Formally, a transformation is a map
trans : Lang1 → Lang2 between programs of two (possibly
identical) languages and a compiler is a composition

Comp =̂ trans1 ◦ · · · ◦ transk of transformations
transi : Lang i → Lang i+1.

In this paper we are interested in a guarantee of observational
equivalence. The guarantee provided by sound compiler
optimizations and formally verified compilers can be viewed
as an instance of observational equivalence.

Definition 2. A compiler Comp guarantees observational
equivalence with respect to an observation space (vis, obs)
if for all programs P , the labelled transition systems JP K
and JComp(P )K are observationally equivalent.

We say that a compiler (or an optimization) is correct
or is sound if it guarantees observational equivalence. The
definition above is parameterized by a notion of observation,
which allows us to apply it to different scenarios. The choice
of observation is typically left implicit in the literature,
and we shall see that making it explicit is insightful for
a discussion of security issues.

Games for Observational Equivalence

Conducting a direct proof of observational equivalence
for every optimization is tedious and does not exploit the
structure of the program. It is customary to use a structural
notion like (weak-) bisimulation or simulation [37], [50] in
proofs [28], [34]. We adapt the game-based definition of
bisimulation [53] to our setting1.

We formulate a game between a security analyst and a
compiler writer. The security analyst attempts to find an
execution of the transformed code that reveals information
not observable by executing the source code. The compiler

1See http://www.brics.dk/bisim/ for animations of bisimulation games.

writer attempts to show that the transformation preserves
security by finding a source execution that generates the
same observations. We discuss the structure of this game
because it is relevant for the analysis in Section V of why
correctness proofs do not guarantee security.

Definition 3. Let P and Q be programs and (vis, obs) be
an observation space. The position of the analyst is a visible
state t in JP K and a position for the writer is a visible state
s in JQK that satisfies obs(s) = obs(t). In each round, the
players make moves based on these rules.

1) The analyst chooses a finite execution from t to a
visible state t′.

2) The writer responds by choosing a finite execution
from s to a visible state s′ so that obs(s′) = obs(t′).

The analyst has the first move and must choose an initial
state of P . The analyst wins the subsumption game if
the writer has no move in a round. If the analyst has a
winning strategy starting from P or starting from Q, we say
that the analyst has a winning strategy in the observational
equivalence game. The writer wins the equivalence game if
the analyst does not win.

In game-theoretic terms, the game above is an infinite,
two-player game of perfect information. The Borel determi-
nacy theorem guarantees that there will be a winner in such
a game [50], [53]. The game above relates to observational
equivalence by a theorem of the form below.

Theorem 1. If P and Q are two programs and the writer has
a winning strategy in the observational equivalence game,
then P and Q are observationally equivalent.

The proof is similar to but more involved than proofs that
bisimulation implies trace equivalence. Given an execution
of the transformed program, we use the winning strategy
of the writer to derive an execution of the original program.
The conditions of the game guarantee that such an execution
exists and the two executions are observationally equivalent.

To prove that a transformation is correct, it is sufficient
to prove that there is a winning strategy for the writer when
the game is played on JP K and JComp(P )K. In the next
section, we indicate why arguments with this structure fail
to preserve security guarantees included in source code.

V. ANALYSIS OF THE CORRECTNESS-SECURITY GAP

In this section, we analyze the correctness-security gap
and suggest how correctness proofs can be extended to
close this gap. An intuitive explanation for this gap is
that the operational semantics used in correctness proofs
includes the state of the program, but not the state of the
underlying machine. The first step to close the gap is to more
accurately model the state of the execution environment. An
accurate model of state is not sufficient to detect attacks
(especially side-channel ones) because an accurate model of
state transitions is also required.



We make the intuition above precise using the notion
of an abstract machine; a mathematical idealization of the
machine in which code executes. Rather than associat-
ing a single semantics JP K with a program, we propose
considering a semantics JP KM of a program executing in
an abstract machine M . Existing correctness proofs are
conducted assuming a certain model (which we call the
source machine) while security properties are defined with
respect to other machine models. We now identify some
abstract machines that can be used in reasoning about the
security of optimizations.

Note that the abstract machines we consider are host
machines, meaning they host a program and define its
runtime. Abstract machines are distinct from the weird
machines of [8], because a weird machines are constructed
within a runtime and exploits are programs that run on a
weird machine. In contrast, abstract machines define the
context in which code executes. Nonetheless, the analysis
of exploits using weird machines in [57] uses a remarkably
similar game-theoretic formalism.

A. The Source Abstract Machine

We use the term source machine for the standard execu-
tion model that is assumed when defining the semantics of a
language. For example, the C language standard defines a C
abstract machine, which is an instance of a source machine.
The state of a source machine defines the values of variables,
the configuration of the call stack, and the contents of the
heap. We describe these components in detail to arrive at a
mathematical description of a state of the source machine.

A value is either a value of a primitive type such as
bool, char, or int, a memory location, or is a special
undefined value, denoted undef. The value undef is used
for the result of overflows, division by zero, the contents
of uninitialised memory locations, and other situations that
the language standard declares the result of a computation
is undefined [29], [30], [31], [45], [46], [47]. Let Val be the
set of values.

A source machine typically includes a memory model.
Details of the memory model are required for identifying
where a correctness proof fails to respect security assump-
tions. For this discussion, we assume the existence of a
memory model, such as the one in CompCert [35].

Let LVar be the set of local variables and GVar be the
set of global variables in a program. An environment maps
variables to values. We write LEnv and GEnv for local and
global environments, defined below. The program counter
indicates the next statement to be executed and PC is the
set of program counter values. The stack is modelled by
a sequence consisting of program counter values and local
environments, also defined below.

LEnv =̂ LVar → Val Stack =̂ (PC × LVar)∗

GEnv =̂ GVar → Val

A state of the source machine consists of a global environ-
ment, a stack and a heap. Computation within a function
can modify the top of the stack, global environments, and
the heap, but not the contents of the stack.

States =̂ GEnv × Stack ×Mem

A function call causes a new element to be pushed on the
stack and a return pops the top of the stack. The stack
becomes empty only when the program completes execution.

Issues with the Source Machine: The source machine is
based on the language standards and has sufficient detail
for proving the correctness of a compiler transformation.
However, this machine lacks various details relevant for
security. We discuss these details below, assuming a runtime
model based on C. The criticisms levied below apply to the
correctness-security gap in C compilers.

A first inaccuracy arises from the structure of the machine.
The source machine is based on the Harvard architecture,
which assumes a separation of control and data, while
machines in use today are closer (though not identical) to
the von Neumann architecture in which instructions and data
both reside in memory. Leveraging the coexistence of control
and data is fundamental for writing exploits, but this feature
is not captured by the source machine.

A second inaccuracy comes from use of uninitialised local
variables and exceptional behaviour, which result in the
undef value. Formal models do not allow undef to be
used in computations. During execution however, there is no
special undef value. Registers are not initialised to undef
after being allocated to new variables, so the old value stored
in memory can be accessed and used even if such an access
violates the language semantics.

A third inaccuracy, which connects to persistent state
violations, is what we call persistence assumptions. The
source machine assumes that stack and memory contents
are not persistent. A block that has been deallocated cannot
be accessed again and the values it contained are lost. Once
a function returns, the values of local variables used by that
function are lost. These assumptions are not satisfied by the
machine in which a program executes and contribute to the
security blind-spot in compiler correctness frameworks.

A fourth family of inaccuracies arises from abstractions
that are made to ignore details not relevant to correctness.
The source machine ignores details of load and store oper-
ations at the processor level, processor specific constructs,
and time and power consumption. Additionally, correctness
proofs, such as in [28], [35], use a small-step semantics for
statements, but a big-step semantics for expression evalua-
tion. The steps involved in expression evaluation are impor-
tant when reasoning about cryptographic libraries. Ignoring
these details is important to facilitate logical reasoning
at a high level, but this idealisation leads to correctness
arguments that are blind to side-channels.



B. Refinements of the Source Machine

Despite the criticisms of the source machine, it is a
convenient and popular formalism for reasoning about com-
piler correctness. It is important to be aware that it is a
starting point, so proofs conducted at this level may not
preserve lower-level properties. Such a statement is obvious
in retrospect, but to the best of our knowledge has not be
made in the context of security and compilation.

We now propose refinements of the source machine that
would be suitable for a security-oriented analysis. Our goal
is not to work out the details of these machines in full, but to
propose various models that can be used in future analysis.

x86 Assembler Machine: The x86 instruction set can be
viewed as defining an x86 assembler machine. We use the
term “assembler machine” because it is not identical to
the physical x86 architecture. The x86 assembler machine
provides semantics to x86 assembly language but abstracts
away from architectural details. The x86 machine consists
of registers, an instruction pointer, a set of flags, and the
memory. States of the x86 machine define the set

xStates =̂ rStates × iPtr × Flags × xMem

which contains the states of registers, the value of the
instruction pointer, the status of the flags, and the config-
uration of memory. A state transition can be viewed as a
single fetch-decode-execute cycle, in which case this model
abstracts away from clock-cycle level details.

Memory Hierarchy and Timing Machines: The x86 as-
sembler machine above does not model memory hierarchy
details. The caching policy combined with the sequence of
reads in the program affects the number of cache misses. An
attacker capable of measuring the time required for a mem-
ory lookup can detect, based on latency, whether a cache hit
or miss occurred. Such partial information has been used
to extract cryptographic keys from implementations of AES,
RSA and DSA [43]. Cache-based attacks have reconstructed
AES keys in the order of minutes of execution [23].

Formal reasoning about timing attacks is facilitated by ex-
tending an abstract machine with time. For example, a timed
source machine contains timed states tStates =̂ N×States ,
which extend source machine states with time stamps. The
semantics of a program with respect to a timed source
machine would have incremented the timestamp with every
statement that is executed. The increment would depend on
the timing cost of the statement. A timed source machine
may be too abstract to model certain attacks in which case
the x86 machine can be extended with timing information.
Such an extension would allow for time-differences in
expression evaluation to be modelled.

Semantics in a Machine: To use an abstract machine M in
analysis of compiler correctness, one requires a framework
for defining the semantics JP KM of a program P executing
in M . Such a framework must provide a convenient way for

describing how each statement affects the state of M . In the
case of the assembler machine, such updates are well known,
albeit tedious, because they require a high-level specification
of what assembler instructions should correspond to the
source language. In the case of the timing machine, a cost
model for statements has to be specified.

While tedious, such definitions are necessary for formal
analysis of low-level security issues. For instance, work
on detecting timing and cache-based side-channel attacks,
already uses such models.

C. Analysis of Dead Store Elimination

In this section, we analyze dead store elimination using
the source machine and a simplification of the assembler
machine. We show that the observational equivalence game
can be used to identify the persistent state violation caused
by dead store elimination. Our contribution is to highlight
that though more precise machine models are required to
reason about security, new proof techniques are not. The gap
between correctness and security is not due to a limitation
of the proof technique used but due to the model used.

The program on the left below contains a variable x.
Dead-store elimination removes the assignment to x to
produces the code trans(P ) on the right.

1 // P
2 int inc(int a){
3 int x = a+1;
4 return a+1;
5 }

Listing 11. Program 1

1 // trans(P)
2 int inc(int a){
3

4 return a+1;
5 }

Listing 12. Program 2

Assume that the set Obs of observations consists of values
of program variables that are arguments or return values
of procedure calls. Such observations abstract away from
internal computations and the program counter. Let vis be
true at the state before a call or after a return and false
otherwise. Every call-site for the procedures above must
be of the form y = inc(b). The transitions in JP KSrc
of the program P in the source machine Src, for the call
y = inc(b) are below, with the program counter of the
caller written as pc.

pc, y 7→ v, b 7→ w

...

call inc(b)
−−−−−−−−−−−−−→

2, a 7→ w, x 7→ undef
pc, y 7→ v, b 7→ w

...

int x = a+1−−−−−−−−−−−−−→

3, a 7→ w, x 7→ w + 1
pc, x 7→ v, b 7→ w

...

ret a+1−−−−−−−−−−−−−→
pc, x 7→ w + 1, b 7→ w

...

The states in gray exist in JP KSrc but are not visible to the
analyst in the game. The state reached after int x=a+1
does not exist in the transformed program. In these two



programs, states affected by the optimization are not visible
to the analyst. A winning strategy for the writer is to choose
for every visible, transformed state a visible state with the
same local environment. Such a choice is guaranteed to exist,
though in general, a translation between program counter
values may be required to derive it. By Theorem 1, it
follows that the two transition systems are observationally
equivalent, so dead store elimination is sound with respect
to the source machine.

We now consider what the semantics of the transformed
code may look like in the assembler machine. Potential
states of the original and transformed code after the program
returns are shown below. To avoid depicting a memory
model, we present the state with a similar structure to the
source machine state.

2, a 7→ w, x 7→ w + 1
Bpc, y 7→ w + 1, b 7→ w

...

2, a 7→ w
Bpc, y 7→ w + 1, b 7→ w

...

The symbol B indicates the top of the stack and text in
gray depicts the local variables of inc(b), which are not
accessible but persist in memory. Consider a game played
where the persistent, but non-accessible part of the state is
observable. The analyst has a winning strategy by choosing
an execution leading to the state on the right above. There
is no corresponding state in code before compilation, so the
analyst can show that the persistent state before and after
optimization differ.

This analysis shows that dead store elimination is correct
for the source machine but not for the assembler machine if
one assumes that the contents of memory are visible. Sim-
ilarly, undefinedness violations can be analyzed by making
undefined values observable in the correctness proof. Side
channel attacks can be analysed using a timed machine.
A state of a timed machine is of the form (t, s) where
s is a state and t is a timestamp. The set of observations
consists of timestamps and the visible part of the state. The
goal of the analyst is to find an execution whose timing
after compilation does not correspond to the timing of an
execution before compilation.

VI. OPEN PROBLEMS AND FUTURE WORK

The main question that now arises is how one can further
understand, detect, and mitigate the consequences of the
correctness-security gap. We identify three families of open
problems our research raises.

A. Deeper Understanding of the Correctness-Security Gap

1) The landscape of the correctness-security gap: One
direction for research is to comprehensively identify the
security impact of known compiler optimizations, especially
widely used ones. It would be useful both for understanding
and designing detection mechanisms to identify categories
of security violations these optimizations belong to.

2) Generalized compiler correctness proofs: There are
currently sophisticated techniques available for reasoning
about compiler correctness. To incorporate reasoning about
security, we believe compiler correctness proofs should
be generalized to compiler correctness with respect to an
abstract machine and an attacker. A research goal here
is to identify general, reusable, automation-friendly proof
principles applicable to families of machines and attackers.
Developing such a framework requires research develop-
ments in a few areas listed below.

3) Abstract machine models: A large body of work
in programming language semantics can be understood as
developing representations of source machines. This in-
cludes interpreters based on language specifications, formal,
executable semantics, and logical encodings of language
semantics, all of which define some notion of a source
machine. To reason about the low-level behaviour of code
requires abstract machines at different levels of abstraction
that are implemented as interpreters or in theorem provers.

4) Language semantics with respect to a machine: A
major challenge for using abstract machines is defining
the semantics of a high-level programming language with
respect to a low-level machine. Such a semantics would, in
effect, incorporate a formal notion of a compiler. Techniques
for compositionally defining semantics with respect to a ma-
chine would simplify the construction of abstract machines
and generalized correctness proofs.

5) Attacker models: Each abstract machine supports no-
tions of observation, which define the channels an attacker
has access to. There are multiple attackers one can consider
for a given set of channels. A research goal here is to
identify practically occurring attacker models and channels
they have access to. Similar to abstract machine models,
attacker models can also be execution environments or
logical representations in theorem provers.

B. Detection of Correctness-Security Violations

The goal of a tool for detecting differences in security-
critical behaviour before and after an optimizing transfor-
mation is fundamentally different from that of bug finding
or static analysis tools.

1) Testing tools: A testing tool for this problem would
combine elements of compiler testing tools with litmus tests
for weak memory models. One approach testing is to execute
two abstract machines side by side. The first machine can
include the full set of optimizations applicable and the
second machine performs no optimizations but interprets the
source code directly. Before every transition between code
regions of different security privilege, a memory snapshot
could be taken. These snapshots can be compared after
projecting out the visible parts of the state to identify
differences observable by an attacker.

A second direction is to develop compilers for executable
abstract machines, execute code in these machines, and



compare memory snapshots taken at trust boundaries. These
compilers should model the optimizations that will be ap-
plied in practice. A third direction is to construct test suites
of small pieces of code that represent security intent and use
techniques like those sketched above to detect correctness-
security violations. Existing CWEs and examples in this
paper are at the level of complexity for such tests. Such
research has a natural extension to synthesis of test suites
given a specification of a machine, attacker and optimization.

2) Correctness-Security Violation Detectors: Bug-finding
tools typically incorporate a notion of a bug and search
for occurrences of that bug. Static tools for detecting
correctness-security violations need to incorporate a no-
tion of observational equivalence, a family of applicable
optimizations, and a model of optimization sites and trust
boundaries. The goal of static tools would be to identify
code patterns that represent security intent and determine if
this intent is violated by an optimization. To avoid the well-
known issue of flooding a developer with false alarms, such
tools would have to accurately model secure coding patterns
and the details of optimizations.

A tool for detecting undefined behaviour has recently been
developed [60]. Detection tools need not be static. They
can be dynamic, use the compiler and combine static and
dynamic techniques. A compiler can be tested for security
violations by evaluating memory or timing side effects at
the security boundaries.

C. Implementing Security-Preserving Compilation

The goal of security-preserving compilation, from our
perspective, is to allow for developer-introduced security
measures to coexist with compiler optimizations to enable
code that is both secure and executes efficiently.

1) Developer Annotations: One mechanism for preserv-
ing security guarantees in source code is to use code anno-
tations that inform the compiler that certain optimizations
are disallowed in a region of code. Specific examples of
such regions are (i) side-effect free computations where
the memory side effects must not be different from the
source computation (i.e., the compiler disables dead store
elimination, inlining, code motion and disallows undefined
behaviour in this section) and (ii) timing adhering computa-
tions, where the compiler must not apply any optimizations
due to possible changes in the timing of the generated code
(i.e., the compiler disables all optimizations in this region).

This idea can be implemented using developer provided
annotations. The annotations (or additional language key-
words) would allow the developer to demarcate to the
compiler that certain regions of code are critical for security
(or timing). For example, two useful keywords would be,
secure and lockstep. The secure keyword would
indicate that the compiler should not modify the way data re-
sides in memory as this may affect security. The lockstep
keyword would indicate that the timing of code is critical

and the compiled code should execute in lock-step with
source code. Both these keywords should allow for a notion
of scope, so that (some) optimizations can be temporarily
disabled in some local region of code.

2) Statically Generated Annotations: An alternative to
a developer-guided defense against compilers is to use
automated analyses to detect common instances of the
correctness-security gap. We can draw an analogy here to
tools for insertion of memory fences in concurrent programs
to guarantee that optimizations designed for sequential con-
sistency architectures is not applied to code that runs in
a relaxed memory architecture. An automated tool can be
used to highlight to the developer regions of code where
an optimization might apply that introduces a correctness-
security gap. This approach would also be similar to the
automatic insertion of bounds-checks into programs to catch
run-time violations the developer did not prepare for. Bugs
in the correctness-security gap that could be prevented in this
way are elimination of memory scrubbing and dissolution of
implicitly assumed trust boundaries (such as stack frames).

It is generally undecidable if a computation or variable
is security critical or not as these notions depend on the
context of the computation. One approach to such detection
is heuristic, where pattern matching on certain code idioms
or detecting the use of certain libraries can signal security-
critical code. Another approach is to pivot around a security
seed, e.g., libraries for security-critical operations or requests
that change the privilege with which code runs. Data-flow
analysis can be used to identify code that manipulates or is
affected by variables flowing through the security seed, and
this analysis can be used to identify security-critical code.

VII. RELATED WORK

The first proof of compiler correctness we are aware
of is over 40 years old [36]. The compiler verification
bibliography [16] summarises a large body of related work.
Work in compiler correctness can be classified along a
problem and a solution dimension. Problems range from
proving correctness to discovering bugs. Solutions range
from using existing techniques to developing new frame-
works. We restrict our attention to recent work in this context
that targets C/C++, security relevant issues, and automation.

Our work is inspired by verification based on formalized,
operational semantics such as in CompCert [34]. The idea
of an assembler machine was inspired by the executable
semantics of [25]. Abstract machines have also been used
for correctness and security analysis in [19], [35], [40].

Compiler correctness has been formalized in terms of the
theory of abstract interpretation in [13]. The notion of visi-
bility in our work derives from theirs but the bisimulation-
based proofs are closer to [34]. There is debate in the litera-
ture on operational versus denotational approaches to com-
piler correctness. To quote [34] “it is unclear yet whether
such advanced semantic techniques can be profitably applied



to low-level, untyped languages.” A similar question applies
to our setting where the combinatorics of machine behaviour
eclipses the algebraic abstraction of a high-level language.

A contrary opinion to the one above appears in [7], where
Hoare logic is extended to Relational Hoare Logic (RHL)
for compiler correctness proofs. Curiously, RHL doubles as a
proof system for secure information flow, that is as powerful
as a type system for non-interference [52]. The security
issues we have identified in compilers can be viewed as
information leaks from portions of the state that are not
modelled by the standard semantics. An interesting question
for future work is whether a typing discipline based on this
system can defend a program against insecure optimizations.

A distinct class of formal techniques attempts to auto-
mate correctness proofs. Cobalt [32] and Rhodium [33]
use domain-specific languages and techniques, and such
techniques have been applied to reason about cryptographic
primitives [44]. In [28], dead code elimination, constant
folding and code motion were encoded as rewrite rules on
control flow graphs conditioned by temporal logic formulae.
Both these approaches apply to the IR semantics. A natural
extension of our work is to adapt these systems for security-
sensitive reasoning about compilers.

The practical impact of compiler optimizations on security
is visible in CWE-14 [1] and CWE-733 [2] that identify
the dead store problem. The implementation of OpenSSL
explicitly uses assembly code that will not be modified
by the compiler to defend against compiler optimizations
introducing side-channel vulnerabilities. The goal of our
work is to highlight the role of sound optimizations in
introducing security vulnerabilities.

Fuzzers provide a practical approach to discovering com-
piler bugs [14], [11]. Compiler fuzzing is challenging due to
the structured nature of inputs and the depth of the software
pipeline. Once a bug is discovered, test case reduction tools
are applied to minimize the size of inputs [49]. We believe
these tools can be used to discover more instances of the
correctness-security gap.

Despite folk awareness that compiler optimizations may
affect security we have not seen the problem articulated in
detail as we have done, especially for sound optimizations.
Concurrent to our work, Wang et al. [60] presented a model
of undefined behaviour and developed the STACK system,
which detects patterns of undefined behavior in existing
applications. The goal of their work was to find bugs
arising from undefinedness optimizations, while ours was to
highlight and formally analyze the correctness-security gap.
Undefinedness violations are an instance of this gap. Another
important difference is our proposal of abstract machines
for extending current reasoning approaches to detect such
problems in a formal context.

We are not aware of research on counter measures
that protect source code against compiler optimizations.
To counter side-channels, [38] relies on source to source

transformations and usually exhibits high performance (5x)
and memory (3x on stack space) overhead. These approaches
are oblivious to security-critical regions and use a con-
servative approach. We argue that it is important to infer
security-critical and timing-critical regions to enable full
compiler optimizations for most of the code while avoiding
optimizations in specific regions.

VIII. CONCLUSION

In this paper, we identified the correctness-security gap,
which arises when a formally sound, correctly implemented
optimization violates security guarantees in source code. We
demonstrated with several case studies that this phenomenon
manifests with well known optimizations implemented in all
compilers. We believe this behaviour is surprising and unin-
tuitive because discrepancies between source and compiled
code are typically attributed to bugs in compilers. Our analy-
sis reveals that standard correctness proofs are performed in
a model that ignores the details used to construct an attack.
As a step towards addressing the problem, we used a game-
theoretic framework to identify how a correctness proof
can overlook a security property. Moreover, we suggested
extensions to existing correctness frameworks that can be
used to model security issues.

There is much work to be done to understand how
prevalent the problem is, and to develop countermeasures.
Towards this end, we have identified several open problems
raised by this work with respect to achieving understanding,
detection of such bugs and mitigation of the consequences.
These new problems open the door to a range of work in
formal logic, architectural modelling, tool development, and
language design. In all these areas, we believe it is possible
to reuse existing advances in compiler correctness, vulner-
ability detection, and runtime monitoring while extending
research in these areas in fundamentally new ways. We look
forward to undertaking such research and collaborating with
the research community in such efforts.
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