
Lockdown: Dynamic Control-Flow Integrity

Mathias Payer
Purdue University, USA

Antonio Barresi
ETH Zurich, Switzerland

Thomas R. Gross
ETH Zurich, Switzerland

ABSTRACT
Applications written in low-level languages without type or
memory safety are especially prone to memory corruption.
Attackers gain code execution capabilities through such ap-
plications despite all currently deployed defenses by exploit-
ing memory corruption vulnerabilities. Control-Flow In-
tegrity (CFI) is a promising defense mechanism that restricts
open control-flow transfers to a static set of well-known lo-
cations.
We present Lockdown, an approach to dynamic CFI that
protects legacy, binary-only executables and libraries. Lock-
down adaptively learns the control-flow graph of a running
process using information from a trusted dynamic loader.
The sandbox component of Lockdown restricts interactions
between different shared objects to imported and exported
functions by enforcing fine-grained CFI checks. Our proto-
type implementation shows that dynamic CFI results in low
performance overhead.

1. INTRODUCTION
Memory corruption is a well-known problem for applications
written in low-level languages that do not support memory
safety or type safety (e.g., C, or C++). The core of many
applications running on current systems is written in C or
C++, and it is simply impossible to rewrite all these appli-
cations in a safe language due to the large amount of existing
code. In addition, the problem of memory corruption is not
restricted to low-level languages as safe languages are often
implemented using low-level languages (e.g., the HotSpot
Java virtual machine is implemented in C++) or use low-
level runtime libraries like the libc. Since 2006, a number of
defense mechanisms like Address Space Layout Randomiza-
tion (ASLR) [24], Data Execution Prevention (DEP) [32],
stack canaries [13], and safe exception handlers have been
deployed in practice to limit the power of attacker-controlled

Technical Report, Laboratory for Software Technology, ETH Zurich
Copyright 2014 ETH Zurich
http://dx.doi.org/10.3929/ethz-a-010171214

memory corruption. Unfortunately, all commonly deployed
defense mechanisms can be circumvented. The list of Com-
mon Vulnerabilities and Exposures (CVE) shows that (i)
memory corruption is common and (ii) many of these mem-
ory corruption vulnerabilities can be used to redirect the
control-flow of the application to execute attacker-controlled
code (either by injecting new code or by reusing existing
code sequences in an unintended way).

Control-Flow Integrity (CFI) [1, 11, 27, 4, 33, 35, 37, 36,
38, 8, 23] is a promising defense mechanism that, by de-
sign, restricts the set of targets that can be reached by any
control-flow transfer according to the statically determined
control-flow graph. Unfortunately, current implementations
share one or more of the following drawbacks: (i) some im-
precision in the protection by allowing a larger set of targets
than originally possible with different levels of imprecision
(this imprecision can be exploited by new attacks [3, 6, 12]),
(ii) the need to recompile applications [1, 11, 27, 4, 33, 35],
(iii) no support (or protection) for shared libraries [1, 11, 27,
4, 33], or (iv) relying on precise relocation information that
is only available in Windows binaries [37, 36].

This paper presents Lockdown, a dynamic protection mecha-
nism for legacy, binary-only code that recovers fine-grained
control-flow graph information at runtime. Lockdown en-
forces a strict CFI policy for function calls and indirect
branches and adds a shadow stack to protect the integrity
of return instructions at all times. Compared to other CFI
mechanisms, Lockdown (i) relies on a dynamic, on-the-fly
analysis (compared to a-priori static analysis), (ii) enforces a
module-aware dynamic CFI policy that adapts according to
the currently loaded libraries (function calls are restricted to
valid functions inside the same module or correctly imported
functions from other libraries), and (iii) restricts jump in-
structions to valid instructions inside the same function.
Lockdown is more precise than existing binary-only CFI
protections as CFI is enforced on a per-library granular-
ity. When available, Lockdown uses non-stripped libraries
to infer information about internal symbols. In addition,
Lockdown uses a set of simple heuristics to detect callback
functions that are not exported but passed between mod-
ules, to protect exceptions, and to support tail recursion
implementations. Lockdown relies on a trusted loader [26]
to extract runtime information about loaded libraries and
possible interactions between those libraries and uses a sand-
box based on dynamic binary translation [25] to enforce the

System Call InterfaceSystem Call InterfaceKernel

User

Lockdown
Domain

App.
Domain

ELF
Files

Loads
ELF
DSOs

/bin/<exe>

Loader

libc.so.6

lib*

Code Cache

read only readable + executable

main() printf()

func*()

main'
func1()
func2()
...

func2'
printf'

LockdownLockdown

Binary Translator

translate()

CFT Verifier

Run-time
ICF
validation.

Figure 1: Overview of the Lockdown approach.

integrity of individual control-flow transfers. Figure 1 shows
an overview of Lockdown.

Our open-source prototype implementation of Lockdown for
x86 Linux protects arbitrary applications from control-flow
hijack attacks by implementing our dynamic CFI policy. An
evaluation of the performance of the prototype implementa-
tion based on the SPEC CPU2006 benchmark shows reason-
able performance overhead. In addition, we introduce the
concept of “dynamic average indirect target reduction” to
allow an empirical evaluation of the resilience of Lockdown-
protected applications against control-flow hijack attacks.

This paper makes the following contributions:

1. Design of Lockdown, a security mechanism that en-
forces dynamic precise control-flow integrity by recon-
structing a runtime control-flow graph using auxiliary
data available through the dynamic loader;

2. A security evaluation of the increased protection that
Lockdown offers using Dynamic Average Indirect tar-
get Reduction (DAIR), a dynamic metric that evalu-
ates the possible targets for a given library at any given
time;

3. A case study and performance evaluation of Lockdown
and our prototype implementation using a set of com-
mon applications.

The rest of the paper is organised as follows: section 2 dis-
cusses the attack model followed by related work in sec-
tion 3; section 4 presents the design of Lockdown, section 5
discusses the implementation, and section 6 evaluates the
prototype implementation; and section 7 concludes.

2. ATTACK MODEL
For Lockdown we assume a powerful yet very realistic at-
tack model: the attacker has read and write capabilities
of the program’s data regions and read capabilities for the
program’s code regions. This attack model reflects common
efforts to circumvent the deployed defenses on current sys-
tems. The attacker uses memory corruption vulnerabilities
present in the application or any of the loaded libraries to

modify the program’s data, thereby affecting the control-
flow and execution of the program. The attacker lever-
ages either out-of-bounds pointers or dangling pointers to
read/write data in the program’s address space, with the
result of forcing behavior undefined in the source program-
ming language.

We assume that the attacker can neither modify the code
region of the program nor inject additional code into the
program. This assumption is fulfilled by current systems
that enforce an W⊕X [32] strategy, where any memory area
is either writable or executable (and never both at the same
time). To achieve code execution capabilities the attacker
must therefore reuse existing code sequences available in
some code region of the program or its libraries. In code
reuse attacks [30, 20, 28, 5, 28, 3, 6] the attacker pre-
pares a set of invocation frames that point to code sequences
(so called “gadgets”) that end with an indirect control-flow
transfer whose target is again controlled by the attacker.

Using these given (practical) capabilities an attacker will try
to (i) overwrite a code pointer, (ii) prepare a set of invocation
frames for a code reuse attack, and (iii) force the program
to dereference and follow the compromised code pointer.

3. BACKGROUND AND RELATED WORK
A variety of defense mechanisms exist that protect against
control-flow hijack attacks by protecting the integrity of code
pointers (see Szekeres et al. [31] for a systematization of at-
tacks and defense mechanisms). Existing defense mecha-
nisms stop the control-flow hijack attack at different stages
by: (i) retrofitting type safety and/or memory safety onto
existing languages [19, 15], (ii) protecting the integrity of
code pointers (i.e., allowing only valid code locations to
change the memory area of a code pointer) [17, 18, 2], (iii)
randomizing the location of code regions or code blocks
(ASLR or code diversification are examples of this proba-
bilistic protection) [24, 13], or (iv) verifying the correctness
of code pointers when they are used. E.g., Control-Flow
Integrity (CFI) [1] is a defense mechanism that stops the
attack in the fourth stage, by preventing the use of a cor-
rupted code pointer. Unfortunately, the implementation of
CFI is challenging and consequently, CFI has not yet seen
widespread use.

Software-based fault isolation (SFI) protects from faults in
the application and enforces a given security policy on an
unaware program. SFI can be implemented using a dynamic
binary translation system.

Lockdown combines a dynamic binary translation system
with a trusted loader to enforce a dynamic, per-module CFI
policy on unaware, binary-only programs using the informa-
tion about available modules and functions from the trusted
loader.

3.1 Control-Flow Integrity
Control-Flow Integrity (CFI) [1] and its extension XFI [11]
restrict the control-flow of an application at runtime to a
statically determined control-flow graph. Each indirect control-
flow transfer (an indirect call, indirect jump, or function re-
turn) is allowed to transfer control at runtime only to the
set of statically determined targets of this code location.

CFI relies on code integrity (i.e., an attacker cannot change
the executed code of the application). As explained in sec-
tion 2, the only way an attacker can achieve code execution
is by controlling code pointers. CFI checks the integrity of
code pointers at the location where they are used in the
code. Using memory corruption vulnerabilities an attacker
may change the values of code pointers (or any other data).
The attack is detected (and stopped) when the program tries
to follow a compromised code pointer.

The effectiveness of CFI relies on two components: (i) the
(static) precision of the control-flow graph that determines
the upper bound of precision and (ii) the (dynamic) precision
of the runtime checks.

First, CFI can only be as precise as the control-flow graph
that is enforced. If the control-flow graph is too permissive,
it may allow an illegal control transfer. All existing CFI ap-
proaches rely on two phases: an explicit static analysis phase
and an enforcement phase that executes additional checks.
Most compiler-based implementations of CFI [1, 11, 4, 33,
27, 2, 35, 22] rely on a points-to analysis for code pointers
at locations in the code that execute indirect control-flow
transfers. A severe limitation of these approaches is that
all the protected code must be present during compilation
as they do not support modularity or shared libraries. Im-
plementations based on static binary analysis [37, 9, 34, 36]
either rely on relocation information (e.g., in the Windows
PE executable format) or reconstruct that information using
static analysis [38]. Modular CFI [23] is a recent compiler-
based CFI tool that stores type information and dynami-
cally merges points-to sets when new libraries are loaded
(but does not support library unloading).

Second, the initial upper bound for precision is possibly lim-
ited through the implementation of the control-flow checks
(Goektas et al. [12] list common limitations in CFI im-
plementations). Practical implementations often maintain
three global sets of possible targets instead of one set per
control-flow transfer: one target set each for indirect jumps,
indirect calls, and function returns. The control-flow checks
limit the transfers to addresses in this set. This policy is an
improvement compared to unchecked control-flow transfers
but overly permissive as an attacker can hijack control-flow
to any entry in the set.

Lockdown is a dynamic approach that enforces a stricter,
dynamically constructed control-flow graph on top of a dy-
namic sandbox for binaries. The sandbox ensures code in-
tegrity, adds a safe shadow stack that protects against return-
oriented programming attacks [30], and enforces dynamic
control-flow checks. The secure loader protects the GOT
and GOT.PLT data structures from malicious modifications.

3.2 Dynamic binary translation
Software-based Fault Isolation (SFI) protects the integrity of
the system and/or data by executing additional guards that
are not part of the original code. Dynamic Binary Trans-
lation (DBT) allows the implementation of SFI guards on
applications without prior compiler involvement by adding
a thin virtualization layer between the original code and the
code that is actually executed. The DBT system dynami-

cally enforces security policies by collecting runtime infor-
mation and restricting capabilities of the executed code.

Several DBT systems exist with different performance char-
acteristics. Valgrind [21] and PIN [16] offer a high-level run-
time interface resulting in higher performance costs while
DynamoRIO [7] and libdetox [25] support a more direct
translation mechanism with low overhead translating appli-
cation code on the granularity of basic blocks. We build on
libdetox which has already been used to implement several
security policies.

A security policy can only be enforced if the translation
system itself is secure. Libdetox splits the user-space ad-
dress space into two domains: the application domain and
the trusted binary translator domain. This design protects
the binary translation system against an attacker that can
modify the address space of the running application as the
attacker cannot reach the trusted DBT domain. Libdetox
uses a separate translator stack and separate memory re-
gions from the running application. Libdetox enforces the
following properties: (i) no untranslated code is ever ex-
ecuted; (ii) translated code is executed in the application
domain; (iii) no pointer to the trusted domain is ever stored
in attacker-accessible memory. The application triggers a
trap into the trusted domain when (i) it executes a system
call, (ii) executes untranslated code, or (iii) a heavy-weight
security check is triggered. Libdetox can be extended by
the addition of a trusted loader to the trusted computing
domain [26] thereby protecting the SFI system from at-
tacks against the loader when loading or unloading shared
libraries.

The combination of trusted loader and dynamic binary trans-
lation system implements the following security guarantees:
a shadow stack protects the integrity of return instruction
pointers on the stack at all times; the trusted loader pro-
tects the data structures that are used to execute functions
in other loaded libraries at runtime; and the integrity of the
security mechanism is guaranteed by the binary translation
system. The shadow stack is implemented by translating
call and return instructions [25]. Translated call instructions
push the return instruction pointer on both the application
stack and the shadow stack in the trusted domain. Trans-
lated return instructions check the equivalence between the
return instruction pointer on the application stack and the
shadow stack; if the pointers are equivalent then control is
transferred to the translated code block identified by the
code pointer on the shadow stack.

The existing version of libdetox supports and allows the ap-
plication to execute the full x86 instruction set (including
any SSE extensions). The trusted computing base of the
architecture (trusted loader and binary translation system)
is small, with less than 20,600 lines of code.

3.3 Dynamic loading in a nutshell
Modern Unix operating systems and the Linux kernel use the
Executable and Linkable Format [29, 10] (ELF) to specify
the on-disk layout of applications, libraries, and compiled
objects. A file that uses the ELF format to define its in-
ternal layout is called Dynamic Shared Object (DSO). The
ELF format defines two views for each DSO. The first view

is the program header that contains information about seg-
ments; the program header controls how the segments must
be mapped from disk into the process image. The second
view is the section header table; this table contains the more
detailed section definitions.

The dynamic loader and the linker both use the section
header table. Depending on the linker flags the section
header table of a linked executable or shared library contains
information about all functions and symbols, or it contains
only information about exported symbols.

The dynsym section contains the location information of all
exported symbols and is available in all dynamically linked
libraries and applications. This section is used by the dy-
namic loader to resolve references. The symtab section on
the other hand is not needed by the dynamic loader and
can be stripped from the final library or application (but
is available for most ELF files on current systems). This
section contains detailed information at the highest possi-
ble level of granularity and includes details of all available
symbols, even static and weak variables or functions, hidden
symbols, and individual object files. The granularity of the
dynsym and symtab information is no longer on the section
level but on the level of individual compiled objects (usu-
ally individual source files) and functions. If available this
information is used, e.g., in the debugger.

Lockdown uses the dynsym information to establish an in-
formation baseline. This base is extended with the more
detailed symtab information to form the complete picture
using as many details as possible. If the symtab information
is not available, e.g., because the binary is stripped, then
Lockdown falls back to the information baseline.

4. LOCKDOWN DESIGN
Lockdown enforces a strict, practicable CFI policy at the
level of shared libraries by restricting control-flow transfers
between loaded shared libraries. The high-level policy re-
stricts (i) inter-module calls to functions that are exported
from one library and imported in the other library, (ii) intra-
module calls to valid functions, (iii) jump instructions to
valid instructions in the same function and valid call tar-
gets for tail calls, and (iv) return instructions to the precise
return address (with a special handler for exceptions). Fig-
ure 2 shows an example of the call restrictions for three
loaded libraries. The call restrictions are adapted dynam-
ically whenever libraries are loaded or unloaded. The in-
tegrity of return instructions is enforced at all times using
a shadow stack. Indirect call instructions and indirect jump
instructions execute a runtime check that validates the cur-
rent target according to the currently loaded libraries.

Lockdown relies on a trusted loader that prepares informa-
tion about all visible symbols relative to each code location.
The loader uses the available symbol tables and information
about imported and exported symbols to provide this infor-
mation. If a shared library is stripped then only information
about imported and exported symbols is available, resulting
in a coarser-grained protection.

4.1 Rules for control transfers
Three different forms of control transfers exist, call, jump,
and return instructions. Call instructions are used to trans-
fer control to a different function. Jump instructions (con-
ditional and unconditional), on the other hand, are used to
transfer control inside a function. Return instructions are
used to transfer control back to the calling function. The
rules for different control transfers are as follows:

1. Call instructions must always target valid functions.
The set of valid functions is always specific for every
protected call instruction. Only functions that are de-
fined or imported in the current module are allowed.
Static functions or local functions that are called in
the same module are only verifiable if the binary is
not stripped.

2. The target of a jump instruction must stay within the
same function or must go to a valid function target
(due to tail call implementation). If the binary is
stripped then jumps can only be verified to the gran-
ularity of individual sections and exported symbols.

3. Return instructions must always transfer control back
to the caller. The DBT system keeps a shadow stack
data structure in the trusted domain to verify return
addresses on the stack before they are dereferenced.
The shadow stack verifies the equivalence of the re-
turn address on the application stack and removes it
from the application stack. It then removes the return
address from the shadow stack and transfers control to
the translated counterpart of that code pointer (pro-
tecting from time of check to time of use attacks).

4. All control transfers must target valid instructions that
are reachable from the beginning of a symbol. This
rule prohibits control transfers into instructions.

These rules hold for correctly compiled programs under the
assumption that an attacker cannot modify code pointers in
memory. Under our attack model in section 2 the attacker
can freely modify any code pointer in writable memory.
Lockdown inserts additional guards that protect control-flow
transfers and detects code pointers that were modified by
an attacker when that code pointer is used. If an individ-
ual control transfer breaks one of the rules above then the
application is terminated with a security exception.

4.2 Control transfer categories
Most instruction sets (including x86) allow two types of con-
trol transfers, namely static control transfers that redirect
control-flow to a target that is encoded in the instruction
itself and indirect control-flow transfers that transfer con-
trol indirectly through a memory address (the code pointer)
that contains the target. An indirect control-flow transfer
encodes the memory address or register that contains the
target in its instruction.

All static control-flow transfers are verified during the trans-
lation of the instruction. Because all information is static
this translation-time check is safe and holds as long as only
new code is added to the cache of translated code. If library

importedexported

.text

puts
scanf
funcA
...

/bin/<exec>

importedexported

.text

_dl*
...

/lib/libc.so.6

puts
scanf
mprotect
...

importedexported

.text

ifunc*
...

/lib/lib*

funcA
funcB
...

call puts
...
lea fptr, %eax
...
call *%eax
...

puts:
...
mprotect:
...

funcA:
...
funcB:
...

symbol table of ELF DSO

.text section of DSO

allowed Control Flow transfer

illegal Control Flow transfer

Figure 2: Call restrictions for an executable and two libraries. Executables and libraries are only allowed to
call imported function symbols. Local function calls may only transfer to local function symbols.

code is removed (e.g., a shared library is unloaded), then the
bindings to the removed code are revoked, and the code is
revalidated (at the cost of a new translation).

Indirect control-flow transfers on the other hand are highly
dynamic. The instruction points to a memory address (which
is under the control of the attacker) that contains the real
target of the control-flow transfer. The contents of the mem-
ory address can change every time the instruction is exe-
cuted (e.g., think of a function pointer that is changed ev-
ery time before it is executed). A static check during the
translation of the instruction does not suffice to verify these
indirect transfers. The binary translator must emit an addi-
tional guard that executes a dynamic check every time the
dynamic control-flow is dispatched.

Return instructions mark the end of a function and return
control from the called function back to the caller. This
control transfer is also a form of indirect control transfer.
The target of the return instruction is usually (i.e., if no
exception is thrown) determined by the last call instruction
in the instruction stream. The call instruction pushes the
current instruction pointer onto the stack and transfers con-
trol to the called function. The return instruction on the
other hand pops the topmost location from the stack and
transfers control back to the caller. Return instructions are
translated into a special sequence of instructions. The added
guard verifies that the current return address on the appli-
cation stack is the same as the address that was pushed by
the last call instruction.

4.3 Control transfer lookup table
Both dynamic guards and static checks use a control transfer
lookup table to verify that the actual target is allowed for the
current control-flow transfer. This dynamic data structure
maps target locations to a set of possible source locations.
The source locations are either based at the granularity of
a dynamically shared object (e.g., a shared library or the
application itself), an (dynamic) object, or section inside the
shared library, a function in a section, or a specific memory
location.

The trusted loader constructs the control transfer lookup ta-
ble on the fly. The table is updated whenever the dynamic
loader resolves a new dynamically shared object. This table
keeps information about all loaded symbols and functions
and possible regions that can access this function. If the
compiled ELF DSO contains the full symbol table then it
is possible to determine the locations of all objects and all
functions. If the binary is stripped and there is only dy-
namic loader information available then only the locations
of exported symbols are known, and there is no information
about the location of individual static functions and objects.
For most executables and libraries the full symbol table is
available (or can be installed using a separate package). If
(e.g., legacy) objects are stripped then the precision of Lock-
down is limited to the set of exported functions.

5. PROTOTYPE IMPLEMENTATION
The prototype implementation builds on libdetox and secu-
loader [26, 25]. We implement the control-flow checks in
the DBT during the translation of individual basic blocks.
All static control-flow transfers are verified during the trans-
lation and indirect (dynamic) control-flow transfers are in-
strumented to execute an inlined reference monitor that exe-
cutes a dynamic guard depending on the type of control-flow
transfer.

Our current prototype does not support self-modifying code.
Given our attack model we cannot decide if new code was
produced by the attacker or a just-in-time compiler that
is a part of the application. We therefore terminate the
application if we detect code generation or self-modifying
code. (It would be possible to allow self-modifying code if
the JIT compiler is part of the trusted computing base)

For all DBT systems one of the biggest performance over-
heads is the translation of indirect control-flow transfers.
These indirect control-flow transfers cannot be translated
ahead of time and always incur a runtime lookup to consult
the mapping between the original code and the translated
code blocks, and only then control-flow is transferred to the
translated code block. These additionally executed instruc-
tions lead to performance overhead and we use a lookup

cache to reduce this overhead. Caching is an optimization
that locally stores the last successful pair of original code
pointer and translated code pointer. If the control-flow check
was successful and the current target is still the same then
there is no need to execute the control-flow check again.

The prototype implementation is released as open-source
and was implemented using 22,000 lines of C code mixed
with a small amount of inline assembler instructions.

5.1 Runtime optimizations
Achieving low overhead when running binary-only applica-
tions is a challenging problem: to support dynamic CFI poli-
cies Lockdown needs to run the binary analysis alongside the
executing application. For our prototype implementation we
have implemented a set of optimizations to achieve low over-
head without loss of precision or security. The libdetox DBT
engine already implements a set of optimizations like local
inline caches for indirect control-flow transfers. We extend
the indirect control-flow transfer lookups by a control-flow
transfer check. The validation is split into a fast path and
a slow path. The fast path uses a lookup table for already
verified {sourcedso,destination} pairs. The slow path re-
covers if this fast check fails (e.g., if there is a hash miss
in the lookup table). Lockdown handles C++ exceptions
by unwinding and resynchronizing the shadow stack with
the application stack. The stack handling routine removes
frames from the shadow stack until the frames match again.
Shadow stack frames can only be removed by exceptions
(they are never added), resulting in sound behavior.

ELF implements calls to other libraries as a call to the PLT
section of the current module and an indirect jump to the
real function. The DBT replaces such calls with a direct
call to the loaded function, removing the indirect jump and
needed CFI guard. In addition, the trusted loader protects
the PLT and PLT.GOT data structures from adversarial
access.

An optimization that we have left for future work replaces
the global cache of translated code with a per-module cache.
This allows to statically encode and protect inter-module
transfers, removing the need to execute an expensive CFI
guard if the function pointer points into the same module.

5.2 Control-flow particularities
Control-flow transfers in off-the-shelf binaries do not always
adhere to the rules listed in subsection 4.1 and Lockdown
catches this behavior and recovers using a set of handlers.
These special cases are specific to low level libraries like the
libc run-time support functions, e.g., inter-module calls to
symbols that were not imported, intra-module cross function
jumptables, inter-module callback functions or even inter-
module calls targeting PLT entries which would bypass our
PLT inlining if not handled correctly. Lockdown also allows
indirect jumps as tail calls to the beginning of other func-
tions in the set of currently allowed call targets. Although
a variety of these special cases exist they can all be handled
by a small set of handlers without compromising the CFI
security properties.

High-level application code (i.e., all code that is not the libc
or other low-level functionality like the loader) adheres to

the rules listed in subsection 4.1 and therefore does not re-
quire special handling. The only exception that needs global
special handling are callback functions which are discussed
in the next section.

5.3 Implementation heuristics
Binaries have little information about the types that are
used at runtime and it is not always possible to recover
information precisely. To support callback functions (i.e.,
a function in a library returns a function pointer which is
later called from a different library; if this function is not ex-
ported/imported then the CFI guard would fail) Lockdown
implements a dynamic scanning technique that is similar in
design to the static analysis of Zhang and Sekar proposed
in [38]. Their system statically checks for instruction se-
quences that are used to calculate function pointers.

Lockdown uses the following patterns to detect callback point-
ers to callback functions on the fly (i) push imm32 where a
function pointer is pushed onto the stack, (ii) movl imm32,

rel(%esp) where rel references a local variable on the stack,
and (iii) leal imm32(%ebx), %e?x where a function pointer
is moved from memory into a general purpose register rel-
ative to .got.plt, or (iv) relocations that are used to define
pointers for many callbacks (e.g., R_386_RELATIVE). An ad-
vantage of Lockdown’s dynamic analysis compared to static
analysis is that Lockdown uses the actual (precise) values at
runtime and checks whether the pointer actually references
a valid instruction. Lockdown is therefore potentially more
precise than a static analysis as static analysis is limited if
there are cross-module control-flow transfers that are rely
on complicated (dynamic) control-flow patterns and compu-
tation that spans across several basic blocks that are con-
nected through indirect control-flow transfers (and maybe
even across shared libraries). In addition, Lockdown scans
the .data region for relocations pointing into the code seg-
ment to detect static code pointers.

The trusted loader protects all runtime loader data struc-
tures from adversarial access and implements both the dlopen
class of functions and direct data structure access that libc
uses. The trusted loader component allows an interesting
way to deploy our dynamic CFI system: in the ELF file any
executable may specify the default loader that is used to ex-
ecute it. Lockdown is deployed on a per-application basis by
replacing this default loader with the Lockdown executable,
thereby replacing the standard loader with Lockdown.

6. EVALUATION
We evaluate Lockdown in the following areas: (i) perfor-
mance using the SPEC CPU2006 benchmarks, (ii) real-world
performance using Apache 2.2, (iii) a theoretical discussion
of the security guarantees according to the implemented se-
curity policy, and (iv) an evaluation of the remaining attack
surface.

We run the experiments in the following sections on an Intel
Core i7 CPU 920@2.67GHz with 12GiB memory on Ubuntu
12.04.4. Lockdown and the SPEC CPU2006 benchmarks are
compiled with gcc version 4.6.3. Apache 2.2.22 is installed
from the default package. The full set of security features
of Ubuntu 12.04.4 is enabled (ASLR, DEP, stack canaries,
and safe exception frames).

6.1 Performance
We use the SPEC CPU2006 benchmarks to measure raw
CPU performance and to evaluate the performance impact
of Lockdown with full indirect control-flow protection com-
pared to native execution and binary translation (with shadow
stack) only execution.

Table 1 shows the performance results for SPEC CPU2006
for native, binary translation only and Lockdown runs. Due
to issues with the trusted loader we were unable to run om-
netpp and dealII. The binary translation column already
includes the shadow stack from libdetox [25] and overhead
from the trusted loader. The additional average overhead
introduced by Lockdown for CFI enforcement (compared to
binary translation) is 17.37%, and the average overhead in-
cluding binary translation is 32.49%. Only five benchmarks
have a total overhead of more than 45% if run in Lockdown.
The majority of benchmarks face a performance overhead
of around 20% or below. Overall the overhead for dynamic
CFI enforcement is reasonable. In future work we are look-
ing into reducing the overhead by more aggressive caching
and inlining.

6.2 Apache case study
In this section we evaluate the performance of a full Apache
2.2 setup running under the dynamic CFI protection of Lock-
down (including ROP protection using the shadow stack).
Apache is set up in the default configuration and we use the
ab Apache benchmark to measure performance.

To test the performance of the web server we use an html
file (56 KB) and a jpg image (1054 KB) that are served by
Apache. The file sizes were chosen according to the average
html and image sizes reported by [14]. We used ab to send
5,000,000 requests and measured the overall time required
to respond to these requests.

The average overhead of Apache 2.2 running inside Lock-
down is 33% with an overhead of 57% for the small html
file and 10% for the larger jpg file. The additional context
switches between translator domain and application domain
for file and network I/O operations become more dominant
for smaller files. Apache sends files using as few I/O oper-
ations as possible and with small files there is not enough
computation that is executed to recover from the perfor-
mance hit of the context switch.

6.3 Security evaluation
Evaluating the effectiveness of a CFI implementation in terms
of security is not trivial. Running a vulnerable program with
a CFI implementation and preventing a specific exploita-
tion attempt does not mean that the vulnerability is not ex-
ploitable under other circumstances or by hijacking control-
flow along other paths that actually might be allowed within
the control-flow graph of the CFI implementation.

We therefore make the following observations: (i) in our at-
tack model a successful attacker needs to hijack the control-
flow to already executable code within the process, (ii) the
probability of success for an attacker depends on the ability
to find a sequence of reusable code (gadgets) that executed
in the right order accomplishes the intended malicious be-
haviour (e.g. running a shell).

The effectiveness of a CFI implementation therefore depends
on how effectively an attacker is restrained in the ability to
find and reuse already available code. This directly trans-
lates to the quantity and quality of the still reachable indirect-
control flow (ICF) targets of the enforced CFG.

Zhang and Sekar [38] propose a metric for measuring CFI
strength called Average Indirect target Reduction (AIR).
Based on AIR we define the Dynamic Average Indirect tar-
get Reduction (DAIR):

Definition: Dynamic Average Indirect target Re-
duction Let t be a specific point in time during a program’s
execution and i1,...,in be all the ICF transfers in a program
executed before and at time t. A CFI technique limits pos-
sible targets of ICF transfer ij to the set Tj. We define
DAIR(t) as:

DAIR(t) =
1

n

n∑
j=1

(1− |Tj |
S

)

where S is the number of possible ICF targets in an unpro-
tected program.

This definition of DAIR is almost identical to AIR defined
by Zhang and Sekar except that it is dynamic and takes into
account only ICFs that where executed during and up to a
certain point in time t of a program’s execution. Therefore
the DAIR metric is not static and varies during program
execution. DAIR allows us to quantify the effectiveness of
Lockdown’s CFI implementation despite its dynamic nature.

In addition to the quantity of ICF targets that are still valid,
it is also necessary to consider the “quality” of the remain-
ing ICF targets (with regard to the target’s ability to attack
successfully). Unfortunately, there is not one unique type
of instruction sequence that might be used by an attacker –
depending on what an attacker wants to achieve, the criteria
to assess a target’s quality vary depending on the attacker’s
gadget’s needs. It is therefore difficult to measure CFI effec-
tiveness based on a quality metric for ICF targets and their
usefulness to an attacker. We therefore consider DAIR as
the sole metric for CFI strength.

Table 2 shows the DAIR values for Apache, the SPEC CPU2006
benchmarks, and a set of common applications. Comparing
the final DAIR value at program termination (i.e., the most
open value that includes all values discovered by Lockdown)
with the AIR values presented by Zhang and Sekar we show
an improvement of several percent. In addition, the return
instruction pointers on the stack can only be redirected to
one (of the few) pointers further down on the stack, stopping
ROP attacks.

Table 2 shows the DAIR values for a set of UNIX applica-
tions at t = ”program termination”. The DAIR values re-
flect how much, on average, the executed ICF instructions’
set of valid targets is reduced. We see that Lockdown is
very effective for ret instructions as the shadow stack al-
lows us to restrict potential ret targets to their exact value.
As expected Lockdown is slightly more effective for indirect
calls than for indirect jmps as the CFG is more granular
at inter-module boundaries. In general, Lockdown achieves

benchmark native BT only overhead Lockdown overhead
400.perlbench 408 848 107.84% 1522 273.04%
401.bzip2 693 741 6.93% 740 6.78%
403.gcc 360 511 41.94% 666 85%
429.mcf 300 309 3% 307 2.33%
445.gobmk 535 736 37.57% 767 43.36%
456.hmmer 617 636 3.08% 633 2.59%
458.sjeng 643 1014 57.7% 1454 126.13%
462.libquantum 562 579 3.02% 580 3.2%
464.h264ref 828 1055 27.42% 1738 109.9%
473.astar 548 601 9.67% 739 34.85%
483.xalancbmk 289 570 97.23% 962 232.87%
410.bwaves 589 587 -0.34% 599 1.7%
416.gamess 1104 1212 9.78% 1333 20.74%
433.milc 518 545 5.21% 558 7.72%
434.zeusmp 627 626 -0.16% 626 -0.16%
435.gromacs 1002 1025 2.3% 1026 2.4%
436.cactusADM 1207 1244 3.07% 1249 3.48%
437.leslie3d 586 588 0.34% 591 0.85%
444.namd 578 588 1.73% 586 1.38%
450.soplex 303 339 11.88% 367 21.12%
453.povray 273 411 50.55% 621 127.47%
454.calculix 1124 1152 2.49% 1168 3.91%
459.GemsFDTD 551 576 4.54% 578 4.9%
465.tonto 712 858 20.51% 869 22.05%
470.lbm 382 388 1.57% 383 0.26%
481.wrf 970 1086 11.96% 1084 11.75%
482.sphinx3 558 592 6.09% 601 7.71%
average 15.12% 32.49%

Table 1: SPEC CPU2006 results for native, binary translation only, and Lockdown.

DAIR total ind. call ind. jump return
ls 99.90% 99.71% 99.05% 99.99%
hostname 99.95% 99.81% 99.91% 99.99%
netstat 99.67% 98.13% 99.28% 99.99%
nano 99.96% 99.78% 99.70% 99.99%
vim 99.21% 94.39% 97.29% 99.99%
nmap 99.70% 99.08% 93.04% 99.99%
xmessage 99.67% 97.41% 99.60% 99.99%
xcalc 99.72% 97.69% 99.71% 99.99%
xterm 99.77% 98.48% 98.08% 99.99%
apache 99.58% 97.65% 96.90% 99.99%
average 99.71% 98.21% 98.26% 99.99%
SPEC CPU 2006 99.93% 99.81% 99.33% 99.99%

Table 2: DAIR of a small set of UNIX applications, Apache and the SPEC CPU 2006 benchmarks, at time
t = program termination time. Where available, debug symbol files of libraries were used.

very high DAIR values as the set of valid targets is spe-
cific per loaded code module. In comparison, static CFI
implementations have AIR values of 99.13% (CFI reloc) or
98.86% (CFI bin) as reported by Zhang and Sekar [38]. Di-
rectly comparing raw AIR with DAIR values is not feasible
as the DAIR view changes over time. We compare the final
(most permissive) DAIR numbers at program termination
with the AIR number to give an idea of how Lockdown’s
CFI strength compares to other static CFI approaches.

Table 3 shows the DAIR values when only stripped libraries
are used. Lockdown still achieves reasonable CFI strength

despite the lack of extended symbol information. Fortu-
nately, almost all Linux distributions provide a way to install
symbol file packages. For the values in Table 2 we used the
symbol file packages of Ubuntu 12.04.4 for common libraries.

As mentioned before the quantity of the ICF target reduc-
tion covers only one aspect. Lockdown’s advantage to other
CFI approaches is that valid targets are specific to individ-
ual ICF instructions. This is especially relevant considering
powerful functions like mprotect() or system(). These
libc functions are interesting for attackers because of their
high misuse potential. Lockdown will deny calls to these

DAIR total ind. call ind. jump return
UNIX average 95.21% 72.75% 83.52% 99.99%
SPEC CPU 2006 95.39% 74.07% 86.42% 99.99%

Table 3: DAIR average of a small set of UNIX applications and the SPEC CPU 2006 benchmarks, at time t
= program termination time. All libraries are stripped.

functions from DSOs that do not explicitly import these
symbols. Therefore even if one module in a process is al-
lowed to call them other modules will still be restrained in
using them.

6.4 Security guarantees
Lockdown enforces strict (modular) security guarantees for
executed code: (i) the DBT always maintains control of the
control-flow, (ii) only valid, intended instructions are exe-
cuted, (iii) function returns cannot be redirected, mitigating
ROP attacks, (iv) jump instructions can target only valid
instructions in the same function or symbols in the same
module, (v) call instructions can target only valid functions
in the same module or imported functions, (vi) all signals are
caught by the DBT system, protecting from signal oriented
programming, (vii) all system calls go through a system call
policy check. Due to the modular realisation, individual
guarantees build on each other: the binary translator en-
sures the SFI properties that only valid instructions can be
targeted, the shadow stack protects return instructions at
all times, the trusted loader provides information about al-
lowed targets for call and jmp instructions, and the dynamic
control-flow transfer checks enforce dynamic CFI.

The remaining attack surface is vastly reduced: the GOT.PLT
sections are never writeable, return instruction pointers on
the stack are always protected using the shadow stack, and
each remaining indirect control-flow transfer has a restricted,
individual (on a per-module level) set of allowed targets.

7. CONCLUSION
This paper presents Lockdown, a strong dynamic control-
flow integrity policy for binaries. Using the symbol ta-
bles available in shared libraries and executables we build
a control-flow graph on the granularity of shared objects.
A dynamic binary translation based system enforces the in-
tegrity of control-flow transfers at all times according to this
model. In addition, Lockdown uses a shadow stack that pro-
tects from all ROP attacks.

Our prototype implementation shows reasonable performance
overhead of 32.49% on average for SPEC CPU2006. In ad-
dition, we have reasoned about CFI effectiveness and the
strength of Lockdown’s dynamic CFI approach which is more
precise than other CFI solutions that rely on static binary
rewriting.

Lockdown enforces strong security guarantees for current
systems in a practical environment that allows dynamic code
loading (of shared libraries), supports threads, and results
in low overhead.

8. REFERENCES
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity. In CCS’05, 2005.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and
M. Castro. Preventing memory error exploits with
WIT. In SP’08, 2008.

[3] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and
D. Boneh. Hacking blind. In SP’14, 2014.

[4] T. Bletsch, X. Jiang, and V. Freeh. Mitigating
code-reuse attacks with control-flow locking. In
ACSAC’11, 2011.

[5] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang.
Jump-oriented programming: a new class of
code-reuse attack. In ASIACCS’11, 2011.

[6] E. Bosman and H. Bos. Framing signals - a return to
portable shellcode. In SP’14, 2014.

[7] D. Bruening, T. Garnett, and S. Amarasinghe. An
infrastructure for adaptive dynamic optimization. In
CGO ’03, 2003.

[8] J. Criswell, N. Dautenhahn, and V. Adve. Kcofi:
Complete control-flow integrity for commodity
operating system kernels. In SP’14, 2014.

[9] L. Davi, R. Dmitrienko, M. Egele, T. Fischer, T. Holz,
R. Hund, S. Nuernberger, and A. Sadeghi. MoCFI: A
framework to mitigate control-flow attacks on
smartphones. In NDSS’12, 2012.

[10] U. Drepper. How to write shared libraries.
http://www.akkadia.org/drepper/dsohowto.pdf,
Dec. 2010.

[11] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. C. Necula. XFI: Software guards for system address
spaces. In OSDI’06.

[12] E. Goektas, E. Athanasopoulos, H. Bos, and
G. Portokalidis. Out of control: Overcoming
control-flow integrity. In SP’14, 2014.

[13] E. Hiroaki and Y. Kunikazu. ProPolice: Improved
stack-smashing attack detection. IPSJ SIG Notes,
pages 181–188, 2001.

[14] HTTP Archive. Http archive - interesting stats -
average sizes of web sites and objects, 2014.
http://httparchive.org/interesting.php?a=

All&l=Mar%201%202014.

[15] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks,
J. Cheney, and Y. Wang. Cyclone: A Safe Dialect of
C. In ATC’02, 2002.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In
PLDI’05, 2005.

[17] S. Nagarakatte, J. Zhao, M. M. Martin, and
S. Zdancewic. SoftBound: Highly Compatible and

http://www.akkadia.org/drepper/dsohowto.pdf
http://httparchive.org/interesting.php?a=All&l=Mar%201%202014
http://httparchive.org/interesting.php?a=All&l=Mar%201%202014

Complete Spatial Memory Safety for C. In PLDI’09,
PLDI ’09, 2009.

[18] S. Nagarakatte, J. Zhao, M. M. Martin, and
S. Zdancewic. Cets: Compiler enforced temporal
safety for c. In ISMM’10, 2010.

[19] G. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: Type-safe retrofitting of legacy
software. Trans. Program. Lang. Syst., 27(3):477–526,
2005.

[20] Nergal. The advanced return-into-lib(c) exploits.
Phrack, 11(58):http:
//phrack.com/issues.html?issue=67&id=8, Nov.
2007.

[21] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
PLDI’07.

[22] B. Niu and G. Tan. Monitor integrity protection with
space efficiency and separate compilation. In CCS’13,
2013.

[23] B. Niu and G. Tan. Modular control-flow integrity. In
PLDI’14, 2014.

[24] PaX-Team. PaX ASLR (Address Space Layout
Randomization).
http://pax.grsecurity.net/docs/aslr.txt, 2003.

[25] M. Payer and T. R. Gross. Fine-grained user-space
security through virtualization. In VEE’11, 2011.

[26] M. Payer, T. Hartmann, and T. R. Gross. Safe loading
- a foundation for secure execution of untrusted
programs. In SP’12, 2012.

[27] P. Philippaerts, Y. Younan, S. Muylle, F. Piessens,
S. Lachmund, and T. Walter. Code pointer masking:
Hardening applications against code injection attacks.
In DIMVA’11, 2011.

[28] J. Pincus and B. Baker. Beyond stack smashing:
Recent advances in exploiting buffer overruns. IEEE
Security and Privacy, 2:20–27, 2004.

[29] SCO. System V Application Binary Interface, Intel386
Architecture Processor Supplement. http:
//www.sco.com/developers/devspecs/abi386-4.pdf,
1996.

[30] H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In CCS’07, 2007.

[31] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK:
Eternal War in Memory. In SP’13, 2013.

[32] A. van de Ven and I. Molnar. Exec shield.
https://www.redhat.com/f/pdf/rhel/WHP0006US_

Execshield.pdf, 2004.

[33] Z. Wang and X. Jiang. Hypersafe: A lightweight
approach to provide lifetime hypervisor control-flow
integrity. In SP’10, 2010.

[34] Y. Xia, Y. Liu, H. Chen, and B. Zang. CFIMon:
Detecting Violation of Control Flow Integrity Using
Performance Counters. In DSN’12, 2012.

[35] B. Zeng, G. Tan, and U. Erlingsson. Strato: A
retargetable framework for low-level inlined-reference
monitors. In Usenix Security’13, 2013.

[36] C. Zhang, T. Wei, Z. Chen, L. Duan, S. McCamant,
and L. Szekeres. Protecting function pointers in
binary. In ASIACCS’13, 2013.

[37] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres,
S. McCamant, D. Song, and W. Zou. Practical control
flow integrity and randomization for binary
executables. In SP’13, 2013.

[38] M. Zhang and R. Sekar. Control Flow Integrity for
COTS Binaries. In Usenix Security’13, 2013.

http://phrack.com/issues.html?issue=67&id=8
http://phrack.com/issues.html?issue=67&id=8
http://pax.grsecurity.net/docs/aslr.txt
http://www.sco.com/developers/devspecs/abi386-4.pdf
http://www.sco.com/developers/devspecs/abi386-4.pdf
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf

	Introduction
	Attack model
	Background and related work
	Control-Flow Integrity
	Dynamic binary translation
	Dynamic loading in a nutshell

	Lockdown design
	Rules for control transfers
	Control transfer categories
	Control transfer lookup table

	Prototype implementation
	Runtime optimizations
	Control-flow particularities
	Implementation heuristics

	Evaluation
	Performance
	Apache case study
	Security evaluation
	Security guarantees

	Conclusion
	References

